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Abstract: The global prevalence of overweight and obesity has dramatically increased in the last few
decades, with a significant socioeconomic burden. In this narrative review, we include clinical studies
aiming to provide the necessary knowledge on the role of the gut microbiota in the development
of diabetic pathology and glucose-metabolism-related disorders. In particular, the role of a certain
microbial composition of the fermentative type seems to emerge without a specific link to the
development in certain subjects of obesity and the chronic inflammation of the adipose tissues,
which underlies the pathological development of all the diseases related to glucose metabolism and
metabolic syndrome. The gut microbiota plays an important role in glucose tolerance. Conclusion.
New knowledge and new information is presented on the development of individualized therapies
for patients affected by all the conditions related to reduced glucose tolerance and insulin resistance.

Keywords: diabetes; insulin resistance; microbiota differences

1. Introduction

From an epidemiological point of view, the pathological conditions related to over-
weight and obesity are constantly increasing in all geographical areas, with socio-economic
repercussions terms of mortality related to diseases such as dyslipidemia, hypertension,
and type 2 diabetes mellitus (T2D) [1,2]. In particular, so-called acquired diabetes mellitus
or T2D originates in the persistence of high daily glucose levels compared to normal values,
due to the resistance of the target tissues to the effect of insulin [3,4]. The pathogenesis
of polyfactorial diabetes depends on the mechanisms that determine peripheral insulin
resistance, as well as on the distribution of body fat, particularly central body fat, which is
correlated more strongly with the metabolic syndrome (MetS) as it actively enters glucose
homeostasis, the progressive dysfunction of the pancreatic beta cells [5,6]. Furthermore,
there are connections between the metabolic alterations between pancreatic function and
hepatic function that are not fully understood, as well as the mechanisms that determine
insulin resistance in other peripheral tissues, including skeletal muscle and adipose tissue.
The complexity of this relationship between the various organs united by their sensitivity
to insulin should favor correct glucose metabolism [7]. From a pathological point of view,
however, the first phases of the development of D2T are linked to gradual and progressive
insulin resistance, and occur in parallel with the hyperfunction of the pancreatic beta cells,
which, in an attempt to compensate for the reduction in the effect of insulin on peripheral
tissues, increases their production. Subsequently, however, with the loss of the insulin
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reserve, the individual reaches the stage of full-blown diabetes and, therefore, a greater
risk of organ damage [8,9]. Diabetes, however, should not be considered only a metabolic
condition with a relative loss of insulin function; it largely owes its genesis to a low-grade
local chronic inflammatory state (meta-inflammation), which is linked to the production
and release of multiple inflammatory cytokines, such as interleukins and tumor necrosis
factor [10]. Many inflammatory markers have been related to obesity and a large study
demonstrated the existence of a link between body composition and systemic inflamma-
tory markers [11]. Other studies have supported similar claims regarding the erythrocyte
sedimentation rate [12], plasminogen-activator inhibitor 1 [13], and some inflammatory
cytokines [14,15], reinforcing the role of the interaction between inflammation and glu-
cose metabolism. It remains to be established how meta-inflammation influences glucose
metabolism and, recently, the answer was complicated by the knowledge obtained from
the study of the functions of the human intestinal microbiota. The intestinal microbiota has
a symbiotic relationship with the host by acting as a driver of inflammation by mediating
the absorption of certain nutrients, which then contributes to metabolic pathologies [16,17].
Evidence of this role of the intestinal microbiota is contained in several studies in which
obesity and T2D are associated with alterations in the intestinal microbiota [18–20]. At the
intestinal level, the microbiota produces a series of metabolites, such as short-chain fatty
acids (SCFA), increases the biosynthesis of vitamins and amino acids, and participates in
the turnover of bile acids, as well as cell–cell interaction with the other components of the
host [21]. Therefore, the balance in the cellular composition of the intestinal microbiota
plays an important role in the host’s metabolism and the development of insulin resistance
and T2D obesity (Figure 1); on the other hand, the relationships with the main cells of the
immune system also change, at the level of the intestinal wall. In this review, we explain the
dense web of connections between the gut microbiota and inflammation, insulin resistance,
and glucose-metabolism diseases.
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2. Visceral Adipose Tissue—Beta-Cell Interaction

Visceral adipose tissue has long been recognized as having a key role in the onset and
maintenance of insulin resistance, beta-cell dysfunction, and increases in cardiovascular
risk [22], because the adipocytes organized together in the fat deposits of the human body
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are considered metabolically active cells, capable of influencing the activity of beta cells in
the production of insulin, causing the release of adipokines in connection with the presence
of an inflammatory state, resulting in lipotoxicity.

Adipose tissue represents a real endocrine gland, and it is an important source of
bioactive hormones, which are key factors in beta-cell function and impairment.

Leptin exerts direct effects on pancreatic beta cells, stimulating the Janus-kinase
(JAK)/signal transducer of activation (STAT)—the mitogen-activated protein kinase (MAPK)
signaling pathway [23]. This adipokine prevents apoptosis and beta-cell dysfunction [24,25].

In addition, leptin can alter beta-cell function and induce apoptosis by stimulating
the release of interleukin-1b (IL-1b), inhibiting the expression of the IL-1-receptor antago-
nist [26], and activating c-Jun N-terminal kinase (JNK) [27]. Other adipokines have also
been related to protective and anti-apoptotic effects on beta cells. For example, low levels
of adiponectin have been associated with insulin resistance and beta-cell dysfunction [28].
Furthermore, adipsin [29], visfatin [30], irisin [31], omentin [32], and apelin [33] have been
shown to have a protective effect on beta cells. On the other hand, some adipokines have
a negative impact on pancreatic beta cells. Thus, resistin both induces insulin resistance
and impairs insulin secretion in pancreatic beta cells [34], as well as tumor necrosis factor α
(TNF-α) [35] and fetuin-A [36]. The novel adipokines asprosin and retinol-binding protein
4 (RBP4) were reported as important features of the pathophysiology of T2D and beta-cell
dysfunction in preclinical studies and animal models [37,38].

In addition, visceral adipose tissue is able to release free fatty acids (FFA) into the
circulation through the mechanism of lipolysis. These FFAs are important sources of energy
during fasting [39]. However, chronically elevated levels of FFAs inhibit glucose-stimulated
insulin secretion and lead to beta-cell dysfunction by activating specific signaling pathways
involved in glucose metabolism, insulin resistance, and beta-cell function [40] through
cytotoxic mechanisms, causing beta-cell apoptosis [41,42].

As mentioned above, diabetes is characterized by a state of chronic low-grade metabolic
inflammation (local and systemic), also called meta-inflammation, which has been shown
to contribute to the development of insulin resistance and progression to T2D and is char-
acterized by the abnormal expression and production of multiple inflammatory cytokines,
such as interleukins [10].

Visceral adipose tissue, through the production of several cytokines and proinflamma-
tory factors such as IL-2, IL-6, IL-8, IL-12A, or monocyte chemoattractant protein-1 (MCP-1),
can play a key role in the alteration of beta-cell function [43,44].

Specifically, peripancreatic adipose tissue, due to its close proximity to the islets of
Langerhans, is implicated in beta-cell dysfunction through paracrine mechanisms. The
most important mediators of this interaction include several factors, such as the chemokine
(C-X-Cmotif) ligands (CXCLs)-1, -2, -3, and the induction of the CXCL-5/lipopolysaccharide
CXC chemokine by (LIX), which act on the CXC receptor 2 [45].

Activated macrophages infiltrating adipose tissue [46,47] and inflamed adipocytes can
also lead to harmful effects and induce beta-cell death [48].

Finally, B2 lymphocytes, adipose-resident immune cells, adipocyte mitochondrial
dysfunction, and reactive oxygen species (ROS) can increase insulin resistance [49] and
contribute to beta-cell impairment [50].

3. Gut Microbiome and Metabolism
3.1. Inflammation and Insulin Resistance

The human gastrointestinal tract contains a complex community of trillions of microbe,
collectively known as the gut microbiome. These microbes carry out important physiologi-
cal functions, such as nutrient metabolism, energy harvest, the regulation of immunity, and
the maintenance of mucosal defense. Mounting evidence suggests a causal link between
altered gut microbiome composition, known as gut dysbiosis, and the development of
human diseases such as adipose-tissue dysfunction and insulin resistance/T2D [20,51]. A
mild inflammatory state is usually sustained by an increase in circulating pro-inflammatory
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cytokines in patients with metabolic syndrome, eliciting metabolic effects such as insulin
resistance and glucose intolerance; this occurs more frequently in the course of bacterial
infections or chronic inflammation of the upper airways [52–54]. Results derived from
animal and human models have demonstrated that experimental pharmacological treat-
ments obtained from the activity of E. Coli, with anti-inflammatory effects, had positive
effects on glucose tolerance [55–58]. Other anti-inflammatory cytokines, such as IL-4 can
increase glucose tolerance and inhibit adipogenesis and macrophage activation [59,60].
The cytokine IL-13 encourages macrophage-alternative activation [61]. Experimentally,
it has been shown that both cytokines are elevated in obese and sedentary people, as
well as in those with high insulin resistance [62,63]. This anti-inflammatory activity ap-
pears to be thwarted by the refractoriness of the receptor of these interleukins, which is
frequently found in patients with metabolic syndrome [51]. In adipose tissue, there are
two major populations of the macrophages M1, classically activated macrophages, and
M2, alternatively activated macrophages. In obese patients, M1-macrophage numbers
increase and are correlated with adipose-tissue inflammation and insulin resistance. In
contrast, M2 macrophages exert anti-inflammatory effects and utilize oxidative metabolism
to maintain adipose-tissue homeostasis. The M1 macrophages are generally responsible for
the secretion of pro-inflammatory cytokines and are associated with the development of
type II diabetes by altering local and distant tissue functions. Some cytokines can attract
immune cells to metabolically active tissues, such as monocyte chemoattractant protein-1
(MCP1), which is increased in the adipose tissues of obese individuals and induces insulin
resistance [64–67].

Therefore, insulin resistance is the determinant event in a chronic inflammatory state
that mainly involves the participation of macrophages, which, at the same time, contribute
to the development of diabetes [68]. Confirming the role of macrophages in diabetes mel-
litus, it was observed that the gradual decrease in the functional reserve of beta cells at
the level of the pancreatic islets is driven precisely by an inflammatory infiltrate with a
prevalent monocyte–macrophage component [69–71]. On the other hand, it was shown
that by attenuating the intensity of the inflammatory response, with the use of an IL-1
receptor antagonist, there was an improvement in the inflammatory infiltrate affecting the
pancreatic islets, improved preservation of beta-cell junctions and, therefore, less insulin
resistance [56]. Macrophages also play a crucial role in causing inflammation in the liver
during obesity [72]. The pro-inflammatory role of macrophages has not only been demon-
strated in the pancreatic islets, but also in other organs involved in glucose metabolism,
such as the liver. In fact, the presence of an inflammatory infiltrate specifically linked to the
pro-inflammatory activity of the macrophages encourages damage to hepatocytes, causing
insulin resistance, hepatic steatosis, and type 2 diabetes [73]. In this process, the role played
by macrophages in hepatocytes is not only inflammatory, but also metabolic, as they are
also capable of producing insulin-like growth-factor-binding protein 7 (IGFBP7), which
competes directly with the insulin receptor, compromising the signal transduction coupled
to this receptor [74]. All this suggests that the immune system is involved in the proper
functioning of glucose metabolism and, therefore, the pathological conditions related to
it. This demonstrates that the chronic low-grade inflammation observed in obesity and
type 2 diabetes has harmful consequences for human metabolism and acute inflammatory
responses to pathogens further worsen insulin resistance and glycemic control.

3.2. Gut Permeability and Insulin Resistance

Inflammation is a biological response of the immune system, which can be triggered
by exposure to pathogens. In particular, bacterial components, such as lipopolysaccharides
(LPSs), are sources of metabolic inflammation, as LPS has been found to be increased in the
circulation of people with diabetes [75]. The LPSs use increased intestinal permeability to
enter the circulation [76]. This not only results in a systemic inflammatory response, but
also influences glucose-tolerance mechanisms by inducing hepatic insulin resistance and
impairing glucose-stimulated insulin secretion [77]. Two phenomena have been observed
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in the course of acute inflammation: “metabolic endotoxemia” and “postprandial inflam-
mation” [78,79]. The former is an inflammatory response to increased systemic LPS levels
due to a “leaky gut” [77]. Postprandial inflammation is instead the increase in circulating
endotoxins and other inflammatory markers after meals, especially high-fat meals [80–84].

3.3. Intestinal Microbiota in Metabolic Diseases

The intestinal microbiota plays a key role in digestion, in the production of metabolites
potentially capable of altering human metabolism, and in the development of the immune
system; the latter in particular is involved in the genesis, of obesity and type 2 diabetes, as
well as predisposing individuals to these conditions [85].

An interesting explanation for the involvement of the intestinal microbiota in the gen-
esis of T2D is given in a recent review [86], which indicates how the bacterial composition
plays an important role in the genesis of metabolic diseases through sedentary lifestyles
and high-fat diets. The key point is that the development of T2D is a multistep process
starting from obesity. In this phase, a diet rich in certain foods, such as fats, tends to shift
the balance of the microbiome towards dysbiosis and, therefore, to an increase in insulin
resistance and inflammation, which, as stated above, are the two factors determining T2D.

The action elicited by various bacterial species belonging to the intestinal sapro-
phytic flora is to continuously stimulate the biological reactivity of the intestine-associated
lymphoid tissues (GALT), stimulating the production of immunoglobulins and their
macrophagic activity [87]. This dynamic relationship with the immune system results
in an increase in microbial metabolites, such as short-chain fatty acids (SCFAs) or com-
ponents such as DNA and polysaccharide A (PSA) [51]. In general, there is currently
no definition of a “healthy gut microbiota.” Studies deriving from mouse models have
shown that mice deprived of intestinal germs showed themselves to be free from obesity
despite being subjected to a caloric diet, while, in contrast to this, the introduction of
bacterial species related to obesity such as those of the Bacteroides class led to weight
gain, and reduced glucose tolerance increased insulin resistance, leading to the accumu-
lation of adipose tissues and a greater acceleration of the atherosclerotic process [88–90].
These studies suggest that the transfer of a microbiota related to an obese phenotype in
a bacteria-free subject leads to the acquisition of an obese phenotype; therefore there is a
causal relationship between the intestinal microbiota and metabolism. Since there is no
definition of a healthy microbiota, it is possible to associate some pathologies, such as
glucose metabolism disorders, with increases in less beneficial species, such as Bacteroides,
or with a loss of diversity among the various species with the expansion of microorganisms
that are usually underrepresented (often opportunistic pathogens) [18,91,92]. Diet, lifestyle,
and antibiotic use have been identified as triggering events for these changes [93,94]. In
the case of type 2 diabetes, an increase in the pro-inflammatory bacterial tiller type was
found at the expense of anti-inflammatory bacteria in T2D [18,91,92]. Thus, an increase
in all these pro-inflammatory Gram-negative bacterial species could be a plausible source
of the meta-inflammation observed in metabolic diseases [95]. The beneficial effects of a
saprophytic and balanced bacterial flora are essentially linked to the production of SC-
FAs [18]. These are derived from the microbial degradation of fibers, and they exert several
beneficial effects on host metabolism. In diabetes, SCFA production is reduced [18,96]. A
recent study found a causal relationship between a genetic increase in butyrate production
and improved insulin response [97].

4. Gut Barriers and Metabolic Disorders

The synergism between the intestinal microbiota and the immune system associated
with the intestinal mucosa constitutes the intestinal barrier. It is a fundamental component
in the health of the individual, as its correct functioning prevents the infiltration of bacteria
and their translocation from the intestine to the systemic circulation and, therefore, it affects
the chronic inflammatory state, which is considered essential in glucose metabolism [98].
The function of the intestinal barrier is essential to prevent insulin resistance a correlation
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has been firmly established in animal models between the latter and the levels of circulating
LPS, considered reliable markers of bacterial translocation [77]. Further proof of the link
between bacterial translocation and insulin resistance is the fact that a treatment based on
antibiotics simultaneously reduced the levels of intestinal and systemic LPS and improved
glucose tolerance [99]. Increased intestinal permeability [100] is a phenomenon intimately
related to the tight junctions that anchor the cellular elements of the intestinal wall. They
are made up of protein complexes that prevent the leakage of various compounds along the
paracellular spaces [100]. In addition, LPS has been shown to directly increase intestinal
permeability in vitro and in vivo in mice, suggesting a link between increased intestinal
LPS and the dysfunction of these junctions [101]. The loss of intestinal-barrier integrity
automatically impairs glucose absorption in the intestine. This occurs through the Glut-2-
dependent reprogramming of intestinal epithelial cells [102]. Although these phenomena
are very evident in animal models, human studies showing the link between increased
intestinal permeability and a disturbance of glucose absorption linked to the dysfunction
of the tight junction are still lacking. Glut-2-dependent intestinal epithelial cells are active
glucose transporters that owe their proper function to the integrity of the adherent tight
junction. Consequently, the disruption of the barrier leads to Glut-2 dysfunction, hyper-
glycemia and, thus, to a systemic influx of microbial products and the increased spread of
enteric germs [102].

4.1. The Interaction between Intestinal Immune System and Microbiota: The Role of
Immunoglobulins

The GALT system can produce numerous immunoglobulins capable of eliciting an
immune response. The induction of the production of such molecules is essential to build
immune tolerance against intestinal bacteria and to prevent the effect of the metabolism
of these bacteria through the production of toxins [103,104]. Immunoglobulins control the
intestinal microbiota and prevent bacterial invasion by binding directly to microorgan-
isms to block their contact with the host organism. Furthermore, the immunoglobulins
bind to the bacteria to carry out “opsonization,” or to facilitate their phagocytosis by the
dendritic cells that are formed in their function, by presenting the antigen. The class of
immunoglobulins that is most active in controlling the microbiota is secretory IgA [105]. In
particular, a deficiency of secretory IgA has been observed in obese mice and is associated
with reduced glucose tolerance, the greater presence of activated macrophages in adipose
tissue, and a higher level of systemic endotoxins [106]. In the same study [106], it was
observed that by subjecting the mice to an antibiotic therapy, an improvement in glucose
tolerance was obtained, and by using metformin or bariatric surgery, a better response of the
intestinal microbiota to secretory IgA was ensures. The T cells, especially helper T cells, are
the most important building blocks of proper immune and antibody responses [107,108].
The exhaustion of their function can lead to the development of metabolic syndrome.
Immunoglobulins are produced by B cells, which had impaired function in T2D [109].
Furthermore, B cells also accumulate in the visceral adipose tissues of obese and diabetic
mice and are capable of producing more pro-inflammatory cytokines than B cells in the
adipose tissues of lean controls [110]. Bacterial translocation explains the role of these
cells in the development of inflammation in obese and diabetic patients, leading to insulin
resistance. However, this concept is currently only confirmed in the animal world, while
there is a lack of clear evidence in humans [51].

4.2. Meta-Inflammation: Molecular Mechanism and Microbiota Activity

In humans, the connection between the microbiota and meta-inflammation in metabolic
diseases has only recently been established.

Toll-like receptors (TLRs) are a class of proteins with a front-line receptor function
in the recognition of the antigen belonging to microorganisms from the outside, but they
are also capable of activating themselves in response to antigens released by cells in
apoptosis or in damaged tissues. For this reason, they always play a bridging role between
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innate and adaptive immunity. In particular, TLR2 and TLR4 are the subgroups of Toll-
like receptors (TLRs) that have been identified as responsible for the development of
metabolic syndrome and type 2 diabetes mellitus (Figure 2). Insulin infusion is capable
of suppressing TLR4 [105], suggesting that, in addition, these molecules are associated
with insulin resistance; high concentrations of insulin are also present in the pancreatic
islets of obese animal models [111–113]. The TLR5 subgroup has also been associated with
the development of metabolic diseases, particularly the flagella, which are involved in
bacterial motility [114]. In addition, TLR5 is also probably involved in the development of
meta-inflammation, since it is associated with both low-grade inflammation and metabolic
syndrome, which are reversible after antibiotic therapy [115]. Similar to the TLR system,
the nucleotide-binding oligomerization domain contains the proteins NOD1 and NOD2,
which are cytosolic receptors that respond to bacterial peptidoglycans and have been
associated with the development of insulin resistance [116,117]. Direct NOD1 activation led
to insulin resistance while, conversely, NOD2 signaling is protective against Type 2 diabetes.
The poor functioning of NOD2 increases inflammation and insulin resistance [118]. The
activation of NOD2 via bacterial cell-wall-derived muramyl dipeptide (MDP) improved
insulin resistance [119]. It appears that NOD2 signaling is beneficial for, while NOD1 has
deleterious effect on insulin sensitivity and beta-cell function.

Int. J. Mol. Sci. 2023, 24, 10409 8 of 17 
 

 

Furthermore, other inflammasomes are involved in meta-inflammation, but their exact 

mechanism of action is still unknown. Finally, some anti-inflammatory cytokines have ben 

found to be essential elements in the maintenance of intestinal homeostasis. Although 

several cytokines have been associated with meta-inflammation in obesity and T2D, only 

a few, such as IL-22, IL-23, and IL-36, were shown to have a direct connection to the gut 

microbiota [131]. 

 

Figure 2. Toll-like receptors and metabolism. 

4.3. Microbiota Metabolites and Inflammation and Insulin Resistance 

The intestinal microbiota can also participate in glucose metabolism through the pro-

duction of metabolites, such as imidazole propionate, which can be absorbed by the intes-

tine and elicit biological actions in this sense [132,133]. In this context, however, only a 

limited number of them have an established relationship between microbiota and glucose 

metabolism, while for some others, the data are still insufficient. Short-chain fatty acids 

(SCFAs), as already argued, are direct products of intestinal-microbiota metabolism. Their 

abundance is linked to greater glucose tolerance and the prevention of T2D [134]. The 

presence of an adequate pool of SCFAs also has beneficial effects on glucose metabolism 

as, since they are direct metabolites of enterocytes, they improve the integrity; further-

more, by encouraging the development of polymicrobial flora, they also increase the effi-

ciency of the intestinal barrier [135]. Butyrate increases intestinal epithelial integrity [135], 

the development an anti-inflammatory environment, resistance to enteropathogens, and 

the generation of regulatory T cells. Furthermore, butyrate inhibits the epigenetic modu-

lator histone deacetylase (HDAC), inducing a sustained anti-inflammatory response in 

intestinal cells and other tissues [136,137]. This has been shown to translate into a decrease 

in chronic inflammation and, therefore, better glucose tolerance. Furthermore, SCFAs 

have been implicated in the regulation of appetite [138] and the improvement of resistance 

in peripheral tissues [139]. It must be noted that although most of these molecules have 

beneficial effects on glucose metabolism, others instead show opposite effects, as evi-

denced in animal model studies [140]. Bile acids are metabolized by the intestinal micro-

biota and are involved in glucose metabolism [141]. They are efficiently absorbed into the 

enterohepatic circulation. Small parts leave the circulation and are excreted in the feces or 

appear in the systemic circulation, with receptors expressed in hepatocytes [141]. The ex-

Figure 2. Toll-like receptors and metabolism.

Inflammasomes are made up of a few protein subunits present in the cytoplasm of all
cells that play a role in innate immunity in the human body and are involved in the inflam-
matory response [120,121]. It is precisely from these protein oligomers that the production
and release of true types of interleukin are derived, through proteolysis. In particular, in
the development of the metabolic syndrome, interleukins 1β (IL-1β) and 18 (IL-18) are
the most frequently considered factor in the union between glucose metabolism and the
immunological function of the intestinal microbiota [122]. This is further demonstrated by
the fact that the activation of proteins belonging to the inflammasome is generated by the
activity of receptors in the recognition of molecular residues associated with pathogens of
microbial origin (PAMP) or molecular patterns associated with hazards (DAMP) released
by the host cell [123]. The pattern-recognition receptors involved in inflammasomes in-
clude NLR (nucleotide-binding oligomerization domain and leucine-rich repeat-containing
receptors). In the context of the inflammasome NOD-like receptor family, pyrin domain 3
(NLRP3) is the most active in responding to pathogenic stimulation [124]. Several studies



Int. J. Mol. Sci. 2023, 24, 10409 8 of 16

have linked increased NLRP3 expression in adipose tissues and monocytes to obesity and
T2D [125,126]. A decrease in NLRP3 activation in adipose tissue coincided with reduced
inflammation and improved insulin sensitivity [127]. Therefore, NLRP3 is considered an
important component, forming a link between inflammation and metabolic disease. More
recently, NLRP12 was implicated in the development of metabolic diseases due to its effects
on intestinal inflammation and promotion of the growth of beneficial bacteria [128,129].
The protective effect of NLRP12 expression does not end in the intestine, but continues in
the adipose tissue, where its high concentration is negatively associated with obesity, while,
by contrast, its deficient function induces adipose tissue deposition, insulin resistance,
and the need for inflammatory macrophages [130]. Furthermore, other inflammasomes
are involved in meta-inflammation, but their exact mechanism of action is still unknown.
Finally, some anti-inflammatory cytokines have ben found to be essential elements in the
maintenance of intestinal homeostasis. Although several cytokines have been associated
with meta-inflammation in obesity and T2D, only a few, such as IL-22, IL-23, and IL-36,
were shown to have a direct connection to the gut microbiota [131].

4.3. Microbiota Metabolites and Inflammation and Insulin Resistance

The intestinal microbiota can also participate in glucose metabolism through the
production of metabolites, such as imidazole propionate, which can be absorbed by the
intestine and elicit biological actions in this sense [132,133]. In this context, however, only a
limited number of them have an established relationship between microbiota and glucose
metabolism, while for some others, the data are still insufficient. Short-chain fatty acids
(SCFAs), as already argued, are direct products of intestinal-microbiota metabolism. Their
abundance is linked to greater glucose tolerance and the prevention of T2D [134]. The
presence of an adequate pool of SCFAs also has beneficial effects on glucose metabolism as,
since they are direct metabolites of enterocytes, they improve the integrity; furthermore,
by encouraging the development of polymicrobial flora, they also increase the efficiency
of the intestinal barrier [135]. Butyrate increases intestinal epithelial integrity [135], the
development an anti-inflammatory environment, resistance to enteropathogens, and the
generation of regulatory T cells. Furthermore, butyrate inhibits the epigenetic modulator
histone deacetylase (HDAC), inducing a sustained anti-inflammatory response in intesti-
nal cells and other tissues [136,137]. This has been shown to translate into a decrease in
chronic inflammation and, therefore, better glucose tolerance. Furthermore, SCFAs have
been implicated in the regulation of appetite [138] and the improvement of resistance in
peripheral tissues [139]. It must be noted that although most of these molecules have bene-
ficial effects on glucose metabolism, others instead show opposite effects, as evidenced in
animal model studies [140]. Bile acids are metabolized by the intestinal microbiota and are
involved in glucose metabolism [141]. They are efficiently absorbed into the enterohepatic
circulation. Small parts leave the circulation and are excreted in the feces or appear in
the systemic circulation, with receptors expressed in hepatocytes [141]. The experimental
use of hepatocyte-bile-acid-receptor agonists induced GLP-1 secretion and improved glu-
cose tolerance in mice [142]. An antibiotic treatment reversed this metabolic phenotype,
suggesting the involvement of the gut microbiota [142]. Again, there is a need to confirm
these data in humans. Trimethylamine-N-oxide (TMAO) is produced by the liver from
trimethylamine (TMA), which is in turn produced by the intestinal microbiota from nutri-
ents containing choline and carnitine. The TMAO has been considered responsible for the
chronic inflammatory state underlying the development of atherosclerotic plaque. A recent
human study found that low-calorie diets depleted choline and L-carnitine. These changes
were associated with improvements in baseline insulin values and insulin resistance in
overweight and obese adults [143]. All three metabolites (TMAO, choline, and L-carnitine)
have been associated with diabetes and gut-microbiota activity [144,145].

Obesity is not the only condition predisposing individuals to T2D, but some pieces of
evidence also indicates the importance of the role of body composition in the appearance
of metabolic disturbances. It is important to balance the intake of certain amino acids with
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a diet focused especially on the quantity and quality of protein intake. The improvement of
strength and the efficiency of muscular work leads to an increase in metabolically active
body mass, which may have important implications in the development of T2D [146].

The integration, above all of hydroxyl-methyl butyrate (HMB), L-leucine (Leu), L-
glutamine (Gln), and L-arginine (Arg) seems to have important repercussions in improving
insulin resistance. On the other hand, the sarcopenia also appears to be related to the
development of T2D [146].

5. Changes in the Gut Microbiota in Metabolic Diseases

To summarize, the main changes identified in the gut microbiota in the course of
metabolic diseases are as follows:

• Decreases in the number and quality of microbial subpopulations. Decreases in this
diversity lead to an imbalance known as dysbiosis.

• Changes in the functional capacity of the microbial flora, resulting in changes in
the production and metabolism of various compounds, such as short-chain fatty
acids (SCFA), bile acids, and trimethylamine-N-oxide (TMAO), which can affect host
metabolism and inflammation.

• Dysbiosis linked to an increase in Bacteroides species induces an increase in the
production of lipopolysaccharides (LPS). Increased LPS levels in the intestine in-
duce meta-inflammation and insulin resistance, encouraging the development of
metabolic diseases.

• Dysbiosis induces increased intestinal permeability, contributing to barrier dysfunc-
tion and allowing the translocation of bacterial components, such as LPS, into the
bloodstream, triggering systemic inflammation and metabolic disturbances.

• Alterations in gut-microbiota composition can influence dietary calorie extraction and
affect fat storage and distribution, contributing to obesity and metabolic dysregulation.
Indeed, the increase in the Firmicutes-to-Bacteroidetes ratio is associated with a greater
extraction of energy from the diet and a greater deposition of fat mass.

6. Limitations

Despite the increasing number of tests demonstrating that the intestinal microbiota is
the driver of inflammatory processes and metabolic diseases, there are still many problems
of a practical nature.

This problem is due both to the fact that most part of the knowledge is based on
the extraction and manipulation of fecal DNA, which makes an accurate study of all
microbial species difficult, and to the fact that an ideal microbiota with which to maintain
the intestines has not yet been established.

Another limitation of current knowledge is that the intestinal microbiota is a dynamic
entity, which undergoes changes as a function of multiple factors; this makes its composition
variable not only over time, but also in the different sections of the digestive tract [147,148].
A human study found that stool consistency is a more important factor in variation of the
fecal microbiota than medication use, early childhood events, and diet [149].

Another important limitation is the fact that in most of the studies, the experiments
were conducted on animals, but these experimental conditions are not similar and, therefore,
faithfully reproducible in humans. Compared to animals, humans have a different, more
varied diet, influenced using chemical products for conservation. Humans habitually cook
their food and often make use of numerous food-preservation techniques whose use would
be unthinkable in the animal world [149].

Another limitation could be linked to the fact that the use of inflammatory markers
correlated with the intestinal microbiota does not consider the presence of other possible
comorbidities, the chronic or acute use of drugs, lifestyle, or diet [150]. The presence of
these numerous confounding factors limits the validity of some of the data and reinforces
the need to obtain new evidence to better understand the interconnection between the
microbiota, inflammation, and glucose metabolism.
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7. Conclusions and Future Directions

In summary, changes in gut microbial composition and lower microbial diversity in
obese subjects were associated with higher levels of inflammatory. This implies the role of
the gut microbiota in the low-grade inflammation seen in people with metabolic syndrome.
The intestinal microbiota seems to play an important role in glucose tolerance, but more data
supporting this finding are need through further testing in order to overcome the practical
difficulties involved in the numerous confounding factors that interfere with the bacterial
and immune population residing in the intestine. Different pathogenetic mechanisms and
molecules have been studied to better understand the effects of the intestinal microbiota
on the inflammatory state and on glucose metabolism; however, conclusive evidence from
humans has not yet been obtained. Considering that there is no normal composition of the
microbiota, subsequent studies with new experimental methods and a greater focus on
humans will need to clarify the ideal microbial composition, and whether it even exists,
and the role it plays in the chronic inflammatory state and in metabolism.

Subsequent studies should expand the number of biomarkers and increase their
sensitivity to improve the understanding of the mechanisms linking the gut microbiota,
inflammation, and metabolic diseases. In this sense, it is necessary to identify more specific
markers that not influenced by other superimposed processes, such as other infections or
other pathological conditions. Once more specific markers have been obtained, it will be
possible to proceed with studies to introduce prebiotic and probiotic therapies to improve
the composition of the intestinal microbiota. It will also be useful to more closely study the
role of body composition and the quality of foods used in human nutrition to obtain an
overall view of the link between the host and the intestinal microbiota.
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