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Abstract: The accurate diagnosis and treatment of oral squamous cell carcinoma (OSCC) requires an
understanding of its genomic alterations. Liquid biopsies, especially cell-free DNA (cfDNA) analysis,
are a minimally invasive technique used for genomic profiling. We conducted comprehensive
whole-exome sequencing (WES) of 50 paired OSCC cell-free plasma with whole blood samples
using multiple mutation calling pipelines and filtering criteria. Integrative Genomics Viewer (IGV)
was used to validate somatic mutations. Mutation burden and mutant genes were correlated to
clinico-pathological parameters. The plasma mutation burden of cfDNA was significantly associated
with clinical staging and distant metastasis status. The genes TTN, PLEC, SYNE1, and USH2A were
most frequently mutated in OSCC, and known driver genes, including KMT2D, LRP1B, TRRAP,
and FLNA, were also significantly and frequently mutated. Additionally, the novel mutated genes
CCDC168, HMCN2, STARD9, and CRAMP1 were significantly and frequently present in patients
with OSCC. The mutated genes most frequently found in patients with metastatic OSCC were RORC,
SLC49A3, and NUMBL. Further analysis revealed that branched-chain amino acid (BCAA) catabolism,
extracellular matrix–receptor interaction, and the hypoxia-related pathway were associated with
OSCC prognosis. Choline metabolism in cancer, O-glycan biosynthesis, and protein processing in the
endoplasmic reticulum pathway were associated with distant metastatic status. About 20% of tumors
carried at least one aberrant event in BCAA catabolism signaling that could possibly be targeted
by an approved therapeutic agent. We identified molecular-level OSCC that were correlated with
etiology and prognosis while defining the landscape of major altered events of the OSCC plasma
genome. These findings will be useful in the design of clinical trials for targeted therapies and the
stratification of patients with OSCC according to therapeutic efficacy.

Keywords: cell-free DNA; distant metastasis; liquid biopsy; mutation burden; oral cancer; whole-
exome sequencing

1. Introduction

Oral squamous cell carcinoma (OSCC) is a relatively common malignancy of the upper
aerodigestive tract with poor prognosis and a high mortality rate. In Asia, 248,360 new
OSCC cases (ICD10 C00-06—Lip, oral cavity) were diagnosed in 2020, among which
131,610 involved the death of the patient from the disease [1]. In about 4.0–7.4% of patients
with OSCC, several tumors were found to be developing simultaneously in the head and
neck region [2,3]. In addition to the high incidence and mortality rates worldwide [4], OSCC
has a high recurrence rate after treatment, which may be because multiple lesions develop
concurrently and over a large mucosal area [5]. To ensure the appropriate diagnosis and
treatment of OSCC, the underlying genomic changes associated with the carcinogenesis of
the disease must be understood.
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Cell-free DNA (cfDNA) can originate from normal cells, including normal leukocytes
undergoing apoptosis, or may be shed from dead normal cells or cancer cells. Thus, cfDNA
is detectable in all patients, regardless of their health or cancer status [6–8]. Indeed, total
cfDNA may consist of normal and tumor cfDNA in variable proportions [8]. For the
diagnosis and surveillance of cancer, there is growing interest in plasma cfDNA, i.e., “liquid
biopsy” [9–12]. cfDNA may originate from circulating tumor cells; therefore, the levels of
cfDNA can reflect the presence of micrometastatic disease and the aggressiveness of the
cancer [13]. Higher plasma cfDNA levels have been found in patients with oropharyngeal
squamous cell carcinoma (OPSCC), a subtype of head and neck cancer, than in patients
with other types of head and squamous cell carcinoma (HNSCC) [14]. For example,
Lin et al. found 2.2-fold higher concentrations of cfDNA in patients with OSCC than in
healthy controls [15].

Whole-exome sequencing (WES) has provided new insights into the molecular basis
of OSCC progression [16–18]. Thus, WES analyses of cfDNA could lead to the discovery of
novel resistance mechanisms, characterization of mutational signatures predicting treat-
ment responses, identification of genes associated with disease progression, and/or capture
of DNA signatures that aid treatment-associated decision-making [19–21]. To improve the
diagnosis of individuals at risk and the treatment of OSCC, more sensitive and specific
biomarkers are required [22,23]. Current evidence suggests that assessing cfDNA-derived
somatic mutations in the plasma of OSCC patients according to a panel of genes could
serve as a diagnostic or recurrence monitoring test [24–30].

Liebs et al. published the cfDNA mutation profiles of six metastasized HNSCC
patients [30]. However, cfDNA has not been analyzed to determine the whole-exome
somatic mutations in primary OSCC. Therefore, the aim of the present study was to obtain
WES data from oral cancer cfDNA by sequencing 50 OSCC paired plasma/blood samples
using a whole-exome platform. Somatic mutations were defined by referring to high-
quality data obtained previously and using independent data and variant calling methods.
The selected data were then combined and validated using the Integrative Genomics Viewer
(IGV) to reduce false-positive calls but maintain the mutation detection sensitivity of the
method. Finally, mutations identified as truly somatic were compared with clinical data.

2. Results
2.1. Characterization of Patients

In the paired analysis of the cfDNA and germline DNA of 50 OSCC patients, the
fragment size distribution of cfDNA was ~150–200 bp (Supplementary Figure S1A), and
cfDNA concentrations of 20–473 ng/mL were distributed in a wide range (Supplementary
Figure S2A). Table 1 shows the clinical characteristics of the study subjects: 48 males
and 2 females aged 40–89 years (mean age: 59.6 years). In Taiwan, the OSCC was male
predominated and the male to female ratio was 16:1. Their primary lesions were most
commonly located in the buccal region and the gingiva (28% and 24%, respectively).

Table 1. Association between plasma cfDNA mutation burden (PMB) and clinical parameters.

Parameter N Mean of PMB ± SD p-Value

Age
≤60 23 16.41 ± 26.43 0.661
>60 27 20.19 ± 31.78

Gender
Male 48 19.05 ± 29.67 0.766
Female 2 4.13 ± 1.68

T stage
T1–3 13 20.68 ± 36.41 0.196
T4 37 17.67 ± 26.78

N stage
N0 28 18.03 ± 32.42 0.358
N+ 22 19.0 ± 25.29
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Table 1. Cont.

Parameter N Mean of PMB ± SD p-Value

Clinical stage
I–III 11 9.89 ± 27.75 0.019
IV 39 20.87 ± 29.47

Metastasis
No 41 14.23 ± 33.22 0.002
Yes 9 37.7 ± 19.32

Perineural invasion
No 33 20.79 ± 28.25 0.616
Yes 17 13.92 ± 33.68

Lymphovascular invasion
No 39 17.56 ± 4.52 0.991
Yes 11 21.63 ± 10.15

HPV status
p16 negative 46 19.82 ± 30.08 0.391
p16 positive 4 2.67 ± 1.00

Two groups were compared using Mann–Whitney U tests. The Bonferroni-adjusted threshold for significance is
set at α = 0.006 (0.05/9).

2.2. cfDNA WES

WES data (cfDNA and matched normal samples) were obtained for all patients with
a mean coverage depth of 90.87× and high coverage uniformity (98.18% of amplicons
covered at 10× mean coverage). The WES data analysis flowchart is shown in Figure 1.
The tools Muse, Mutect2, SomaticSniper, Sterlka2, and VarDict were used for variant
calling to identify somatic mutations in the 50 paired cfDNA/normal samples and found
28,876, 1993, 21,763, 45,100, and 44,506 somatic mutations, respectively, with 84,365 somatic
mutations found in total in the target (coding and splicing) region (Figure 1).
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Figure 1. Flowchart illustrating the whole-exome sequencing (WES) analysis of cfDNA. WES of
cfDNA was performed with matched normal samples from 50 OSCC patients. Somatic mutations
were identified using five callers. The number of mutations called by each variant caller is depicted.
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2.3. Validation and Assessment of Somatic Mutation Calling

IGV was used to examine somatic mutations in the frequently mutated genes ac-
cording to the previous study [18,31,32]. The IGV screenshot shows somatic mutations
that passed or did not pass the IGV examination (Supplementary Figure S3). IGV-passed
mutations were represented in the Supplementary Figure S3A,C,E. Base calls with ≥2 mis-
matches with in a 20 bp window were considered false-positive mutations (Supplementary
Figure S3B,D,F). As shown in Table 2, the most frequently observed non-PASS genes
during IGV examination were MUC19 (49.1%), OBSCN (38.5%), KMT2D (35.5%), RYR1
(23.5%), and MUC16 (22.5%). The high mutation levels of genes were correlated with high
false-positive variants (Spearman’s rho = 0.763, p < 0.001). Moreover, the loci of MUC16
and MUC19 had numerous recurrent false-positive variants in both cfDNA and normal
samples (Supplementary Figure S4). Therefore, we filtered out the MUC16 and MUC19 mu-
tations to reduce false-positive calls. After filtering, 84,045 somatic mutations remained in
14,733 unique genes, including 22,394 synonymous mutations, 54,310 missense mutations,
1136 splicing site mutations, 7 frameshift mutations, 22 in-frame mutations, 97 lost starts,
5982 inserted stops, 90 stop loss mutations, and 7 retained stops.

Table 2. Detection of false-positive mutations in the most frequently mutated genes.

Gene Total
Mutations

IGV PASS IGV Non-PASS
Mutations (%) Mutations (%)

MUC19 57 29 (50.9%) 28 (49.1%)
OBSCN 78 48 (61.5%) 30 (38.5%)
KMT2D 62 40 (64.5%) 22 (35.5%)

RYR1 51 39 (76.5%) 12 (23.5%)
MUC16 111 86 (77.5%) 25 (22.5%)
DNAH1 50 39 (78.0%) 11 (22.0%)

PLEC 51 40 (78.4%) 11 (21.6%)
DNHD1 39 31 (79.5%) 8 (20.5%)
MACF1 56 45 (80.4%) 11 (19.6%)
USH2A 37 30 (81.1%) 7 (18.9%)
UBR4 57 47 (82.5%) 10 (17.5%)
FAT4 35 29 (82.9%) 6 (17.1%)

SYNE2 53 44 (83.0%) 9 (17.0%)
LRP1 43 36 (83.7%) 7 (16.3%)

LRP1B 44 37 (84.1%) 7 (15.9%)
HECTD4 47 40 (85.1%) 7 (14.9%)

INTS1 30 26 (86.7%) 4 (13.3%)
SYNE1 87 78 (89.7%) 9 (10.3%)
RYR3 62 56 (90.3%) 6 (9.7%)
TTN 116 105 (90.5%) 11 (9.5%)
DMD 48 44 (91.7%) 4 (8.3%)
ATM 36 33 (91.7%) 3 (8.3%)

DNAH11 39 36 (92.3%) 3 (7.7%)
NBEAL1 26 24 (92.3%) 2 (7.7%)
MYCBP2 40 37 (92.5%) 3 (7.5%)

2.4. Correlations between Mutation Burden and Sequencing Quality and Clinical Parameters

Plasma cfDNA mutation burden (PMB) was calculated as the number of somatic muta-
tions at a VAF of ≥5% in the coding region per Mb. The mean PMB was 18.46 mutations per
Mb per patient. As depicted in Supplementary Figure S2, PMB was a low/moderate corre-
lation between cfDNA concentration (Spearman’s rho = 0.328, p = 0.020) and 0.2× mean
coverage (Spearman’s rho = (–)0.320, p = 0.023). Although PMB was negatively corre-
lated with coverage uniformity, all WES data showed better coverage uniformity (mean of
0.2× mean coverage: 98.18 ± 0.97%; range: 93–99%; Supplementary Figure S2D). A high
PMB was strongly associated with distant metastasis (p = 0.002) and an advanced clinical
stage (p = 0.019) (Table 1 and Figure 2). However, only the difference in distant metastasis
was significant after Bonferroni correction. After adjusting for the effect of age, distant
metastasis was also associated with PMB in Table S1 (B = 0.320, p = 0.025).
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Figure 2. Scatter dot plot to illustrate the differential PMB associated with clinical parameters.
Analysis of the PMB in OSCC patients according to (A) clinical stage, (B) tumor size, (C) N stage,
(D) metastasis, (E) lymphovascular invasion, and (F) perineural invasion status. Each dot/square
represent one sample value.

We further investigated the relationship between different mutation types and clinical
parameters. As shown in Table 3, higher number of missense and splicing site muta-
tions were significantly associated with advanced clinical stage (p = 0.013 and p = 0.006,
respectively). However, none of these differences remained significant after Bonferroni
correction. Higher number of synonymous, missense, inserted stop, splicing site, stop loss
and loss start mutation were significantly associated with advanced clinical stage (p = 0.003,
p = 0.002, p = 0.003, p = 0.001, p = 0.023 and p = 0.001, respectively). However, only the
difference in synonymous, missense, inserted stop, splicing site, and loss start mutation
were significant after Bonferroni correction.

Table 3. Association between mutation types and clinical parameters.

Clinical Stage Metastasis

Mutation Types I–III IV p Value No Yes p Value

Synonymous mutations 234.7 ± 174.7 508.0 ± 115.4 0.089 350.1 ± 105.0 893.3 ± 219.6 0.003
Missense mutations 572.9 ± 449.7 1231.0 ± 279.6 0.013 832.4 ± 249.0 2242.4 ± 594.1 0.002
Inserted stop mutations 80.5 ± 71.6 130.7 ± 37.9 0.083 92.3 ± 36.2 244.2 ± 74.4 0.003
Splicing site mutations 10.0 ± 8.6 26.3 ± 6.0 0.006 17.5 ± 5.5 46.3 ± 10.6 0.001
Stop loss mutations 1.0 ± 0.8 2.0 ± 0.8 0.264 1.7 ± 0.7 2.3 ± 0.9 0.023
Lost start mutations 1.5 ± 1.5 2.1 ± 0.6 0.055 1.6 ± 0.6 3.6 ± 0.8 0.001
Retained stop mutations 0.0 ± 0.0 0.2 ± 0.1 0.170 0.1 ± 0.1 0.1 ± 0.1 0.911
In-frame mutations 0.2 ± 0.1 0.5 ± 0.1 0.327 0.4 ± 0.1 0.8 ± 0.4 0.200
Frameshift mutations 0.0 ± 0.0 0.2 ± 0.1 0.170 0.1 ± 0.1 0.2 ± 0.1 0.324

The Bonferroni-adjusted threshold for significance is set at α = 0.006 (0.05/9).

2.5. Analysis of Plasma cfDNA Revealed Clinically Actionable Mutations without Prior
Knowledge of the Tumor

Analysis of the cfDNA WES data indicated that the most frequently mutated genes
were TTN (48%), PLEC (46%), SYNE1 (44%), and RYR3 (44%) (Figure 3). To predict the
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potential mutational driver genes in OSCC, the InToGene platform and the datasets of
Bailey et al. were used [33]. Four cancer driver genes, namely KMT2D, LRP1B, TRRAP, and
FLNA, were identified in the 20 most frequently mutated gene sets. In the TCGA-OSCC
dataset, the most frequently mutated genes having been observed were TP53 (68%), TTN
(42%), FAT1 (26%), and CDKN2A (22%) (Table S2). The mutational landscape in our cfDNA
appeared dissimilar to that in the TCGA-OSCC dataset (Table S3). In addition, we compared
the TCGA-OSCC mutation profiles with our data. The novel mutated genes CCDC168,
HMCN2, STARD9, and CRAMP1 were significantly and frequently present in patients with
OSCC. The mutation frequencies of CCDC168, HMCN2, STARD9, and CRAMP1 were 34%,
32%, 32%, and 30%, respectively.
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Figure 3. Mutation distribution of the most frequently mutated genes in cfDNA. Each column
represents an individual OSCC patient, whereas each row denotes a mutated gene and clinical
features. Clinical features and mutation types are color-coded as indicated. The panel on the right
shows the number of mutations in the indicated gene.

The relationship between nonsynonymous mutations and clinical parameters was also
examined in the 20 most frequently mutated genes. The presence of metastasis in patients
with OSCC was significantly associated with nonsynonymous mutations in TTN, SYNE1,
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RYR3, DMD, HECTD4, KMT2D, NEB, DNAH10, SYNE2, VPS13D, ZFHX4, and LRP1B
(Table S4). However, only the difference in KMT2D and DNAH10 were significant after
Bonferroni correction. Kaplan–Meier survival curve analysis revealed that the mutation of
KMT2D tended toward an association with a poor outcome, but the association was not
significant (log rank p = 0.090). Moreover, no significant association was found between
the gene mutations and other clinical parameters. Several of these genes are known to be
involved in tumorigenesis, including SYNE1, RYR3, HECTD4, KMT2D, and LRP1B [34–38].
Furthermore, mutations in TTN, KMT2D, ZFHX4, and LRP1B are associated with poor
outcomes [39–41].

The 300 most frequently mutated gene sets in the cfDNA WES data were used
to conduct protein–protein interaction (PPI) network analysis and identify hub genes
(Table S5). KMT2A, CREBBP, MTOR, and ITPR1 were identified as hub genes with the high-
est predicted probability of controlling different gene clusters in cfDNA (Supplementary
Figure S5A). These genes are involved in the regulation of chromatin-mediated transcrip-
tion (KMT2A, KMT2C, and KMT2D), fundamental signal transduction (MTOR), and calcium
signaling (ITPR1, ITPR2, and ITPR3). In addition, the dysregulation or mutation of these
genes in cancer cells affects cell growth, survival, metabolism, and metastasis [41–44].

2.6. Distant Metastasis and Survival-Related Genes

We noted the significantly altered mutation frequency of genes between patients with dis-
tant metastatic OSCC and nonmetastatic OSCC (Figure 4A). UMOD was the most frequently
mutated gene in patients with nonmetastatic OSCC, whereas RORC, SLC49A3, and NUMBL
were the most frequently mutated genes in patients with metastatic OSCC. Deregulation
expression of NUMBL and RORC have been reported to be involved in the regulation of
cancer cell migration, invasion, and metastasis [45,46]. However, the role of SLC49A3 in
cancer is unclear. To identify the genetic mechanisms associated with metastasis, the 200 most
frequently mutated gene sets in patients with metastatic OSCC were used to conduct PPI
network analysis, which revealed that NCOA1 and CBL were regulators with the highest pre-
dicted probability of controlling different gene clusters (Supplementary Figure S5B). NCOA1
and CBL have previously been shown to play oncogenic roles in many cancers [47,48].
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The significantly altered mutation frequency of genes between surviving and expired
patients is shown in Figure 4B. The most frequently mutated gene in patients that survived
OSCC was STAB1, whereas the most frequently mutated genes in expired patients were
EIF4G1, PLOD3, and FAM208A. STAB1, EIF4G1, and PLOD3 have been reported to regulate
the proliferation, migration, and invasion of cancer cells [49–51]; however, the role of
FAM208A in cancer is unclear. A PPI network of proteins encoded by the 300 most frequently
mutated gene sets in expired patients was constructed, and four hubs (VCP, PPP2R1A,
EHHADH, and ACAT1) were identified (Supplementary Figure S5C). Mutations of PPP2R1A
in uterine cancer affect oncogenic signaling and promote tumor cell growth [52], whereas
EHHADH and ACAT1 are regulators of drug resistance in tumor cells [53,54]; however, the
role of VCP in cancer is unclear.

2.7. Molecular Pathway Analysis

The 300 most frequently mutated genes in all patients, patients with metastatic OSCC,
and expired patients were imported into Annotation, Visualization and Integrated Discov-
ery (DAVID) database, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis was performed. As shown in Table 4, the top three enriched KEGG
pathways in all patients, namely extracellular matrix (ECM)-receptor interaction, the cal-
cium signaling pathway, and the Notch signaling pathway, had a significant false discovery
rate (p < 0.05). The top three enriched KEGG pathways in patients with metastatic OSCC
were choline metabolism in cancer, O-glycan biosynthesis, and protein processing in the
endoplasmic reticulum. The top three enriched KEGG pathways in expired patients were
branched-chain amino acid (BCAA) catabolism, ECM-receptor interaction, and renal cell
carcinoma. The genes in renal cell carcinoma are involved in the regulation of the hypoxia
response; thus, these genes were considered a hypoxia-related gene set.

Table 4. Most frequently mutated molecules in all patients, patients with metastatic OSCC, and
expired patients.

KEGG Pathway FDR p-Value Molecules

All Patients

ECM-receptor interaction <0.001 FRAS1, COL4A4, COL4A6, COL6A3, COL6A5, HSPG2,
LAMA2, LAMA3, TNXB, VWF

Calcium signaling pathway 0.002 ATP2B3, CACNA1B, CACNA1D, CACNA1G, ERBB4, ITPR1,
ITPR2, PHKB, RYR1, RYR2, RYR3

Notch signaling pathway 0.017 CREBBP, NOTCH1, NOTCH2, NOTCH4, NCOR2
Patients with metastatic OSCC

Choline metabolism in cancer 0.018 RAF1, SP1, WAS, DGKK, DGKQ, DGKZ, PIK3CB, SLC22A3,
SLC44A1, SLC44A2

O-glycan biosynthesis 0.019 RFNG, ST6GAL1, GALNT14, GALNT18, GALNT5, GALNT8

Protein processing in endoplasmic reticulum 0.044 DNAJC10, NPLOC4, SEC23B, SEL1L, SEL1L2, STT3A, TRAF2,
UGGT2, EIF2AK1, HSPA4L, P4HB, PDIA4, VCP

Expired patients
BCAA catabolism 0.022 HMGCS2, AUH, ACAT1, ACADSB, EHHADH
ECM-receptor interaction 0.036 AGRN, COL2A1, COL9A1, ITGA9, ITGB5, LAMC1
Hypoxia-related 0.042 ARNT, EPAS1, PAK3, RAF1, TFE3

The Kaplan–Meier method was used to analyze the association between OS time and
the mutations of genes in these KEGG pathways. Mutations in UGGT2, HSPA4L, COL2A1,
AUH, ACADSB, ARNT, EPAS1, PAK3, and TFE3 were associated with poor outcomes
(Supplementary Figure S6). However, only the difference in HSPA4L and ACADSB were
significant after Bonferroni correction. Mutations in the BCAA catabolism gene set were
detected in 12 (24%) patients (Figure 5A). Mutations in the calcium signaling-related genes
HMGCS2, AUH, ACAT1, ACADSB, and EHHADH were found in 6 (12%), 6 (12%), 6 (12%),
4 (8%), and 5 (10%) patients, respectively (Supplementary Figure S7A). When patients
had mutations in the BCAA catabolism gene set, their prognosis was poorer than that of
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patients without such mutations. However, the difference in the BCAA catabolism gene set
was not significant after Bonferroni correction. Mutations in the hypoxia-related gene set
were found in 15 (30%) patients (Figure 5B); the affected genes were ARNT, EPAS1, PAK3,
RAF1, and TFE3 in 8 (16%), 4 (8%), 5 (10%), 6 (12%), and 7 (14%) patients, respectively
(Supplementary Figure S7B). When patients had mutations in the hypoxia-related gene set,
their prognosis was poorer than that of patients without such mutations. The difference
in the hypoxia-related gene set remained significant after Bonferroni correction. We also
identified Food and Drug Administration (FDA) approved drugs associated with the
candidate genes. Two candidate genes, HADHA and HADHB, which are involved in the
regulation of the BCAA catabolism pathway (Supplementary Figure S7A), were found to
be susceptible to treatment with the FDA-approved drug triheptanoin.
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3. Discussion

When using commonly available WES technologies, large amounts of circulating
DNA are needed, which cannot be obtained from adequate volumes of plasma samples.
In WES based on hybridization, the amount of circulating DNA and the complexity of the
sequencing library can limit the process since a higher number of PCR cycles is required
when the input material is limited. To address this issue, we utilized the ThruPLEX-FD
Prep Kit (Rubicon Genomics, Inc., Ann Arbor, MI, USA) to maximize the yield for library
generation [55–57]. cfDNA is usually present at low concentrations and highly fragmented,
and its abundance depends on the cancer type and stage, as well as the sample treatment
prior to analysis [58,59]. Shearing and other fragmentation methods have a considerable
effect on the size distribution within fragments and therefore the results of analysis. Given
the complexity of the complete workflow, including the preparation of samples and libraries,
sequencing, and data analysis, the process should be standardized to ensure that data
quality is optimized, especially when clinical cohorts are investigated [60]. The ThruPLEX
system has high sensitivity, making possible the detection of more low-abundance somatic
mutations than can be detected with QIAseq (Qiagen, Hilden, Germany), NEXTFLEX
(BioScientific, Austin, TX, USA), Accel (Swift Biosciences, Ann Arbor, MI, USA) with PCR,
and Accel PCR-freer kits [60]. Moreover, the ThruPLEX kit also allows the analysis of
variants from various types of plasma samples [60]. In the present study, we combined
library preparation via ThruPLEX-FD with exome enrichment via SureSelect technology to
achieve 98.18% coverage and 90.87-fold depth. Our evaluation of cfDNA sequencing data
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demonstrates the high performance of the established workflow combining ThruPLEX-FD
library preparation with SureSelect technology for exome enrichment. To broaden the
detection range of mutations, we employed the NGS technology platform (Illumina, San
Diego, CA, USA) with high depth of sequences of the whole exon region. We obtained
better mapping performance, enrichment efficiency, target coverage, and sequencing depth
between cfDNA reads than another study with a depth of 49× (minimum: 40×) and exome
coverage of 82% [21]. Another study was performed with a median sequencing depth of
55.59-fold for cfDNA WES [61]. Nonetheless, potential sources of error, such as content bias
depending on the library generation method and amplification errors, must be considered.
Addressing these potential sources of error through assay design should be considered
during the design phase of experiments [62].

Whole-genome sequencing and WES of cfDNA have the potential to detect genetic
variation at the nucleotide level, which could enable identification of subclonal tumors [63].
However, not all mutations found in plasma cfDNA necessarily originate from tumors.
For instance, Dietz et al. reported a limited correlation (∼5–57%; median: 17.2%) between
somatic cfDNA mutations and matched tumor samples in non-small cell lung cancer
patients [57]. In contrast, other studies have found 11–92% of tissue mutations in the
plasma of patients with HNSCC [30,64,65]. The source of this variation could include
non-sampled tumor populations, distant metastases, or normal cells unrelated to the tumor.
While germline variability can be filtered out by comparing with individually matched
germline DNA and using databases like dbSNP (as done in this study), the specificity of
cfDNA genomics will remain a challenge until more is known about the genetic aberrations
in normal tissue and their representation in cfDNA [10]. The observation that the opposite
was observed in HNSCC patients requires validation in a larger patient cohort.

In this study, we demonstrated the utility of WES for identifying cfDNA variants in
plasma samples from cancer patients. Somatic mutations, including SNPs and known
annotated mutations from the COSMIC database, were identified and removed from
the datasets [18,66]. Germline variability was eliminated by comparing the data with
individually matched germline DNA and applying high-fidelity filtering against databases
such as dbSNP, PoN panel, oxodG artifacts, and strand bias [18,66]. To identify true
somatic mutations, it is useful to combine the results of multiple mutation callers to
reduce false positives while maintaining analysis sensitivity [67]. However, false-positive
mutations may still be present in the datasets, even when normal panel SNPs and repeat-
rich sequences have been removed [66]. IGV validation revealed false positives in some
genes, particularly in gene variants with high mutation levels. A combination of at least two
callers provides better performance than a single caller alone, based on the number of true
and false detections in any combination of mutation callers across all replicates [18,66,67].

In the present study, we explored the relevance of using liquid biopsy to characterize
the mutational landscape of OSCC using WES with deep coverage. We detected numer-
ous different novel mutations at low frequencies in pathways possibly associated with
OSCC oncogenesis. These included ECM-receptor interaction [68], arginine and proline
metabolism [69], deregulated choline metabolism [70], and branched-chain amino acid
metabolism [71]. Concordance between the variants determined by sequencing tumor
tissue and cfDNA was low in previous studies [30,65]. Recurrent hotspot mutations in
specific genes identified using a highly sensitive amplification-based method weas shown
to have a higher sensitivity in OSCC [28]. Although the complete molecular landscape and
tumor heterogeneity of OSCC are not yet fully understood, WES gene panels, such as the
one used in this study, can provide a more comprehensive dataset of mutated genes in sam-
ples, as opposed to targeted panels that include only a limited number of genes [29,72–76].
This approach has the potential to identify genes of interest related to treatment resistance
and capture DNA signatures that can help make treatment-related decisions without prior
knowledge of the mutational profile [19,61].

Our data were discriminative from the TCGA database. In metastatic colon rectum
cancer, gastric cancer, and endometrial carcinoma, cfDNA gene mutation patterns were
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quite different when compared with the TCGA dataset [77–79]. This may results from the
difference of sample patterns for patients enrolled in the studies. Asian patient cases are
underrepresented in the TCGA, which are almost entirely non-metastatic surgical tissue
samples. This may cause the discrepancy from the cfDNA scheme compared with the
TCGA molecular classification scheme.

The level of cfDNA in the blood circulation can be affected by various factors, including
tumor size, stage, and growth rate. The broader and deeper the cfDNA assay employed,
the higher the likelihood of detecting mutations [20]. In addition, the total number of
tumor-derived mutations interrogated is another important factor affecting the detection
of mutation burdens in plasma. Higher levels of cfDNA in the blood circulation have
been observed primarily in patients with a tumoral mass rather than patients without
tumors [15]. In the case of OSCC, plasma cfDNA levels were significantly higher in patients
with larger tumors, cervical lymph node metastasis, and late-stage cancer. These levels
were also positively correlated with poor prognosis [15]. Thus, the level of cfDNA reflects
tumor progression to some extent. In the present study, PMB was correlated with plasma
concentration. The levels of cfDNA were significantly higher in patients with a higher PMB,
a phenomenon that was also observed in hepatocellular carcinoma [61]. The mutational
burden of cfDNA has been related to tumor size, tumor growth rate, or cell turnover, as
shown using a theoretical mathematical model of cfDNA shedding in lung cancer [80].
In our study, higher PMB was significantly associated with unfavorable clinical parameter
such as distant metastasis, after Bonferroni correction. However, our statistical power was
less than 0.8 (power = 0.61); therefore, we could not eliminate the possibility of a type 2
error. The power analysis revealed that the sample size of N = 78 was required to achieve
80% power.

In particular, high levels of PMB were found in patients with distant metastatic OSCC.
Similar findings were reported for rectal cancer, in which presurgery cfDNA was used to
detect patients with minimal metastatic disease and identify those at high risk of distant
recurrence [81]. This issue should be investigated further by collecting and analyzing
more samples.

Previous studies have shown that tumor-derived cfDNA can be detected in 73% of
patients with metastatic breast and prostate cancer, but cfDNA sensitivity in the metastatic
setting may vary based on the location of the disease [81–83]. The ability of HNSCC tumor
cells to metastasize depends on their ability to detach from the basement membrane and
associated ECM components [84]. However, obtaining tumor biopsies can be limited by
the location and timing of the biopsy, differential release of cfDNA among lesions, and
tumor heterogeneity, which may limit the detection of tumor mutations [85,86]. The current
study demonstrates that WES can be performed in a significant proportion of patients with
metastatic oral cancers, enabling comprehensive clonal analysis of cfDNA to track tumor
evolution and identify mechanisms of metastasis. It may be possible to develop a predictive
algorithm that accurately distinguishes between metastatic and nonmetastatic cancer and
identifies molecular-level mutational tumor types. Oncologists must rapidly screen for
an increasing number of disease-specific or tumor agnostic biomarkers of drug response,
but inadequate tumor tissue for comprehensive tumor profiling may delay appropriate
systemic therapy administration. Patients with metastatic OSCC, which is difficult to
biopsy, may be at risk of not receiving the most effective targeted therapies or curative
immunotherapies. Liquid biopsies may soon be used to detect recurrent disease and select
patients with OSCC for screening of distant metastasis during follow-up.

The mutational profile of a tumor plays a crucial role in determining the success of
various therapeutic approaches, and precise targeting of these alterations, in combination
with modified treatment regimens to reduce therapy resistance, can save many patients
from disease and associated death. WES can identify mutations not included in targeted
panels or global genomic features for samples with a high cfDNA tumor fraction. A more
focused, sensitive assay capable of detecting clinically actionable mutations in cfDNA
samples with low tumor fraction could also be employed. We believe this strategy will be
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of widespread interest as cfDNA profiling may become the initial tumor sequencing assay
for many OSCC patients, enabling rapid identification of actionable drug targets before
therapy initiation [87]. However, the clinical feasibility of such approaches is limited by the
low fraction of cfDNA derived from tumors and the high cost of WES. Moreover, while
more sensitive but focused cfDNA platforms can detect clinically actionable mutations
covered by the assay design, they may not be able to detect low-frequency mutations in
genes where the functional consequences of mutation remain unclear. Therefore, testing
new compounds to target these genes may be necessary to improve the prognosis of OSCC.

4. Materials and Methods
4.1. Participants and Data Collection

Fifty patients with OSCC were enrolled in our study, which was approved by the
institutional review board of MacKay Memorial Hospital (approval numbers: 12MMHIS178
and 15MMHIS104), after the patients provided informed consent. Demographic data, i.e.,
age, sex, clinical stage, and final status (survived or expired), were obtained from the
patients’ medical records. For clinical staging, the tumor, node, and metastasis TNM
classification of the American Joint Committee on Cancer (AJCC 7th edition) were used [88].
Exclusion criteria for this study were receiving adjuvant chemotherapy or radiotherapy
before surgery.

TCGA-HNSCC WES dataset was downloaded from the Genomic Data Commons
portal (https://portal.gdc.cancer.gov/) (accessed on 25 December 2021). We included only
387 patients where the primary site was located at the tongue, lip, mouth floor, tonsil, gums,
palate, or oropharynx. This dataset was called “TCGA-OSCC” dataset [18]. Mutations
located in the introns, intergenic regions, and in untranslated regions (UTR) were excluded.

4.2. DNA Extraction

cfDNA was extracted from 2 mL of plasma (obtained before OSCC-associated surgery)
using a QIAamp Circulating Nucleic Acid Kit (Qiagen), as described previously [15].
Purified cfDNA was then eluted in 25 µL of elution buffer from the kit. The QIAamp Nucleic
Acid Kit was used for sample collection instead of simple EDTA-coated tubes and blood
samples were centrifuged immediately to avoid DNA fragmentation, which may achieve
the best preservation of circulating cfDNA. cfDNA was quantified using a TapeStation
2200 (Agilent Technologies, Santa Clara, CA, USA), equipped with a high sensitivity
D1000 ScreenTape system. This system analyzes up to 96 samples per run and resolves
35–1000 bp fragments, and the assay is suitable for the accurate sizing and quantification
of DNA fragments in high-throughput applications (Supplementary Figure S1A) [15].
Paired whole-blood samples were collected in EDTA Vacutainer tubes (Becton Dickinson,
Franklin Lakes, NJ, USA). Peripheral blood mononuclear cell negative fractions were used
for germline DNA. Germline DNA was extracted from buffy coat layer prepared from
10 mL of whole blood using a QIAamp DNA Blood Mini Kit (Qiagen) according to the
manufacturer’s instructions. The quality and quantity of genomic DNA were assessed
using the TapeStation 2200 and a NanoDrop 2000 Photometer (Thermo Fisher Scientific,
Waltham, MA, USA).

4.3. Sequencing of Plasma cfDNA

For plasma samples, ~1 ng of cfDNA was used as the input for library preparation,
and libraries were prepared using a ThruPLEX DNA-seq Library Prep Kit according to
the manufacturer’s protocol. For blood samples, libraries were prepared with 200 ng of
genomic DNA using a SureSelect Library Preparation Kit (Agilent Technologies) according
to the manufacturer’s instructions [21,55]. For exome enrichment, SureSelect Human All
Exon V6 + UTRs probe sets were used. The captured libraries were amplified with 14 cycles
of PCR, and the quality and concentration of libraries were assessed using the TapeStation
2200 system (Supplementary Figure S1B). Libraries were indexed with barcodes to allow
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sample pooling for multiplexed exome capture and sequencing. An IlluminaNovaSeq
6000 DNA sequencer (Illumina) was used to conduct WES [18].

4.4. Sequencing Data Processing

Somatic mutations were called using multiple pipelines (Figure 1). Sequencing data
were aligned to the human hg38 genome using Burrows-Wheeler Aligner (v0.7.15). The Se-
quence Alignment/Map (SAM) file format was converted to the Binary Alignment/Map
(i.e., BAM) format with SAMtools (v1.3.1). Five programs were used to call somatic muta-
tions: Muse (v1.0rc), Mutect2 (v4.1.0.0), Strelka2 (v2.9.10), SomaticSniper (v1.0.5.0), and
VarDict (v1.8.3) [89–92]. Plasma cfDNA somatic mutations were called via comparisons
with matched control germline DNA. After variant identification, the variant calling file
data from the five programs were merged using sample IDs and positions in the genome
(e.g., ID-chr1-123).

Data were further filtered using the criteria reported in our previous study [18]: (i) re-
moving common polymorphisms (SNPs), a minor allele frequency in the 1000 Genomes
Project or Genome Aggregation Database (gnomAD) of >1%; (ii) Panel of Normal (the
normal panel was created with the GATK tool “CreateSomaticPanelOfNormals”); (iii) 8-
oxoguanine artifacts (identified and filtered using the GATK tools “FilterByOrientationBias”
and “CollectSequencingArtifactMetrics”, respectively); (iv) removal of multiallelic sites,
clustered events, and strand bias (estimated and filtered using the GATK tools “GetPileup-
Summaries,” “FilterMutectCalls,” and “CalculateContamination”, respectively); (v) <4 mu-
tant alleles in the cfDNA sample and ≥4 mutant alleles in normal cells [93]; and (vi) vari-
ant allele frequency (VAF) of <0.05 in cfDNA tumor samples. Steensma DP suggested
that next-generation sequencing has a mutation limit of detection at VAFs ~2% [64,94].
The thresholds of VAF was defined as >2% in our study. The filtered mutations were
considered somatic mutations.

Variant Effect Predictor (v106; Ensembl: https://asia.ensembl.org/Homo_sapiens/
Tools/VEP) (accessed on 13 May 2021). was used to annotate the somatic mutations [95].
By searching the InToGene platform (https://www.intogen.org/search, accessed on
13 May 2021) and the Bailey et al. datasets [33,96], potential mutational driver genes
in OSCC were identified and annotated. Germline DNA and cfDNA WES data described
in the present study were submitted to the Short Reads Archive database under BioPro-
ject accession numbers PRJNA749133 (https://www.ncbi.nlm.nih.gov/bioproject/?term=
PRJNA749133, accessed on 13 May 2021) and PRJNA759378 (https://www.ncbi.nlm.nih.
gov/bioproject/?term=PRJNA759378, accessed on 13 May 2021), respectively.

The plasma cfDNA mutation burden (PMB) was calculated according to the number
of somatic mutations with a VAF of ≥5% in the target region of SureSelect Human All Exon
v6 + UTR [91.08 megabases (Mb)] and is expressed as mutations per Mb [97,98]. The target
region of the BED file is available at the SureDesign website (https://earray.chem.agilent.
com/suredesign/, accessed on 13 May 2021).

4.5. Validation of Mutations

IGV (v2.13.1) was used to validate somatic mutations [18,99,100]. The 200 most frequently
mutated genes were selected, and IGV was used to determine false-positive rates. To be
considered “true-positive,” mutations were required to fulfill the following criteria: (i) the
allelic configurations of the mutation were multiallelic variants; (ii) both forward and reverse
strands had at least one mutant allele; (iii) <2 mismatches occurred within a 20 bp window;
and (iv) the number of Alt alleles was <3 in normal cells and ≥3 in tumors [95].

4.6. Pathway Analysis

The 300 candidate genes with the highest mutation rates in all, metastatic, or expired
patients were imported into a PPI network produced using STRING (v11.5; https://string-
db.org/, accessed on 13 May 2021).
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DAVID (https://david.ncifcrf.gov/, accessed on 13 May 2021) was used to further
analyze the annotation results of the candidate genes. KEGG pathway functional enrich-
ment results were analyzed using DAVID with a false discovery rate of <0.05.The candidate
genes were matched with FDA–approved drugs (https://www.fda.gov/, accessed on
13 May 2021) using the United States FDA Table of Pharmacogenomic Biomarkers in
Drug Labels.

4.7. Statistical Analysis

Data are presented as the SD ± standard deviation. For statistical analysis, rank
correlation was conducted using Spearman and Mann–Whitney U tests. The categorical
data was conducted by chi-square or Fisher’s test (expected number less than 5). Linear
regression models were used to assess the association between clinical stage and distant
metastasis with PBM, adjusted for age. Overall survival (OS) was defined as the duration
from the time of first diagnosis to death or the last date of follow-up. OS was compared
between two groups using Kaplan–Meier analysis. p values of <0.05 were considered
statistically significant. To adjust for multiple tests, the p value for significance was adjusted
by Bonferroni correction.

5. Conclusions

Based on the findings of this study, an array of five mutation callers was utilized to
identify mutations in cfDNA samples from OSCC patients. The presence of PMB mutations
was found to be associated with advanced disease stage and distant metastasis. In addition,
novel somatic mutations were detected in cfDNA samples from patients with metastatic
OSCC. This information could potentially inform the use of precision therapy approaches
tailored to the specific mutations identified in individual patients’ cfDNA samples.
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