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Abstract: Cell identity is determined by the chromatin structure and profiles of gene expression,
which are dependent on chromatin accessibility and DNA methylation of the regions critical for
gene expression, such as enhancers and promoters. These epigenetic modifications are required for
mammalian development and are essential for the establishment and maintenance of the cellular
identity. DNA methylation was once thought to be a permanent repressive epigenetic mark, but
systematic analyses in various genomic contexts have revealed a more dynamic regulation than
previously thought. In fact, both active DNA methylation and demethylation occur during cell fate
commitment and terminal differentiation. To link methylation signatures of specific genes to their
expression profiles, we determined the methyl-CpG configurations of the promoters of five genes
switched on and off during murine postnatal brain differentiation by bisulfite-targeted sequencing.
Here, we report the structure of significant, dynamic, and stable methyl-CpG profiles associated
with silencing or activation of the expression of genes during neural stem cell and brain postnatal
differentiation. Strikingly, these methylation cores mark different mouse brain areas and cell types
derived from the same areas during differentiation.

Keywords: methyl-CpG; DNA methylation; gene expression; cell identity

1. Introduction

DNA methylation, a covalent alteration of the cytosines in genomic DNA, primarily
affects the CpG dinucleotide in vertebrates and is frequently linked to long-term transcrip-
tional repression [1,2]. DNA methyltransferases DNMT1 and DNMT3A/B/L maintain and
establish methyl-CpG, respectively [2]. Conversely, methyl-CpG can be eliminated through
dilution, passive demethylation by inactivation of DNMTs, or active demethylation by
the ten-eleven translocation (TET) and base excision repair (BER) enzymes [3]. However,
several recent studies suggest that the roles of methyl-CpG and its oxidized derivatives,
including hydroxymethylation (hydroxy-methyl-CpG), are more complex than previously
believed [4-7]. Methyl-CpG can act as a cellular epigenetic trait involved in embryogene-
sis, cellular differentiation, and reprogramming because of its ability to be passed down
through cell divisions. The methyl-CpG profiles can now be examined genome-wide and
at a single base resolution thanks to technological advancements. These whole-genome
methodologies have been used in studies that have significantly modified our under-
standing of the genomic distribution and spatio-temporal dynamics of methyl-CpG in
several experimental models [8,9]. Our understanding of how methyl-CpG profiles affect
genome expression is rapidly developing thanks to the combination of high definition of
methyl-CpG profiling and functional studies in various model systems.
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In a previous study, we presented a new tool to analyze DNA methylation in complex
DNA sequence populations, i.e., MethCoresProfiler. This program identifies and tracks
epiallele (alleles different only by methylation) families in complex cell populations such as
those derived from the brain or other organs during postnatal differentiation [10]. Meth-
CoresProfiler sorts out populations of DNA sequences derived from specific loci harboring
a nucleus or core of CpGs, which are stably methylated in a relevant fraction of sequences
in the population. These methylated cores define and mark the epialleles derived from a
single ancestor (which generates the epiallele family). With time, CpGs surrounding the
CpGs nucleus or core, change the methylation status, because they are not subjected to
selection and contribute to the polymorphism and heterogeneity of methylation profiles
of all the epialleles present in the population. It is worth noting that in complex mixtures
of methylated DNA molecules, the frequency of the individual epialleles is never statis-
tically significant because they are formed by stable (core) and unstable CpGs [10]. In
simpler words, the methylation cores define CpGs subjected to selection and characterize
a stable core in families of epialleles. The same applies to negatively selected epialleles,
which disappear with time in the population of sequences. In both cases, positive and
negative selection of epiallele families implies selection on the expression of the gene(s)
represented in each family. With the publicly available MethCoresProfiler, we were able to
generate high-resolution and dynamic epigenetic maps of specific loci [10], for example,
during neurodevelopment. In fact, during the development of the brain, stem-cell fate
decisions are tightly correlated with their epigenetic status and expression profiles [11].
To map and identify DNA methylation cores during neurodevelopment, we performed
targeting-bisulfite amplicon sequence analysis of five genes involved in murine neural
stem-cell differentiation (mESC) to identify and characterize methyl-CpG configurations as-
sociated with the specific timing of expression of these genes during mouse brain postnatal
differentiation. Our data demonstrate that specific methyl-CpGs cores in the promoters of
these genes are closely associated with the induction or activation of transcription during
brain differentiation in both the brain areas and isolated cells. We focused our analysis
on the promoters, excluding enhancers, because the location of the promoters, not of the
enhancers, at the 5 end of the target gene is invariant.

2. Results
2.1. Specific Methylated Cores Mark the Promoters of Genes Involved in Murine Postnatal
Brain Differentiation

Cellular differentiation is characterized by a reduction in the proliferation potential
and expression of markers defining the cell type. The reduction in the developmental
potential is driven by epigenetic changes that prevent the risks linked to the expression
of non-lineage-related genes in adult cells [12-14]. In this context, the specific role of
CpG methylation of the regulatory gene regions that control cell differentiation is still
debated. Moreover, the methylated segments of differentiation or stemness genes are
highly polymorphic and heterogeneous because, when transcribed, they display stochastic
hydroxy-methyl-CpGs, which greatly dilute stable methylated and inheritable sequences
subjected to selection [10]. Indeed, in several cases where methylation was measured at
the single-cell level, a remarkable degree of methylation polymorphism was found in all
cell types, with no evidence of clonal and stable epialleles [15,16]. The considerable degree
of heterogeneity is also demonstrated by measurements of the entropy index, i.e., the
number of individual species within a population of epialleles, according to Shannon [17].
Furthermore, limited sampling and variability in the mean methylation of individual CpGs
in the sequence populations introduce additional bias into the analysis. As mentioned
above, we solved this problem by extracting common methylation signatures or cores in
the population of heterogeneous sequences. In this way, we can identify stable families of
epialleles and study their evolution over time, for example, during the differentiation of
stem cells [10].
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We applied this approach to study the epigenetic evolution of specific genes, induced
or repressed, during murine neural stem-cell differentiation (mESC). We analyzed the pro-
moter methylation configuration(s) of gene markers of pluripotency (such as NANOG) [18],
or of neuronal (TUBB3, DDO) [19,20] or glial cells (GFAP) [21], or of the differentiation
or production of brain—derived neurotrophic factor (BDNF) [22] at various time points
during postnatal mouse brain differentiation. We report here the identification of stable
gene-specific methylation signatures that characterize epiallele families of several genes
associated with the silencing or induction of the gene expression during mouse brain
postnatal differentiation.

2.1.1. NANOG Repression Is Associated with De Novo Formation of a Methylated Core in
the Promoter

NANOG is a key regulator of self-renewal and the maintenance of pluripotency in
undifferentiated embryonic stem cells. Each embryonic stem cell (ESC) in a population
displays fluctuating Nanog levels that affect cell fate specification. During stem-cell differ-
entiation, NANOG is progressively silenced. We examined the methylation status of the
NANOG promoter (Figure 1A) during ESC differentiation (Figure 1B). We found that all of
the cytosines in the region underwent progressive methylation during differentiation with
different rates (Figure 1C), generating heterogeneous and polymorphic methylation profiles
of the promoter molecules (Figure 1D). Using the tool indicated above (MethCoresProfiler),
we identified a stable CpG core tightly associated with progressive NANOG silencing in
differentiating cells in this heterogenous population of promoter sequences. At T2—4, the
NANOG promoter shows the first round of methylation at several CpGs, but the stable
and statistically relevant methylation core appears and stabilizes at T8-14 (Figure 1E,F). In
addition, we note a transient methylation at CpGs 80, which is rapidly substituted by the
stable core of CpGs 365-375. With time, the entire promoter region becomes methylated in
differentiated cells. We hypothesize that CpGs 80 is OH methylated and with its demethy-
lation at T8, favors the appearance of the core 365-375, which initiates the methylation of
the promoter leading to the silencing of the gene (Figure 1E-H).
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Figure 1. Methylation of NANOG promoter during stem-cell differentiation. (A) Structure of the
NANOG promoter. The black lines and circles on the diagram represent each CpG upstream of
the transcription start site (TSS). (B) Average DNA methylation of the six CpGs shown in (A) at
various time points (T0, T2, T4, T8, and T14). CpGs are shown as color-coded squares on the right.
(C) Average CpG methylation is shown in (A). (D) The methylated molecules” Shannon entropy of
the same samples and time intervals. (E) The methylated cores” composition and structure at various
times during differentiation. A color code is used to identify each CpG on the right side of the panel.
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(F) Frequency of the methylated core in the whole population. (G) Gene expression analysis. (H) Im-
munofluorescence analysis of Nanog expression in undifferentiated ESCs (T0) and differentiated
ESCs (T14). Scale bars: 50 um. A pairwise comparison was performed with Student’s ¢-test: * p < 0.05
versus TO.

2.1.2. TUBB3 Promoter Methylation Does Not Control the Expression during Neuronal
Differentiation

TUBB3 is almost exclusively expressed in neurons and is induced early during the
differentiation and reprogramming of neurons [23,24]. Examining the methylation status
of the TUBB3 promoter (Figure 2A), we identified a stable methylated nucleus at CpGs
22-35 (Figure 2E), which was present at the time 0 and did not significantly change over
time (Figure 2B,C) during differentiation.

This segment upstream of the gene in mice and humans contains binding sites for
several DNA-binding proteins, mainly located on the positive (+) strand [25]. This evidence
suggests that TUBB3 expression is not controlled by DNA methylation of the proximal
promoter during neural stem-cell differentiation (Figure 2G), as also confirmed by im-
munofluorescence (Figure 2H).
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Figure 2. Methylation configuration of the TUBB3 promoter during stem-cell differentiation. (A) Struc-
ture of the TUBB3 promoter. The black lines and circles on the diagram represent each CpG upstream
of the transcription start site (TSS). (B) Average methylation of the 18 CpGs shown in (A) at vari-
ous stages of stem-cell differentiation (TO0, T2, T4, T8, and T14, color-coded squares on the right).
Average CpG methylation in the population of molecules, in (C). (D) Shannon entropy of methy-
lated molecules in the same samples and time intervals. (E) The methylated cores’” composition
and structure at various times during differentiation. A color code is used to identify each CpG
on the right side of the panel. (F) Frequency of methylated core in the total population. (G) Gene
expression analysis. (H) Immunofluorescence analysis of TUBB3 expression in undifferentiated (T0)
and differentiated ESCs (T14). Scale bars: 50 um. A pairwise comparison was performed with the
student’s t-test: * p < 0.05 versus TO.

2.1.3. BDNF Gene Activation Parallels the Loss of the Methylated Core at the Promoter
during Brain Differentiation

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin growth
factor family that stimulates neuron differentiation, maturation, and survival by suppress-
ing apoptosis. BDNF also exerts a neuroprotective effect under adverse conditions [26].
We examined the epigenetic configuration of the BDNF promoter during differentiation
and found a significant reduction in methylation (Figure 3A,B). All CpGs in the promoter
were found to be methylated in a small fraction of TO cells, except CpGs 81-83, which
constitute a common methylation core in the BDNF promoter present in the majority of
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undifferentiated cells (T0) (Figure 3). The induction of differentiation was associated with
a sharp loss of methylation for all CpGs methylated at a low frequency and of the CpGs
81-83 of the core at TO-T2 (Figure 3C). The loss of methylation reduced the epigenetic
heterogeneity and the Shannon entropy during differentiation (Figure 3D). However, our
analysis also revealed that the methylated core, CpGs 81-83, present at TO0, increased tran-
siently at T2 and decreased at T8-T14 (Figure 3E-G). The 81-83 CpGs were methylated
at TO and T2 in both strands of the BDNF promoter, with a slight preference for the (-)
strand (Figures S1 and 52). The transient methylation rise of 81-83 CpGs in the early phases
of differentiation suggests a priming effect of this core on BDNF expression induced by
differentiation due to OH demethylation.
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Figure 3. Methylation configuration of the BDNF promoter during stem-cell differentiation. (A) Struc-
ture of the BDNF promoter. The CpGs are represented by black circles and lines. (B) Average DNA
methylation of the 13 CpGs shown in (A) at various stages of stem-cell differentiation (T0, T2, T4,
T8, and T14, color-coded squares on the right). (C) The average level of methylation for each CpG
shown in A. (D) The methylated molecules” Shannon entropy for the same samples and time intervals.
(E) The composition and structure of the methylated cores at various times. A color code is used
to identify each CpG on the right side of the panel. (F) Frequency of methylated core in the total
population. (G) Gene expression analysis. A pairwise comparison between each pair was performed
with Student’s t-test: * p < 0.05 versus TO.

2.1.4. GFAP Gene Activation Changes the Configuration of the Promoter Methylated Core

Glial fibrillary acidic protein (GFAP) is the protein in the astrocytes of the primary
intermediate filament (IF). In the human brain, GFAP isoforms display unique expression
profiles, which suggest distinct functional roles. One isoform, GFAPS, is expressed in
proliferative radial glia precursors during human brain development. In humans, GFAP
is a marker of neural stem cells [27]. We examined the methylation profile(s) of the GFAP
promoter during mouse brain postnatal differentiation. We found that (Figure 4A), during
ESC differentiation, all cytosines in the promoter sequence (Figure 4B) at a low frequency
undergo methylation (Figure 4C). In this context, we identified a stable methylation core
at CpGs 35-84 in undifferentiated cells, which changed its structure at T4 (84-304) and
stabilized at T8-T14 (Figure 4E). This nucleus (84-304 CpGs) became dominant in the whole
population (Figure 4F) and marked the transcriptional GFAP activation (Figure 4G) [28], as
also confirmed by immunofluorescence (Figure 4H).
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Figure 4. Methylation configuration of GFAP promoter during stem-cell differentiation. (A) The GFAP
promoter’s structure. The CpGs are represented by black circles and lines. (B) Average methylation
of the 12 CpGs depicted in (A) in cells at various time points during stem-cell differentiation (TO,
T2, T4, T8, and T14, color-coded squares on the right). (C) Average CpG methylation as displayed
in (A). (D) The methylated molecules” Shannon entropy for the same samples and time intervals.
(E) The composition and structure of the methylated cores at various times. A color code is used to
identify each CpG on the right side of the panel. (F) Frequency of the methylated core in the total
population. (G) Gene expression analysis. (H) Immunofluorescence analysis of GFAP expression in
undifferentiated ESCs (T0) and differentiated ESCs (T14). Scale bars: 50 um. A pairwise comparison
was performed with Student’s t-test: * p < 0.05 versus T0.

2.1.5. DDO Gene Promoter Methylation Profile and Expression during Postnatal
Brain Differentiation

DDO (d-aspartate oxidase) levels are induced during brain differentiation and are
inhibited in the adult brain, mirroring, reciprocally, d-aspartate levels, which are low
in adults [29]. We examined the methylation status of the DDO promoter (Figure 5A),
which showed a transient increase at T4 and returned to the baseline levels at T8-T14
(Figure 5B). This methylation involved all cytosines in the locus (Figure 5C) and was
correlated with a transient reduction in population heterogeneity at T4 (Figure 5D). We
identified a methylation core in the DDO promoter at position 105-138-150 at T0-T2, which
was fully methylated at T4 (105-138-150-226-293-343) and changed configuration at T8
T14 (105-138) (Figure 5E). This nucleus (105-138) significantly increased its frequency in
the population up to T4 and then decreased (Figure 5F), marking the activation of the DDO
transcription (Figure 5G) [30,31].
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Figure 5. Methylation status of DDO promoters during stem-cell differentiation. (A) The DDO
promoter’s structure. CpGs are represented by black circles and lines. (B) The average methylation
of the six CpGs is shown in (A) in the DNA extracted from stem cells at various time points (T0,
T2, T4, T8, and T14, color-coded squares on the right). (C) The average level of methylation for
each CpG found in the populations of molecules, as shown in (A). (D) The methylated molecules’
Shannon entropy for the same samples and time intervals. (E) The composition and structure of the
methylated cores at various times. A color code is used to identify each CpG on the right side of the
panel. (F) Frequency of methylated core in the total population. (G) Gene expression analysis. A
pairwise comparison was performed with Student’s t-test: * p < 0.05 versus TO.

2.2. CpG Methylation Cores Define Cell Identity

Taken together, these data suggest that the methylation cores in the promoter mark the
genes that determine the cell identity. To strengthen this hypothesis, we further explored
the methylation cores in the region surrounding the promoter of the DDO gene in the whole
brain during development (accession number PRJEB16320) [30,31]. In the 3Kb region sur-
rounding the DDO locus, analyzed by dividing it into seven amplicons, we found changes
in methylation and methylated core structures only upstream of the DDO promoter (—1000
to +1) (Figures S3-56) [30]. Moreover, we found the same methylated core (105-138) in
region R4, which overlapped with the analyzed region in Figure 5 (Figure S5). To demon-
strate that this core was associated with cell identity, we analyzed the methylation status of
the DDO located in the R4 region in the DNA extracted from brain areas, several cell types
isolated from the same brain areas, immortalized A1 neuronal cells, c-myc immortalized
neurons at different passages and ESCs upon the induction of neural differentiation [30],
and the gut (Figure 6A; see Section 4) [30]. Strikingly, this core and its components mark
all brain areas and the cells isolated from the same brain areas [10]. The correlation be-
tween the presence of the DDO methylation core and the brain areas and/or cells isolated
from the same areas is shown in Figure 6B, in which each core component is identified by
the CpGs (105-138-150-226-293 relative to the DDO transcription start site) and a color
code that marks the specific cell type and the mouse brain area(s) analyzed at different
times during postnatal differentiation. Specifically, this tree displays several branches that
link cells or brain areas to the specific DDO core segments, as follows: (1) cells (neural
differentiated ES/oligodendrocytes/astrocytes) and cerebellum/prefrontal /striatum area,
(red, CpG 105-138), (2) cortex (black, CpG 105-138-150-226-293 and brown, CpG 226-293),
(3) cortex/microglia/undifferentiated ES (green, CpG 138-226), and (4) hippocampus (blue,
105-138-150).
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Figure 6. The methyl-CpG configurations of the DDO promoter define cell identity and brain areas.
(A) DDO promoter methylated core structure and composition in fractionated cell populations and
mouse brain regions at different times (Figure S5). (B) A phylogenetic tree describing the relationships

between the cell identities and the arrangement of methyl-CpGs. A color code is used to identify
each CpG core on the right side of the panel.
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In conclusion, the phylogenetic tree in Figure 6 demonstrates that the DDO promoter
core differentially marks the cells and the specific brain areas during postnatal differentia-
tion [32-35].

3. Discussion

Specific memory mechanisms that regulate gene expression patterns epigenetically
have evolved to establish and maintain cellular identity during development. Once deter-
mined, these lineage-specific expression profiles must be maintained across cell divisions,
defining active or inactive gene expression states [32]. The most noticeable of these marks is
the methylation of the carbon-5 of cytosine (5mC), which has traditionally been thought to
be incompatible with active transcription when located near or in gene regulatory regions.
Furthermore, 5mC can modulate transcription factor binding [33] or induce the binding of
specific 5SmC-binding proteins, which can lead to the recruitment of co-repressor complexes
to methylated target promoters.

The data we have shown demonstrate that the heterogeneity of methylation profiles
at the promoter sites of genes expressed or silenced during mouse postnatal brain differen-
tiation is apparent, not substantial, because we identified stretches of 3 or 4 non-contiguous
CpGs present in the majority of sequences analyzed. However, considering that in a pro-
moter segment, at low levels, every CpGs is transiently methylated and demethylated
during transcription [4,8,10,15,16], every transcribed OH-methyl CpG is detectable as
methyl-C when exposed to bisulfite [5]. By extracting significant non—contiguous CpGs
methylated from pools of sequences, we identified methylated CpGs that were stable
and highly frequent in the population (methylation cores or nuclei). These cores were
statistically significant because they were present in molecules non-identical individually,
but were derived from the same original precursor (epiallele family) [10]. We identified
several epiallele families in the promoters of five genes activated or repressed during
postnatal mouse brain differentiation. These families are characterized by cores of 3, 4,
and 6 methylated CpGs that are found in various combinations in different cell types and
brain areas. Progressive demethylation of these cores in the promoters of several genes
involved in mouse brain postnatal differentiation is associated with the activation of the
transcription of specific cells and areas of differentiating mouse brain (BDNF; Figure 3).
The contrary (progressive methylation), as in the NANOG promoter, is associated with
silencing. However, we also found the presence of a promoter-methylated core (GAP)
associated with the activation of transcription [21]. The best example of how a methylation
core might associate with induction or the timely inhibition of transcription is provided by
the DDO promoter across 3Kb of a genomic region. The DDO promoter displayed a methy-
lation core undergoing transient methylation early during differentiation (T4) followed by
demethylation at late stages (T8-T14).

Moreover, we show that differentiated stem cells and neurons expressing DDO ac-
quired variants from the same original methylated core (Figure 6A), which appeared as
an identity marker of the precursor cells (Figure 6B). It is worth noting that the analysis
with the current methods (single methylated CpG, entropy, or average methylation) did
not reveal any stable methylation core (Figure S7).

We wish to note that our analysis identified the same neuronal signature in the gut
cells (Figure 6). This can be explained by the notion that the enteric nervous system (ENS)
is derived from the migratory capacity of the neural crest [34,35].

We are aware that the main limitation of this study is the circumstantial nature of
the evidence associated with the cell type identity and methylation cores in neurodevel-
opment. Although we did not demonstrate that methylation promoter profiles de facto
silence or activate transcription, the promoter methylation cores we identified are tightly
associated with the dynamic expression profiles of four genes important for developing
and differentiating ES and mouse brains.
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4. Materials and Methods
4.1. ESC culture and Differentiation

E14Tg2a (BayGenomics, Berkeley, CA, USA) mouse ESCs were maintained, as de-
scribed elsewhere [36-38]. To induce neural differentiation, ESCs were plated onto gelatin-
coated dishes at low density (1 x 103-5 x 103 cells/cm?) in the following differentiation
medium: knockout DMEM supplemented with 10% KSR, 2 mM glutamine, 100 U/mL
penicillin/streptomycin (Invitrogen, Waltham, MA, USA), and 0.1 mM (-mercaptoethanol
(Sigma, St Louis, MO, USA).

4.2. RT-PCR

Total RNAs were extracted using Trizol (Invitrogen, Waltham, MA, USA). RNA
(2 ng/reaction) was reverse-transcribed using M-MuLV reverse transcriptase (Thermo
Fisher Scientific, Waltham, MA, USA). The list of primers is reported in supplementary
material Table S1.

4.3. Immunofluorescence

For immunofluorescence analysis, ESCs were fixed, permeabilized, and incubated with
primary antibodies and an appropriate secondary antibody, as previously described [39].
The nuclei were counterstained with DAPI (1:5000; Calbiochem, St Louis, MO, USA). The
following primary antibodies were used: anti-BIII Tubulin (1:400; Sigma, St Louis, MO,
USA), anti-GFAP (1:300; Sigma, St Louis, MO, USA), and anti-Nanog (1:400, Abcam, Cam-
bridge, United Kingdom). Alexa Fluor 594 or 488 secondary antibodies were used (1:400;
Thermo Fisher Scientific, Waltham, MA, USA). Cells were visualized using an inverted
microscope (Leica Microsystems, Wetzlar, Germany) and the images were captured with a
digital camera (DFC365 FX; Leica Microsystems, Wetzlar, Germany) using LAS-AF (Leica
Microsystems, Wetzlar, Germany). Confocal images were acquired with a LSM510META
microscope (Carl Zeiss GmbH, Oberkochen, Baden-Wiirttemberg, Germany) using LSM510
software version 3.2 (Carl Zeiss GmbH, Oberkochen, Baden-Wiirttokemberg, Germany).
After acquisition, the images were color corrected using the brightness, contrast, and
color-balance commands applied to every pixel in each image.

4.4. DNA Extraction

In accordance with the manufacturer’s recommendations, DNA was prepared using
the DNeasy® Blood and Tissue Kit from Qiagen in Hilden, Germany. Thermo Scientific’s
NanoDrop 2000 was used to check the DNA quality. A 260/280 absorbance ratio was used
to determine its quantity (Invitrogen, Q32850).

4.5. Bisulfite Treatment and Amplicon Library Preparation

An EZ DNA Methylation Kit was used to perform the genomic DNA bisulfite treat-
ment (Zymo Research, Irvine, CA, USA) according to the manufacturer’s instructions. An
amplicon library was sequenced using an Illumina Miseq Sequencer to determine the DNA
methylation levels. The bisulfite conversion rate was estimated to be 98-99%. Table S1 in
the supplementary material contains a list of primers.

4.6. Dataset Description of Figure 6

The data are available on the ENA database (accession number: PRJEB16320) [30].

All animals were derived from the Jackson Laboratory-provided C57BL/6] mice. All
animal research was carried out as described in [30]. Whole brains were extracted from mice
at various developmental stages, including E15, PO, P7, P14, P21, P30, and P60. From two
mice, five brain areas were dissected (prefrontal cortex, cortex, hippocampus, cerebellum,
and striatum) (P30).

Cortical neurons were isolated from the brains of C57BL/6] mouse embryos that were
17 days old, as described in [30]. Triturated tissues were plated in a culture medium, and
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ara-C (10 mM) was added within 48 h of plating to prevent the growth of non—neuronal
cells.

Mixed glial cells, purified microglia, oligodendrocytes, and astrocytes were prepared
from the primary mouse, as described in [30], obtaining IB4-FITC or OX42-positive cells,
NG2-positive cells, and GFAP-positive cells.

Differentiation of embryonic stem cells toward neurons and glia cells was done as
previously described [36].

Al mes c-myc (Al) is a cell line immortalized by infecting a primary mouse
mesencephalon-derived cell culture with a c-myc-carrying retroviral vector prepared from
11-day-old embryos (E11), as described in [30].

C57BL/6] mice were also used to obtain gut tissues from three newborn mice (PO sta-
tus) and three adult mice (P90 status) [38].

4.7. Sequence Handling

Paired-end reads in FASTQ format from the ENA database (accession number: PR-
JEB16320) and generated in our lab were merged using the PEAR (paired-end read merger)
tool, with a minimum overlapping region of 40 nucleotides. Only reads with a mean quality
score (Phred) greater than 33 and a length between 400 and 500 nucleotides were kept.
The reads were then converted to FASTA format using the PRINSEQ (preprocessing and
sequence information) tool. Reads in FASTA format were processed using ampliMeth-
Profiler (available at https://sourceforge.net/projects/amplimethprofiler/, accessed on
5 March 2023) with several quality filters to extract mCpG configurations in single DNA
molecules. We only kept reads that were I 50% longer than the reference length, (ii) at
least 80% sequence similarity with the primer with the corresponding gene, (iii) at least
98 percent bisulfite efficiency, and (iv) alignment of at least 60% of their bases with the
reference sequences. All cytosines in the CpG sequence context had their methylation status
coded as methylated (1) or unmethylated (2). Reads with ambiguous CpG dinucleotide
calls (including gaps or A or G) were removed. The binary data were analyzed with the
MethCoresProfiler [10] in stages.

4.8. Statistical Analysis

Average methylation data are expressed as mean =+ standard deviation. The unpaired
Student t-test was used to make comparisons between two groups. Multiple comparisons
were performed using one-way ANOVA and Tukey’s post hoc test. p-Values of 10-10
were deemed statistically significant. Pearson’s correlation test was used to assess the
relationship between the distribution of epialleles within each stage group. PCA was used
to calculate the abundance of each of the 64 epialleles in the analyzed cell population. PC1
explained 31.2% of the observed variance, while PC2 explained 29%. JMP 9 software was
used for all statistical analyses (SAS, Cary, NC, USA).

5. Conclusions

DNA methylation is an epigenetic modification essential for mammalian development
and is crucial for establishing and maintaining cellular identity. Active DNA methylation
and demethylation occur during cell fate commitment and terminal differentiation [39,40].
Recent data provide insights into the contribution of DNA methylation to the establishment
of epigenetic memory during embryonic development and the modulation of cell-type-
specific gene regulatory programs to ensure proper differentiation [41]. Here, we demon-
strated that the configurations of methyl-CpGs (methylated nuclei) define cellular identity
and correlate with the regulation of the gene expression.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ijms24129951 /s1.
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