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Abstract: Maxillofacial surgery placement of fixatures (Leonard Buttons, LB) at close proximity to
surgical incisions provides a potential reservoir as a secondary local factor to advanced periodontal
disease, with bacterial formation around failed fixatures implicating plaque. To address infection
rates, we aimed to surface coat LB and Titanium (Ti) discs using a novel form of chlorhexidine
(CHX), CHX-CaCl2 and 0.2% CHX digluconate mouthwash as a comparison. CHX-CaCl2 coated,
double-coated and mouthwash coated LB and Ti discs were transferred to 1 mL artificial saliva
(AS) at specified time points, and UV-Visible spectroscopy (254 nm) was used to measure CHX
release. The zone of inhibition (ZOI) was measured using collected aliquots against bacterial strains.
Specimens were characterized using Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction
(XRD) and Scanning Electron Microscopy (SEM). SEM displayed copious dendritic crystals on LB/ Ti
disc surfaces. Drug release from double-coated CHX-CaCl2 was 14 days (Ti discs) and 6 days (LB)
above MIC, compared to the comparison group (20 min). The ZOI for the CHX-CaCl2 coated groups
was significantly different within groups (p < 0.05). CHX-CaCl2 surface crystallization is a new drug
technology for controlled and sustained CHX release; its antibacterial effectiveness makes this drug
an ideal adjunct following clinical and surgical procedures to maintain oral hygiene and prevent
surgical site infections.

Keywords: chlorhexidine; maxillofacial; antimicrobial; drug delivery; crystallisation; drug synthesis

1. Introduction

Maxillofacial trauma has a common and acute presentation in accident and emergency
departments, with the incidence increased within the UK from 4% (1998) to 10% (2020),
according to a BOAMS survey [1,2]. Mandibular fractures are prone to infection, and
strategies to reduce surgical site infection remain ineffective and are targeted at smoking
cessation and alcohol withdrawal, with no proven efficacy [3,4]. Surgical site infection
remains a considerable problem with increased cost and morbidity to the patient [3]. Re-
cently, our group demonstrated that advanced periodontal disease was a highly significant
cofactor in surgical site infection (mandibular fractures) with an odds ratio of 74. Maxillofa-
cial plate removal is primarily due to infection in 46.7% of the cases [5,6] and results from
biofilm development [7], which mandates further surgery.

Contemporaneous management of mandibular fracture involves maxillomandibular
fixation (MMF). This commonly involves using wires and metal fixatures to localise the
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fractures following the application of surgical fixatures (e.g., arch bars and Leonard But-
tons) [8–11], followed by intra-oral surgical access in the buccal sulcus and application
of load-sharing osteosynthesis according to Champy principles. It is postulated that the
dependent position of the surgical incision in the buccal sulcus makes the site vulnerable
to biofilm-producing bacteria, and strategies to reduce this load may prove beneficial to
fracture management.

Currently, a Chlorhexidine (CHX) digluconate mouthwash (0.12%, 0.2% and 1%) is
used prior to and following craniomaxillofacial surgery and as a recommended longer-term
postoperative mouthwash [12]. These mouth-rinse adjuncts were also recommended during
the COVID-19 pandemic to minimize transmission upon treatment [13,14], and various
detection methods were suggested [15]. Infection rates are, nevertheless, still high (4–10%)
in MMF patients, and this needs improvement. A solution to this problem may be the use of
a novel crystalline form of chlorhexidine (CHX-CaCl2) formulated by Luo et al. [16], which
provides a safe and effective antimicrobial with substantivity. Novel CHX-CaCl2 particles
also demonstrated a surface crystallisation mechanism when synthesised in conjunction
with gold nanorods [17]. This technology may, therefore, have the potential to be applied
to metallic MMF close to the fracture site.

The aim of this study was to synthesise a CHX-CaCl2particle antimicrobial coating onto
MMF to improve oral hygiene and reduce infection rates in the maxillofacial traumatology
that is lacking within research. A slow CHX release from the coated MMF may reduce
infections and prevent plaque build-up, maintaining oral hygiene.

2. Results
2.1. Energy Dispersive X-ray Spectroscopy (EDS) Results

The EDS results for the titanium disc and the LB (Ti element) are shown in Figure 1a,b
and the quantitative elemental composition (atomic %) is displayed in Table 1.
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Table 1. Composition of Titanium disc and Leonard Button (atomic %).

Mean (SD) of Elements (Atomic %)

Spectrum Si Ti Cr Fe Ga

Titanium disc 99.57
(0.38)

0.13
(0.11)

0.31
(0.27)

Leonard Button 0.52
(0.20)

99.26
(0.34)

0.04
(0.08)

0.28
(0.11)

0.30
(0.08)

2.2. Scanning Electron Microscopy (SEM) Results

SEM photomicrographs presented in Figure 2 show the CHX-CaCl2 crystals on the
single coated Ti disc (a–c), double-coated Ti disc (d–f), and lapped Ti disc (g–i). There
was a dense dispersal of CHX-CaCl2 crystals (Figure 2a) binding dendritically to the
Ti disc surfaces and linking to other crystals (Figure 2b,c). The double coating of Ti
discs displayed a fine dispersal of CHX-CaCl2 crystals on the surface (Figure 2d), with
partially formed crystallites growing on a bed of crystallites (Figure 2e). The CHX-CaCl2
crystal primary growth appeared to be from a central nucleus outwards in a wheat-sheaf
appearance (Figure 2f). The lapped Ti disc displayed a dispersed coating (Figure 2g)
with a bi-modal distribution of CHX-CaCl2 crystals (Figure 2h), where smaller crystal
formation was associated with flaws on the lapped surface (Figure 2h,i). There was no
coating observed for the Corsodyl-coated Ti disc surface (Figure 2j,k), which displayed the
Ti disc’s coarse surface and grain boundaries (Figure 2k,l).
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Figure 3a shows the uncoated Leonard Button (LB) displaying a coarse and columnar
surface (Figure 3b). Figure 3c displays signs of some agglomerated spherical CHX-CaCl2
crystals on the LB’s concave surface and a uniform crystal distribution on its convex surface
(Figure 3d). The CHX-CaCl2 crystals are growing in association with the LB’s surface flaws
(Figure 3e). Figure 3f illustrates the unique spherical morphology of the crystals, with
dendrites binding uniformly to the LB’s coarse metal surface. The intimate contact of the
CHX-CaCl2 crystals’ tendrils at the LB surface interface is evident in Figure 3f.
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Figure 3. SEM photomicrographs of LB uncoated (a,b) and single coated with CHX-CaCl2 particles (c–f).

2.3. Light Profilometry Results

The mean surface roughness (Ra) is indicated in Table 2 for the lapped and unlapped
Ti discs. Figure 4 illustrates the primary and grid mapping of (a) the Ti disc and (b) the
lapped Ti disc specimen.

Table 2. Mean surface roughness (Ra) of specimens from Groups 1 and 3.

Samples Mean X
(µm)

Mean Y
(µm) Average (µm)

Ti disc
(Group 1) 4.2 4.2 4.2

Lapped Ti disc
(Group 3) 3.3 3.3 3.3
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Figure 4. Light profilometry results displaying the grid and primary mapping of (a) Ti disc and
(b) Lapped Ti disc.

2.4. Ultraviolet-Visible Spectroscopy (UV-Vis) Results

The calibration concentrations against absorbance were highly correlated for the Chlorhex-
idine diacetate (CHXD) and CHX digluconate standards (r2 = 1 and 0.99). Figure 5a,b demon-
strates the cumulative CHXD release for the Ti disc Grps. 1–4 and Leonard Button Grps.
5–7. A rapid release of the CHXD is illustrated across all groups within the first 10 min,
then an increase in CHXD release was observed after 24 h for the single coated CHX-CaCl2
(Grps. 1–3 and 5–6). Figure 5 shows a sustained release of CHXD up to 14 days (>2.5 ppm)
for the double-CHX-CaCl2-coated Ti discs (Grp. 2) and up to 6 days (>2.5 ppm) for sin-
gle CHX-CaCl2-coated Ti discs (Grp. 1). Single CHX-CaCl2 coating of LB resulted in a
sustained CHXD release of 3 days and increased to 6 days for double coating (>2.5 ppm).
However, the commercial mouthwash (Grps. 3 and 7) coated Ti discs and LB indicated a
CHX release of 20 min (>2.5 ppm).
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2.5. X-ray Diffraction (XRD) Results

The CHX-CaCl2 crystals displayed unique peaks synonymous with the patented
form [18]. The XRD data indicate the 2-theta peaks in Figure 6.
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2.6. Zone of Inhibition (ZOI) Results

The CHXD standard concentrations (ppm) were correlated with the mean diameter
(mm) of the zone of inhibition for S. mutans (r2 = 0.98) and P. gingivalis (r2 = 0.97). ZOI
results are shown in Figure 7a,b for Ti discs and Figure 7c,d for LB. For the S. mutans and
P. gingivalis groups, ZOI was observed at all time points (1 h, 24 h, 48 h and 144 h) for the
CHX-CaCl2 coated groups, whereas no ZOI was observed for the commercial mouthwash
groups (Grps. 4 and 7; Figure 7). The ZOI for single and double CHX-CaCl2 coated Ti
discs and LB were significantly different (p < 0.05) within groups for both pathogens tested
(Figure 7).
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3. Discussion

The proximity of arch bars and Leonard Buttons to the surgical incision site, coupled with
biofilm, causing infection requires the need for strategic reduction in plaque biofilm volume.
This could be achieved by utilising the novel CHX-CaCl2 coating technique described.

The Leonard Button and Ti discs’ elemental compositions were consistent with the
literature [19,20] for metals used in maxillofacial surgery (>99% Titanium, Table 1). To
standardise our novel CHX-CaCl2 coating procedure, the Ti discs and Leonard Buttons
were coated with ethanol to enhance surface reactivity [21]. Both Ti discs and the LBs were
successfully coated using surface crystallisation of CHX-CaCl2 crystals. Upon synthesis
of the CHX-CaCl2 crystals, a rapid coprecipitation reaction occurred, forming a white
precipitate with remarkable substantivity on Ti discs and LB (Figure 5). This reaction was
due to the coordinating ability of the bisguanide group with calcium ions and with chlorine
ions associated with the rate of formation [17]. Previous synthesis of CHXD with strontium
chloride or zinc chloride demonstrated the aforementioned coordination ability, yielding
antimicrobial crystals of dendritic nature with reduced cytotoxicity [22].
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The CHX-CaCl2 crystals formed copiously on the Ti disc and Leonard Button surfaces,
with various crystal sizes and evidence of particle coalescence (Figure 2b,c). An Ostwald
ripening process may be responsible as larger CHX-CaCl2 crystals appear to grow at the
expense of the smaller crystals through reducing the total free energy or by defect-related
phenomena [23,24]. Luo et al. [13] reacted CHXD with CaCl2, together with differing
amounts of gold nanorods, where crystal size and crystal number were correlated with
gold nanorod addition, indicating a surface-crystallisation mechanism. The lapping of
Ti discs in this study altered the surface-flaw size (Table 2), reducing visible surface crys-
tallisation (Figure 2g–i) and drug release from 6 to 3 days (Figure 5). Fewer sites were,
therefore, available for nucleation and crystal growth after lapping, supporting a surface
crystallisation mechanism. Fine crystallites (5 µm) were growing in association with flaws
on the lapped Ti surface (Figure 2g–i), which may also not have contributed to a long-lasting
drug-release effect. Page and Sear [25] indicated the importance of grooving on the surface
to control crystal growth when evaluating using computer simulations. The differing
geometries and surfaces of wires and Leonard Buttons will, therefore, affect CHX-CaCl2
crystallisation and the effective wetting of the substrates. The rapid surface crystallization
(<3 s) at the metal interface suggests good wetting, as it appeared crystallites grew by
the extension of dendrites on the titanium surface (Figure 3d–f), ensuring rapid growth
at the MMF site for effective and sustained drug release (Figure 5b). The importance of
hydrophilicity of a surface is significant within the interaction between a solid state and the
liquid state. Suematsu et al. [26] suggested that the rapid growth rate of dendritic NaCl
crystals was due to growing on hydrophilic rather than hydrophobic surfaces.

Double coating of the Ti discs and Leonard Buttons using the novel CHX-CaCl2
mouthwash resulted in a doubling of the sustained CHXD drug release (Figure 5). There
were changes to some of the crystal morphology for the layered crystallites, which had a
partially formed wheat-sheaf appearance. This illustrated a more primary crystal growth
from a central nucleus (Figure 2f). This may be due to the presence of residual reactants
and their effects on the stoichiometry of secondary reactants. In particular, this simple
multiple application of the novel rinse affords a double crystal-layer application on the
Leonard Buttons, which is useful for maintenance or oral hygiene. Currently, a CHX
digluconate mouthwash (0.2% CHX) is recommended as a postoperative mouthwash for
craniomaxillofacial patients, which lacks substantivity and was antibacterially ineffective
in the ZOI experiments and below minimum inhibitory concentration (MIC) after 20 min
(Figure 7). The ZOI studies revealed that at time points associated with wound healing [27],
the CHX-CaCl2 coated groups were effective against both aerobic and anaerobic pathogens
(Figure 7a–d). This may significantly contribute to bacterial inhibition at orthopedic bars,
plates and MMF sites. The addition of CHX-CaCl2 coatings on surgical fixatures and teeth
following surgical procedures may, therefore, help in reducing infections and maintaining
oral hygiene.

4. Materials and Methods
4.1. Energy Dispersive X-ray Spectroscopy

A titanium (Ti) sheet (1.2 mm depth, T60, Grade 4 Ti, Titanium services, Vourles,
France) was laser cut (Lasercut Works Ltd., London, UK) into discs (8 mm diameter) to
mimic the size of a Leonard Button (LB). The elemental composition of the Ti disc and
Leonard Button (Lot 260785572, Synergy Health, Stryker, UK) was analysed using Energy
Dispersive X-ray Spectroscopy (EDS) (Oxford Instruments, High Wycombe, UK) in a
Scanning Electron Microscope (SEM) at an accelerating voltage of 30 kV, spot size 3.0, and
with a 10 mm working distance. INCA ver.4.09 software (Oxford Instruments, Abingdon,
UK) was used for EDS analysis.

4.2. Surface Coating of CHX-CaCl2 Particles

Twelve Ti discs were soaked in ethanol for 5 min in an ultrasonic bath and then dried
in a 37 ◦C incubator (Benchmark Scientific Inc., Sayreville, NJ, USA) for 20 min. The Ti



Int. J. Mol. Sci. 2023, 24, 9801 9 of 12

discs (Grp. 1, n = 3) were placed in a custom petri dish and coated using 1 mL (15 mg/mL)
of CHXD (C6143, Lot WXBC6938V, Sigma-Aldrich, Dorset, UK) and left for 1 min. The
amount of 1 mL of CaCl2 (0.33 M, C8106, Lot SLCD1523, Sigma-Aldrich) was then added
using a Pasteur pipette and left for 1 min (23 ◦C), allowing the precipitation of CHX-CaCl2
crystals. Grp. 2 Ti discs (n = 3) were double coated by repeating this crystallisation process.

To assess the effect of the surface roughness, Ti discs (n = 3) were lapped manually
using P240 silicon carbide paper (WS Flex 18C Hermes, Hamburg, Germany) for 2 min
(Grp. 3). The lapped Ti discs were then single coated using the previous method. As a
commercial comparison, (Grp. 4) Ti discs (n = 3) were coated with 2 mL of a commer-
cial mouthwash (Corsodyl, 0.2%, CHX digluconate, Batch No 8480230, PL 44673/0059,
Omega Pharma Manufacturing GmbH & Co, KG, Herrenberg, Germany) and left for
1 min according to the mouthwash protocol [28]. The CHX-CaCl2-coating process was
repeated for Leonard Buttons, where Grp. 5 was single coated, Grp. 6 double coated and
Grp. 7 was coated with 2 mL of the commercial mouthwash (Corsodyl) according to the
previous protocols.

4.3. Scanning Electron Microscopy

The Ti discs and LB before and after CHX-CaCl2 coating were characterised using
Scanning Electron Microscopy (SEM, FEI Inspect-F, Hillsboro, OR, USA). Ti discs and
LB were gold-coated using a sputter coater (SC7620, Emitech, Chelmsford, UK) for 40 s
at 20 mA, then viewed using SEM in the secondary electron imaging mode, with an
accelerating voltage of 10 KV, spot size 3 and a working distance of 10 mm.

4.4. UV-Vis Spectroscopy

Coated Ti discs (Grp. 1–4) and LB (Grp. 5–7) specimens from Section 4.2. were trans-
ferred to universal tubes (Thermo Fisher Scientific, Swindon, UK, Lot M355760) containing
1 ml of artificial saliva (AS, pH 7) at 37 ◦C prepared according to Ten Cate et al. [29]. Ti discs
and LB (Grp. 1–7) were relocated to tubes of fresh AS media at time intervals according to
Table 3. Collected aliquots were analysed using UV-Visible Spectroscopy (UV-Vis) (Lambda
265, PerkinElmer, Waltham, MA, USA) to measure the chlorhexidine release at 254 nm. A
calibration curve was obtained by measuring CHXD and CHX-Digluconate standards (0.5,
1, 3, 5, 10, 20, 30 and 50 ppm) and plotted as absorbance versus concentration.

4.5. X-ray Diffraction Analysis

For X-ray Diffraction (XRD) analysis, the precipitated CHX-CaCl2 particles (Section 4.2)
were reacted in 2 mL Eppendorf tubes (n = 6), then centrifuged twice for 1 min at 90 rpm
(Eppendorf AG, Hamburg, Germany). The supernatant was removed and replaced with
deionised water and recentrifuged. The CHX-CaCl2 particles were then freeze-dried at
−100 ◦C, at 0.009 mBar for 1 day (ScanVac CoolSafe Freeze Drying, Allerød, Denmark). The
CHX-CaCl2 particles were analysed using an X’Pert Pro powder diffractometer (Panalytical
B.V., Almelo, The Netherlands). The reflective mode used power at a 45 kV tension unit
and 40 mA as a current unit at a 6◦ angle, and the data were collected with an X’Celerator
detector from 5◦ to 70◦ 2 Theta, with a step size of 0.005◦.

4.6. Non-Contact Light Profilometry

Surface analysis of Ti discs (Grps. 1 and 2) was analysed using a non-contact 3D light
profilometer (Proscan 2000, Scantron, Taunton, UK), where an S16/3.5 Chromatic sensor
(Stil S.A., Aix-en-Provence, France) scanned at 100 Hz frequency with a 3.5 mm measur-
ing range and a 75 nm axial resolution. The digitisation, image analysis and the mean
area surface roughness (Ra) were analysed using the dedicated software (Proscan 2000,
ver.2.1.8.8+ software, Proform ver.1.41 software, Scantron Industrial Products Ltd., Taunton,
UK). To ensure maximum sensitivity of light was achieved for calibration purposes, a dark
background measurement was carried out prior to scanning. The Ti disc and lapped Ti
disc’s scanned surface was limited to 4 × 4 mm, at step size of 5 µm. The surface mapping
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was retrieved from the scanned sample and mean x and y measurements automated via
the Proform ver.1.41 software through 801-line counts in x and y.

Table 3. UV-Vis schedule for the release assay.

Week Day Time Interval (min/h)

1st Week

1st Day (Monday)

5 min ~10:05 (10:00 am start)

10 min ~10:10

20 min ~10:20

40 min ~10:40

60 min
(1 h) ~11:00

120 min
(2 h) ~12:00

180 min
(3 h) ~13:00

240 min
(4 h) ~14:00

300 min
(5 h) ~15:00

360 min
(6 h) ~16:00

420 min
(7 h) ~17:00

2nd Day (Tuesday) 2 readings ~10:00 and ~16:00

3rd Day (Wednesday) 2 readings ~10:00 and ~16:00

4th Day (Thursday) 2 readings ~10:00 and ~16:00

5th Day (Friday) 2 readings ~10:00 and ~16:00

6th Day (Saturday) 1 reading ~12:00

7th Day (Sunday) 1 reading ~12:00

2nd Week
Monday 1 reading ~12:00

Friday 1 reading ~12:00

4.7. Preparation of Pathogens

S. mutans (NCTC 10449) strains were cultured on Tryptone Soy Agar (TSA) (Lot
2426701, Oxoid, Basingstoke, UK) on agar plates placed in 37 ◦C aerobic incubation for
2 days. The 2-day colonies were inoculated in 10 mL Tryptone soya broth (TSB) (Oxoid,
Basingstoke, UK) and placed for 24 h incubation. The P. gingivalis strain (W50) was cultured
on Blood Agar (BA) base No. 2 (lot 2359559, CM0271 Oxoid, Basingstoke, UK) agar plates
that were supplemented with 5% defibrinated horse blood in an anaerobic incubator (Don
Whitley, UK) at 37 ◦C for 3 days. The 3–5 days colonies were inoculated in 10 mL Brain
Heart Infusion (BHI). The broth was supplemented with equal-volume amounts of 100 µL
of Vitamin K and hemin, then incubated overnight.

4.8. Kirby–Bauer Test (Zone of Inhibition)

The optical density of pathogens in Section 4.7 was achieved by diluting the culture
broth to 0.1 in a Bio Photometer at 600 nm (Eppendorf AG, Hamburg, Germany). The
bacterial suspension was then used for calculating Colony forming unit (Cfu), where broth
inoculum was standardised at 6.36 × 106 Cfu per mL. 100 µL bacterial suspension was
spread onto TSA plates for S. mutans strains; BA plates for P. gingivalis, and holes were
made using a sterilised cork borer (0.9 cm diameter). The CHXD and CHX digluconate
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dilution standards of 100 µL were pipetted into the holes, then incubated overnight at
37 ◦C. The diameter (mm) of the zone was measured across the formed zone using a ruler
at 24 h to measure the inhibition of bacterial growth. A standard curve of concentration
(ppm) versus the distance of the zone was used to calculate the zone of inhibition. This
process was repeated with samples obtained from the drug-release time points (1 h, 24 h,
48 h and 144 h) for coated Ti discs (Grps. 1, 2 and 4) and Leonard Buttons (Grps. 5–7), with
AS used as a control. Significant differences within groups (p < 0.05) were measured using a
one-way ANOVA (Tukey test; Sigma plot ver.12.5, Systat Software Inc., San Jose, CA, USA).

5. Conclusions

There is increasing evidence that periodontal disease is heavily implicated in the
progression of surgical site infection in intraoral incisions used in osteosynthesis of the
mandible. The proximity of the dental fixatures to the surgical incision and the dependent
position of the incision could potentially promote colonization of the wound from bacteria
previously coating the fixation material. This work illustrates for the first time the rapid
and successful coating of Leonard Buttons and Ti discs using a CHX-CaCl2 mouth rinse
and its responsive surface crystallisation. The ability to control and sustain CHXD release
from this novel coating, and its antibacterial effectiveness, makes this an ideal adjunct
following surgical procedures to maintain oral hygiene and prevent infections. The previous
encouraging laboratory results will be further tested in a prospective trial to demonstrate
the clinical efficacy of this new technology.
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