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Abstract: Large animal experiments are important for preclinical studies of regenerative stem cell
transplantation therapy. Therefore, we investigated the differentiation capacity of pig skeletal muscle-
derived stem cells (Sk-MSCs) as an intermediate model between mice and humans for nerve muscle
regenerative therapy. Enzymatically extracted cells were obtained from green-fluorescence transgenic
micro-mini pigs (GFP-Tg MMP) and sorted as CD34+/45− (Sk-34) and CD34−/45−/29+ (Sk-DN)
fractions. The ability to differentiate into skeletal muscle, peripheral nerve, and vascular cell lineages
was examined via in vitro cell culture and in vivo cell transplantation into the damaged tibialis
anterior muscle and sciatic nerves of nude mice and rats. Protein and mRNA levels were analyzed
using RT-PCR, immunohistochemistry, and immunoelectron microscopy. The myogenic potential,
which was tested by Pax7 and MyoD expression and the formation of muscle fibers, was higher in
Sk-DN cells than in Sk-34 cells but remained weak in the latter. In contrast, the capacity to differentiate
into peripheral nerve and vascular cell lineages was significantly stronger in Sk-34 cells. In particular,
Sk-DN cells did not engraft to the damaged nerve, whereas Sk-34 cells showed active engraftment
and differentiation into perineurial/endoneurial cells, endothelial cells, and vascular smooth muscle
cells, similar to the human case, as previously reported. Therefore, we concluded that Sk-34 and
Sk-DN cells in pigs are closer to those in humans than to those in mice.

Keywords: micro-mini pig; large animal experiment; GFP-transgenic pig; multipotent stem cells;
skeletal muscle; nerve-muscle regeneration

1. Introduction

In regenerative medicine, the scientific basis of therapy is usually obtained from the
results of rodent experiments, and is then developed, applied, and pursued in humans.
Stem cell transplantation is a common practice in regenerative medicine, and the study
of in vivo transplantation is important to examine the cellular capacity for engraftment,
differentiation, and contribution to tissue reconstitution with functional recovery. For
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this purpose, a trace of grafted cells is required. A green fluorescent transgenic (GFP-Tg)
mouse has been developed [1] and is widely used to obtain labeled cells. Detailed cellular
engraftment, migration, differentiation, and contribution to tissue reconstitution can be
established in recipient animals. Subsequently, tissue reconstitution leads to physiological
functional recovery, which is the logical basis for human clinical regeneration therapy.

In the next step, the preclinical aspects of regenerative medicine and large-scale animal
experiments are as inevitable and important as a transrational animal study for human
therapy to confirm the safety and efficacy of cell transplantation. In this case, cellular and
tissue regenerative confirmation is difficult and tends to be given less consideration due to
difficulties in tracing the transplanted cells. Consequently, we focused on micro-mini pigs
(MMP) for their convenient body size [2] and experimental design [3–5]. Similarly, GFP-Tg
Jinhua pigs were developed as an imaging source for in vivo experiments [6], and GFP-Tg
MMP were further developed using the back-crossing method [7].

On the other hand, we have also identified skeletal muscle-derived multipotent
stem cells (Sk-MSCs) and sorted them using fluorescence activated cell sorting (FACS)
as CD45−/CD34+ (Sk-34) cells [8] and CD45−/CD34− (Sk-DN) cells [9] from a mouse.
Using GFP-Tg mice, the in vivo capacity for engrafting and differentiation and their ca-
pacity for tissue reconstruction with a good contribution to functional recovery has also
been established [10–12]. Both mouse Sk-34 and Sk-DN cells exhibited multipotent dif-
ferentiation capacity to the muscle (skeletal and cardiac), peripheral nerve (Schwann and
perineurial/endoneurial), and vascular (vascular smooth muscle and endothelial cells and
pericytes) cell lineages, contributing to the three tissue reconstructions with good func-
tional recovery. Importantly, the above cellular multipotency was observed in both mouse
Sk-34 and Sk-DN cells, although Sk-DN cells are considered hierarchically upstream of
Sk-34 cells [13].

Using the same cell fractionation technique, the above multiple cell differentiation
and tissue reconstruction capacities with functional recovery were also observed in human
Sk-34 and Sk-DN cells [14]. However, human Sk-DN cells show a specific capacity for the
skeletal muscle cell lineage, whereas Sk-34 cells show specific peripheral nerve and vascular
cell lineage differentiation [14]. This difference between mice and humans is interesting
and should clarify the importance of intermediate animals, such as MMPs [3–5], in stem
cell biology, physiology, and other preclinical studies of large animals.

2. Results
2.1. Fractionation of Sk-34 and Sk-DN Cells

The sorting patterns of the porcine Sk-34 and Sk-DN cells are shown in Figure 1. CD45+
cells were first excluded as hematopoietic cells, and CD45− cells were further sorted by
CD34 and CD29 (Figure 1). The Sk-DN cells were re-established as CD45−/CD34−/CD29+
cells for their possible positive selection and debris removal. The results showed that Sk-34
and Sk-DN cells exist in the pig skeletal muscle, as observed in previous studies on mice
and humans.

2.2. Expression of Skeletal Muscle, Peripheral Nerve, and Vascular Cell Lineage Specific mRNAs
Immediately after Sorting

The expression of specific mRNA in Sk-34 and Sk-DN cells was measured immediately
following cell sorting to detect the in vivo status of the cells (Figure 2). Green color, which
specifically represents myoblasts and skeletal muscle relative factors, is dominant in Sk-
DN cells. Lower expression of Pax7, MyoD, M-Cadherin, and CACNB1 (voltage-gated
L-type calcium channel beta-1) was observed in Sk-34 cells. However, no differences were
observed in the markers of peripheral nerves and vascular cells. Non-expression of CD34
in Sk-DN cells was confirmed at the mRNA level.
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Figure 1. Sorting pattern of pig Sk-34 and Sk-DN cells. Sk-DN cells = P6 gate (Q1, orange dots), Sk-
34 cells = P7 gate (Q2 and Q4, blue dots). Green dots in Q3 gate and others were excluded fraction 
mainly composed of debris and the other type of cells. 
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(pink; 10~16) and vascular (blue; 17~20) cell lineages of the Sk-DN and Sk-34 cells. Grey = CD34 (21). 
Black = GAPDH (housekeeping gene; 22). Expression was evaluated between 0 to 3 based on the 
value of GAPDH, and 3 is the highest. Samples were obtained from the non-GFP-Tg-MMP (n = 4). 
In this case, the total RNA extracts were preliminary mixed (averaged) and analyzed. 
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Figure 2. Expression of mRNAs specifically for the skeletal muscle (green; 1~9), peripheral nerve
(pink; 10~16) and vascular (blue; 17~20) cell lineages of the Sk-DN and Sk-34 cells. Grey = CD34 (21).
Black = GAPDH (housekeeping gene; 22). Expression was evaluated between 0 to 3 based on the
value of GAPDH, and 3 is the highest. Samples were obtained from the non-GFP-Tg-MMP (n = 4). In
this case, the total RNA extracts were preliminary mixed (averaged) and analyzed.

2.3. Distributions of Pax7 and MyoD Positive Cells after Culture

The expression of Pax7 and MyoD was also examined at the protein level after
5–6 days of cell culture. The percentages of Pax7+ and MyoD+ cells among Sk-34 and
Sk-DN cells are shown in Figure 3. At the protein level, the expression of Pax7/MyoD was
significantly higher (approximately three-fold) in Sk-DN cells, consistent with the mRNA
results. Therefore, the ability of Sk-DN cells to differentiate into the skeletal muscle cell
lineage was stronger.

2.4. In Vivo Differentiation Capacity of Sk-DN Cells

The in vivo differentiation capacity of Sk-DN cells was confirmed after cell transplanta-
tion into damaged TA muscle and sciatic nerve models of nude mice and rats. Firstly, there
were no Sk-DN cells engrafted in the damaged sciatic nerve, as one of their characteristics
was shown in human Sk-DN cells. However, a large number of GFP+ myofibers (Sk-actin-
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positive) with large and small diameters were detected in the damaged TA muscles of mice
(Figure 4A). These GFP+ fibers had central nuclei, which are characteristic of regenerative
fibers (Figure 4B–D). Laminin production was detected on fibers with small diameters,
indicating the presence of newly formed fibers (Figure 4C,D). Similarly, GFP+ reactions
were observed inside the parent fiber, indicating the possible involvement of satellite cells
(Figure 4C, oblong line).
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2.5. In Vivo Differentiation Capacity of Sk-34 Cells

The in vivo differentiation capacity of Sk-34 cells was confirmed after cell transplanta-
tion into the damaged TA muscle and sciatic nerve (Figure 5). GFP+ skeletal muscle fibers
(GFP+/Sk-actin+) were also detected in the mouse TA damage model (Figure 5A).

Several GFP+/p75+ cells were evident in the rat sciatic nerve injury model (Figure 5B,
yellow arrows), indicating the presence of pig Sk-34 cell-derived Schwann cells. Similarly,
the GFP+ perineurium/endoneurium were clearly observed in the immunoelectron micro-
graphs (Figure 5C,D). Myelinated/nonmyelinated axons were frequently encircled by GFP+
dark reactions. The encirclements could be detected on single axons as an endoneurium
with a clear nucleus (endoneurial cells, Figure 5D) and on multiple axons as a perineurium
(perineurial cells, Figure 5C). The same reaction was also evident around the capillary
endothelial cells, possibly apart from the pericytes (Figure 5C).

Vascular cells, GFP+/CD31+ endothelial cells (Figure 5E, arrows), and GFP+/αSMA+
vascular smooth muscle cells (Figure 5F, arrows) were observed in the mouse TA injury
model. Consequently, porcine Sk-34 cells exhibited the multipotent differentiation capacity
of skeletal muscle, peripheral nerve, and vascular cell lineage cells.

In the in vivo transplantation experiment with both Sk-DN and Sk-34 cells, GFP-
positive reactions were not detected in the rat TA injury model. A few positive reactions
were observed after the enhancement of GFP by the anti-GFP antibody, but the reactions
were quite weak in contrast to those in the other models. Therefore, we assumed that the
GFP-Tg MMP emission intensity was lower than that of a GFP-Tg mouse and that these
results could depend on the size of the recipient tissue.
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Figure 5. In vivo differentiation capacity of Sk-34 cells. The results of skeletal muscle and
vascular lineage are from the mouse TA damage model, and peripheral nerve lineage are
from the rat sciatic nerve damage model. In the immunohistochemical photographs (A,B,E,F),
left column = GFP + cells/tissues; center = reactions for each antibody; right column = merge
image. Arrows show typical portions of double reactions with GFP and red reactions for each
antibody (yellow colors). Blue staining = DAPI. (C,D): Immunoelectron microscopy. Dark portions
are DAB+ reactions for anti-GFP. PN = perineurium, MN = myelinated nerve, PC = perineurial cell,
Cp = capillary, EC = endoneurial cell, EN = endoneurium. Bars = 30 µm.

3. Discussion

The present study clearly indicated that porcine Sk-DN cells were highly myogenic
cells that were able to form skeletal muscle fibers after transplantation of damaged TA
muscle. There were probably primary myoblasts, which were able to form new fibers with
the basal lamina (laminin+) and satellite cells. However, they are not capable of regenerating
peripheral nerves and blood vessels because of the lack of cell differentiation capacities in
their related cell lineages, and this similar to the previous human case. In contrast, porcine
Sk-34 cells exhibited a multipotent differentiation capacity of the skeletal muscle (primary
myoblasts and satellite cells), peripheral nerve (Schwann cells, perineurial/endoneurial
cells), and vascular (endothelial cells, vascular smooth muscle cells, and probably pericytes)
cell lineages. These characteristics are similar to those observed in a previous mouse case.

Previously, we identified multipotent Sk-34 and Sk-DN cells in mouse skeletal mus-
cles [8,9]. Using GFP-Tg mice and cell transplantation, the in vivo capacity for engrafting,
differentiation, and tissue reconstruction with a good contribution to functional recovery
has been established [10–12]. In particular, both Sk-34 and Sk-DN cells exert multipotent
differentiation capacity in the muscle (skeletal and cardiac), peripheral nerve (Schwann
and perineurial/endoneurial cells), and vascular (vascular smooth muscle and endothelial
cells, and pericytes) cell lineages, contributing to the three kinds of tissue reconstructions
with good functional recoveries [10–12,15,16]. Importantly, the above cellular multipotency
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was equally observed in both Sk-34 and Sk-DN cells in mice, although Sk-DN cells are
considered hierarchically upstream of Sk-34 cells [13].

Thereafter, we confirmed that Sk-34 and Sk-DN cells were also present in the human
skeletal muscle, which could be obtained using the same method of enzymatic extraction
and FACS sorting as the mouse. However, in humans, these two cell fractions show
different in vitro and in vivo characteristics [14]. In other words, the same cell fractions of
Sk-34 and Sk-DN exist in humans, but the two cell fractions have different differentiation
capacities. Sk-DN cells are specific for the skeletal muscle cell lineage, whereas Sk-34 cells
are multipotent lineages of peripheral nerves and vascular cells. Therefore, the differences
between humans and mice should be properly clarified for the therapeutic purposes of
regenerative medicine.

This difference can be assumed to simply depend on the evolutionary change of the
biological species. However, in this type of cross-species comparison study, the coherence
of the cellular fraction method is important, and this is the first objective of this study.
The cell fractionation method used in the present pig study strictly followed that used
in previous mouse and human studies. Thus, it is possible that the results reflect the
differences between species. Pig Sk-34 and Sk-DN cells are similar to human cells because
of the dominant myogenic differentiation of Sk-DN cells in vivo, which is supported by the
in vitro cell culture results (Figure 3) and mRNA analysis immediately after cell extraction
and sorting (Figure 2). Interestingly, Sk-DN cells did not engraft into the damaged sciatic
nerve (peripheral nerve circumference). This is the same as in humans and different
from mice; this is the second point of the present study. A slightly different aspect is the
myogenic potential of Sk-34 cells (Figure 5). In humans, myogenic differentiation was not
detected in Sk-34 cells [14], whereas little myofiber formation was observed in pig Sk-34
cells transplanted in vivo (Figure 5). This trend was also supported by the results of the
in vitro cell culture (Figure 3).

Another issue that must be resolved is whether Sk-DN cells include myogenic cells
other than satellite cells. In our series of previous studies, satellite cells were CD34 nega-
tive; thus, they were included as Sk-DN cells. Therefore, the next question was whether
satellite cells are capable of new myofiber formation. Skeletal muscle fibers (myofibers) are
necessary for the formation of the basal lamina. However, satellite cells localize within the
basal lamina of parent myofibers to regenerate/generate cytoplasmic myofibrils. Therefore,
the notion that satellite cells do not necessarily form or produce the basal lamina is cor-
rect. However, interstitial myogenic cells must form the basal lamina when new fibers are
formed (fiber hyperplasia) in the interstitial spaces. In fact, small fibers with basal lamina
(laminin+) were also detected after Sk-DN cell transplantation (Figure 4B–D). In addition,
GFP+ cells were detected inside the basal lamina of parent fibers (Figure 4C). In the above
regard, it is possible to consider that Sk-DN cells include primary myoblasts and satellite
cells. Possible satellite cell-like reactions were not observed during the transplantation of
Sk-34 cells, which showed slight myogenic potential.

However, the regenerative capacity of the peripheral nerve of Sk-34 cells was quite sim-
ilar to that of humans (Figure 5) and not very different from that of mice [17]. Active regen-
eration of the perineurium/endoneurium with differentiation into perineurial/endoneurial
cells was also observed (Figure 5B–D). Therefore, it may also have therapeutic potential for
long-gap peripheral nerve injuries, as shown in both humans and mice [17–19].

Stem cells derived from skeletal muscles, other than satellite cells, have been identified
and fractioned using various methods and studied for their therapeutic potential over the
last 25 years [20–30]. This is because skeletal muscle usually accounts for 40–60% of the
lean body mass in humans and is situated in the outer part of the body next to the skin
and subcutaneous fat tissues. Therefore, tissue sampling to obtain an autologous stem cell
source is considered relatively easy and safe from a therapeutic perspective.

Basic studies on stem cells have been initiated and developed mainly using mouse
skeletal muscles, and the results have been applied to humans on theoretical grounds.
It appears that the in vivo cell behavior and differentiation capacity of skeletal muscle-
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derived stem cells (Sk-MDSCs) are somewhat different between mice and humans after
cell transplantation. Given this difference, it can be assumed that the differences in the
cell fractionation method in each study were largely affected. This is because there are
variations in cell fractionation methods, and several differences in cell differentiation
abilities have been observed among mouse studies [25,31–38]. Therefore, the present
study accomplished methodological consistency, including cell isolation, fractionation, and
expansion, and analyzed cell differentiation capacity using the same in vivo transplantation
model. Consequently, it is considered that the present results show the transitional phase
of evolutionary change between mice and humans. Whether this change is positive or
negative is unclear. However, given the greater ability of the mouse skeletal muscle to
regenerate, it is likely negative. Therefore, intermediate large-animal experiments are
considered a valuable step in stem cell biology and physiology. Transplantation of MMP-
to-MMP Sk-34 cells for nerve regeneration is of great interest, especially in the therapeutic
use of preclinical experiments on large animals. However, low green fluorescent protein
(GFP) emissions within GFP-Tg MMP are a concern.

4. Materials and Methods
4.1. Animal Usage

In the present study, we used micro-mini pigs (MMP) produced by the Swine and
Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry. Green
fluorescent protein transgenic (GFP-Tg) MMP was used as the donor animal in the in vivo
transplantation experiment, and non-Tg MMP was used for in vitro analysis. This GFP-Tg
MMP was prepared via the backcross method [7] based on GFP-Tg Jinhua pigs [6] and
MMP [3–5].

GFP-Tg MMP (12–14-week-old, n = 4) and/or non-Tg MMP (12–14-week-old, n = 4)
were anesthetized with an overdose of pentobarbital (100–120 mg/kg, IP), and deep sleep
was induced. After blood removal, muscle samples (80–100 g) were collected from the
vastus lateralis. All the study protocols were approved by the Tokai University School of
Medicine Committee on Animal Care and Use (#210421).

4.2. Cell Isolation and Sorting

Sk-34 and Sk-DN cells were isolated using the same method as previously described
for mouse and human muscles [8,9,14,18], and methodological consistency was achieved
across three species. Briefly, muscle samples were washed several times with Dulbecco’s
modified essential medium (DMEM) supplemented with 1% penicillin/streptomycin and
cut into several pieces (5–7 mm in thickness and width and 30–40 mm in length). It should
be noted that the muscles were never minced. The muscle pieces were washed again in
DMEM, then treated with 0.1% collagenase type IA (Sigma-Aldrich, St. Louis, MO, USA)
in DMEM containing 7.5% fetal calf serum (FCS) with gentle agitation for 2 h at 37 ◦C.
Extracted cells were filtered through 70-µm, 40-µm, and 20-µm nylon strainers to remove
muscle fibers and other debris. Then, cells were frozen at −80 ◦C using a biofreezing
vessel (BICELL; Nihon Freezer Co., Ltd., Tokyo, Japan) and stored in liquid nitrogen using
cell preservative solution (Cell Banker; Juji-field, Tokyo, Japan) until use. This process is
identical to that in human cells [14].

4.3. Cell Sorting

For cell sorting, stored cells were thawed and resuspended in Iscove’s modified
Dulbecco’s medium (IMDM) containing 10% FCS and prepared for cell sorting. Suspended
cells were stained with CD34 (goat anti-pig CD34 polyclonal, R&D, Minneapolis, MN,
USA) and (Rabbit anti-goat Alexa 594, Molecular Probes, Eugene, OR, USA), CD45 (Mouse
anti-pig monoclonal, Bio-Rad, Tokyo, Japan), (rabbit anti-mouse, Alexa 647), and CD29
(mouse anti-pig CD29 Alexa 647 conjugated, BD Bioscience, San Jose, CA, USA) antibodies,
and Sk-34 (CD45−/34+) and Sk-DN (CD45−/34−/29+) were obtained using FACS Aria
III (Nippon BD, Tokyo, Japan).
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4.4. RT-PCR

To test the putative cell differentiation capacity, the expression of specific markers
for skeletal muscle, peripheral nerve, and vascular cell lineages, as well as neurotrophic
and vasculogenic factors were examined with RT-PCR for Sk-34 and Sk-DN/29+ cells
immediately after cell sorting. The specific primers for pig cells and the analyzed ma-
terials are summarized in Table S1. Cultured cells were expanded for 5–6 days, strictly
corresponding to the method previously reported for human cells [14,18], lysed, and total
RNA was purified using a QIAGEN RNeasy Micro Kit (Molecular Probes, Eugene, OR,
USA). First-strand cDNA synthesis (QIAGEN, Hilden, Germany) was performed with an
Invitrogen SuperScript III system using a dT30-containing primer (see above), and specific
PCR (35 cycles of 30 s at 94 ◦C, 30 s at 60–65 ◦C, and 2 min at 72 ◦C) was performed in a
15-µL volume containing Ex-Taq buffer, 0.8 U of ExTaq-HS-polymerase, 0.7 µM specific
sense and antisense primers, 0.2 mM dNTPs, and 0.5 µL of cDNA. To determine a slight
difference in the expression intensity on the support, additional specific PCR cycles of
30 and 40 were performed (30, 35, and 40 cycles).

The analysis was repeated three times, and the relative expression intensity of each
band was qualitatively classified into three levels: an apparently strong (+3), an apparently
low (+1), an intermediate (+2), or an undetectable (0) band with respect to the housekeeping
control gene (GAPDH), which was used for each electrophoresis.

4.5. In Vitro Myogenic Differentiation Capacity of Pig Sk-34 and Sk-DN Cells

First, the in vitro myogenic differentiation abilities of Sk-DN and Sk-34 cells were
determined via immunocytochemistry using a cytospin preparation. This analysis was
performed using non-transgenic MMP (n = 4). Both cell fractions were cultured following
a previously reported method for human-specific conditions [14], and cellular behaviors
were observed.

After 5–7 days of culture, both cell types were removed using trypsin-EDTA, washed
with DMEM/20% FCS, and suspended in DMEM. Suspended cells were fixed with 2%
paraformaldehyde (PFA)/0.1 M phosphate buffer (PB) for 10 min, spun, applied to a
glass slide (cytospin preparation), re-fixed with 4% PFA/PB for 10 min, and washed
with 0.1 M phosphate-buffered saline (PBS). The samples were then treated with 10–20%
sucrose/PBS and frozen. After several freeze–thaw cycles, the samples were prepared for
immunostaining to analyze myogenic differentiation. Monoclonal anti-MyoD (1:50, 4 ◦C
overnight; Dako, Carpinteria, CA, USA) antibodies were used to detect myogenic cells;
monoclonal anti-Pax7 antibodies (1:50, 4 ◦C overnight; Developmental Studies Hybridoma
Bank, University of Iowa, Iowa, IA, USA) were used to detect putative satellite cells.

The proteins were visualized using Alexa Fluor-594-conjugated goat anti-mouse an-
tibodies (Molecular Probes, Eugene, OR, USA). Quantitative analysis was performed
using the Stereo Investigator software (MBF Bioscience, Williston, VT, USA, https://
mbfbioscience.jp/stereoinvestigator.html, 30 January 2011) and Photoshop 2023 (Adobe
Systems Inc., San Jose, CA, USA). Data were averaged and expressed as percentages
(positive cells/total cells), and the cells that included more myogenic cells were compared.

4.6. In Vivo Cell Differentiation Capacity and Recipient Animals

To determine the in vivo differentiation potential of Sk-DN and Sk-34 cells, athymic
nude mice (female, BALB/cA Jcl-nu/nu; CLEA Japan, Tokyo, Japan, age 5–6 wk, n = 22)
and rats (male and female, F344/NJcl-mu/mu; CLEA, Tokyo, Japan, age 8–12 wk, n = 14)
were used as recipient animals. The donor cells were obtained from GFP-Tg MMP (n = 4),
and the cells from the 4 muscle samples were transplanted into the two types of models of
rats and mice described below. All experimental procedures were approved by the Tokai
University School of Medicine Committee on Animal Care and Use (#210421, #214022,
and #215010).

We then used 2 types of animal models: (1) the “severe muscle damage model for tib-
ialis anterior (TA)”, which was largely removed muscle tissue with nerve and blood vessel

https://mbfbioscience.jp/stereoinvestigator.html
https://mbfbioscience.jp/stereoinvestigator.html
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branches [10], and (2) the “severe crash injury model for sciatic nerve” as a simulation of
Seddon’s axonotmesis and/or Sunderland’s fourth degree nerve damage, which involves
loss of axons, endoneurial tubes, perineurial fasciculi, and vascular networks, while con-
tinuity of the epineurium is maintained [17]. Therefore, multiple stimulations of skeletal
muscle-related cells (such as satellite cells and other myogenic cells), peripheral nerves
(Schwann cells and endoneurial/perineurial cells), and vascular lineage cells (pericytes,
endothelial cells, and smooth muscle cells) can be expected.

Briefly, in the severe TA muscle injury model, the fascia of the left TA muscle of nude
mice and/or rats was exposed by skin incision, and the fascia was minimally cut. Using
forceps, muscle fibers with nerves and blood vessels from the region surrounding the motor
point of the TA muscle were manually removed to 30–40% of the whole muscle mass. To
avoid diffusion of transplanted cells, the fascia incision was sutured and then Sk-DN or
Sk-34 cells (about 5 × 105 in mice, 1 × 106 in rats) suspended in 2~4 µL of DMEM, were
slowly injected into the damaged muscle portion using a fine-tip glass micropipette. The
skin was then sutured, and a transparent sterile/analgesic plastic dressing (Nobecutan
spray; Yoshitomi Chemical, Tokyo, Japan) was sprayed over the wound.

A nerve crush injury model was established using nude mice and rats. The right
sciatic nerve was exposed through skin and gluteal muscle incisions. The sciatic nerve was
then repeatedly crushed to 7 mm in mice and 12 mm in rats along the longitudinal axis
using forceps. In this case, most of the peripheral nerve support tissues were destroyed,
except for the epineurium, which is the outermost layer of the nerve. Cells were suspended
in DMEM at a concentration of 2.5 × 105 cells/2 µL, and 5 × 105 cells/3 µL and injected
into the destroyed hollow portion of the nerve through the remaining epineurium using a
fine-tip glass pipette [17,18].

4.7. Immunohistochemistry and Immunoelectron Microscopy

In vivo cell differentiation potential was examined using immunohistochemistry and
immunoelectron microscopy. After 5 weeks of transplantation, the recipient animals
were anesthetized with pentobarbital (60 mg/kg) and perfused with warm PBS through
cannulation from the abdominal aorta to remove circulating blood, followed by perfusion
fixation with 4% PFA/PB. After fixation, the TA muscles or sciatic nerves were removed
and re-fixed with 4% PFA/PB overnight, followed by washing with PBS and treatment with
a graded 5–25% sucrose/PBS series. The TA muscles were quickly frozen using isopentane
pre-cooled with liquid nitrogen, and the nerves were embedded in OCT compound and
frozen at −80 ◦C. Both samples were stored at −80 ◦C until use.

For staining of the histological sections, several 7 µm cross-sections of the operated TA
muscles and sciatic nerves were obtained. Engrafted GFP-Tg pig cells were enhanced using
a rabbit anti-GFP IgG fraction (1:300, A11122; Molecular Probes, Inc., Eugene, OR, USA).

Blood vessels were detected using mouse monoclonal α-smooth muscle actin (SMA,
Cy3-conjugated directly; 1:1500, for 1 h at room temperature; Sigma, St. Louis, MO, USA),
rat anti-mouse CD31 (1:500, 4 ◦C overnight; BD Biosciences, San Jose, CA, USA), and rat
monoclonal anti-pig CD31/PECEM-1 (1:200, for 2 h at room temperature; R&D, Minneapo-
lis, MN, USA). Immature and/or newly differentiated Schwann cells were detected using
rabbit anti-p75 polyclonal antibody (1:400, 4 ◦C overnight; CST, Boston, MA, USA). Muscle
fibers were confirmed using rabbit polyclonal anti-skeletal muscle actin (1:300, for 1 h at
room temperature; Abcam, Cambridge, UK). Rabbit polyclonal anti-laminin (Pan-laminin,
1:1500 for 2 h at room temperature, LSL, Tokyo, Japan) and/or rat monoclonal anti-mouse
laminin (β-2 chain, 1:2000 for 2 h at room temperature, Chemicon, Temecula, CA, USA)
antibodies were used to distinguish between the inside and outside (interstitial spaces) of
the muscle fibers. The reactions were visualized using Alexa Fluor-488- and 594-conjugated
goat anti-rabbit and anti-rat antibodies (1:500 for 2 h at room temperature; Molecular Probes,
Eugene, OR, USA). Nuclei were counterstained with DAPI (4′,6-diamino-2-phenylindole).

The engrafted cells were further analyzed via immunoelectron microscopy. Cryosec-
tions were stained using anti-GFP (1:50, 4 ◦C overnight; clone 235-1, biotin conjugate;
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Millipore, Burlington, MA, USA), followed by HRP-conjugated streptavidin secondary
antibody (1:200, for 1 h at room temperature; Dako, Carpinteria, CA, USA) to label en-
grafted pig cells. Reactions were visualized with DAB (3,3’-Diaminobenzidine) after
fixation in 1% glutaraldehyde/0.1 M PB. Visualized sections were then fixed in 1% osmium
tetroxide/0.05 M PB and prepared for electron microscopic analysis. Cell differentiation
into Schwann cells, perineurial/endoneurial cells, vascular endothelial cells, pericytes, and
fibroblasts were also observed. A detailed immunoelectron microscopy method has been
reported previously [10,11,39].

4.8. Statistics

Differences in cytospin data between Sk-DN and Sk-34 cells was analyzed using the
parametric Tukey–Kramer post hoc test, and the significance level was set at p < 0.05. Values
are expressed as mean ± SE.
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