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Abstract: Inflammasomes are multiprotein complexes that activate inflammatory responses by
inducing pyroptosis and secretion of pro-inflammatory cytokines. Along with many previous studies
on inflammatory responses and diseases induced by canonical inflammasomes, an increasing number
of studies have demonstrated that non-canonical inflammasomes, such as mouse caspase-11 and
human caspase-4 inflammasomes, are emerging key players in inflammatory responses and various
diseases. Flavonoids are natural bioactive compounds found in plants, fruits, vegetables, and teas and
have pharmacological properties in a wide range of human diseases. Many studies have successfully
demonstrated that flavonoids play an anti-inflammatory role and ameliorate many inflammatory
diseases by inhibiting canonical inflammasomes. Others have demonstrated the anti-inflammatory
roles of flavonoids in inflammatory responses and various diseases, with a new mechanism by
which flavonoids inhibit non-canonical inflammasomes. This review discusses recent studies that
have investigated the anti-inflammatory roles and pharmacological properties of flavonoids in
inflammatory responses and diseases induced by non-canonical inflammasomes and further provides
insight into developing flavonoid-based therapeutics as potential nutraceuticals against human
inflammatory diseases.
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1. Introduction

Inflammasomes are multiprotein complexes comprised of a pattern recognition re-
ceptor (PRR) and inflammatory molecules that provide the molecular platforms of inflam-
matory responses in response to various pattern-associated molecular patterns (PAMPs)
and danger-associated molecular patterns (DAMPs) [1,2]. There are two main classes of in-
flammasomes: canonical and non-canonical. Canonical inflammasomes include nucleotide
oligomerization domain-like receptor (NLR) family inflammasomes, such as NLRP1,
NLRP3, NLRC4, NLRP6, NLRP9, and NLRP12, and non-NLR family inflammasomes,
such as pyrin and absent in melanoma 2 (AIM2) inflammasomes [1,2]. Numerous studies
have successfully demonstrated that canonical inflammasomes activate inflammatory re-
sponses under the stimulation of PAMPs and DAMPs, leading to the onset and progression
of various inflammatory diseases [3–8]. Other types of inflammasomes have recently been
identified, including human caspase-4, caspase-5, and mouse caspase-11 inflammasomes,
which were named non-canonical inflammasomes because they have similar roles to but are
distinguished from canonical inflammasomes [9–12]. Lipopolysaccharide (LPS) has been
identified as the only PAMP that activates non-canonical inflammasomes via direct inter-
action with caspase-4/5/11 [13–16]. Activation of non-canonical inflammasomes induces
the proteolytic cleavage of gasdermin D (GSDMD), and the amino-terminal fragments of
GSDMD (N-GSDMD) generate GSDMD pores in cell membranes, resulting in pyroptosis,
an inflammatory form of cell death [13–16]. Activation of non-canonical inflammasomes
also induces proteolytic activation of caspase-1, but unlike canonical inflammasomes, they
indirectly activate caspase-1. They directly activate the NLRP3 canonical inflammasome,
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and the activated NLRP3 canonical inflammasome induces the proteolytic activation of
caspase-1, which suggests that canonical and non-canonical inflammasomes play a coop-
erative role in activating inflammatory signaling pathways [17–20]. Activated caspase-1
subsequently promotes proteolytic maturation and secretion of the pro-inflammatory cy-
tokines interleukin (IL)-1β and -18 through GSDMD pores [13–16]. Emerging studies have
demonstrated that non-canonical inflammasomes also play critical roles in inflammatory
responses and in numerous infectious and inflammatory diseases [21–38].

Flavonoids are a group of natural ingredients, particularly secondary metabolites,
widely found in fruits, vegetables, grains, nuts, seeds, bark, roots, stems, flowers, teas,
and wine, and are essential for humans to improve health, increase longevity, and pro-
mote immunity [39]. Flavonoids play numerous pharmacological roles in various human
diseases, including cancers and infectious, cardiovascular, neurodegenerative, respira-
tory, allergic, and metabolic diseases [40–46]. Considerable efforts have also been made
to demonstrate the anti-inflammatory role of flavonoids in inflammatory responses and
diseases [47–49]; however, most studies have focused on priming, the preparation step of
inflammatory responses [50–54]. Recent studies have also reported the anti-inflammatory
role of flavonoids by targeting inflammasome activation in the triggering step of inflam-
matory responses [49,55–59]. Interestingly, growing evidence has demonstrated that
flavonoids also have anti-inflammatory actions and alleviate various inflammatory dis-
eases by inhibiting non-canonical inflammasomes in the triggering step of inflammatory
responses. This review summarizes and discusses recent studies investigating the anti-
inflammatory effects of flavonoids by targeting non-canonical inflammasomes, especially
caspase-11 non-canonical inflammasome, and provides new insights into the development
of flavonoids and flavonoid-based remedies as potential nutraceuticals that prevent and
treat inflammation-related human diseases.

2. Flavonoids
2.1. General Overview of Flavonoids

Flavonoids are an important class of phytochemicals with polyphenolic structures
and are ubiquitously present as secondary metabolites in plants, fruits, vegetables, and
beverages. In recent years, interest in flavonoids as bioactive compounds that play phar-
macological roles in various human diseases, which can be developed as pharmaceutical
leads, has exponentially increased. Studies have reported that flavonoids play an essential
role in protecting cells from oxidative stress [60,61]. Several studies have reported that
flavonoid-mediated antioxidative activity results in anticancer effects in various types of
cancers, including gastric, liver, breast, prostate, cervical, pancreatic, brain, and blood
cancers [62–71]. Flavonoids have been demonstrated to play a protective role in metabolic
diseases, such as diabetes mellitus, obesity [72–75], and cardiovascular diseases [41,76–78].
Flavonoids also exert multiple neuroprotective activities in the brain by protecting neurons
against neurotoxins; inhibiting neuroinflammation and neurodegeneration; and increas-
ing memory, cognitive, and learning function [79–81]. Moreover, many studies have
successfully demonstrated that flavonoids play an anti-inflammatory role in inflamma-
tory responses and diseases [47–49]. Early studies demonstrating the anti-inflammatory
roles of flavonoids focused on the priming process, which is an inflammation-preparing
step [50–54]. Interestingly, recent studies have further shown that flavonoids also play an
anti-inflammatory role by targeting inflammasome activation during the triggering process,
which is an inflammation-activating step in inflammatory responses and diseases [49,55–59],
strongly suggesting that flavonoids are natural pharmacological compounds with anti-
inflammatory activity by targeting both priming and triggering processes in inflammatory
responses and diseases.

2.2. Structure and Classification of Flavonoids

More than 10,000 compounds belong to the flavonoid family [82]. Flavonoids have
the common structure of a 15-carbon C6–C3–C6 skeleton consisting of two phenyl rings,
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known as the A and B rings, and one heterocyclic ring, known as the C ring, containing
oxygen (Figure 1A). Flavonoids can be classified into different subgroups, such as flavones,
flavonols, flavanones, flavanols, isoflavones, leucoanthocyanidins, anthocyanidins, and
chalcones, depending on the position of the linkage between rings B and C, oxidation of
the C ring, and degree of unsaturation (Figure 1B) [83,84]. The rings can be modified by
hydrogenation, hydroxylation, methylation, malonylation, sulfation, and glycosylation,
which can exert different biological and pharmacological effects [83,84].
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Figure 1. The structure of flavonoids. (A) The basic backbone of flavonoids. (B) The chemical
structure of flavonoid subgroups: flavone, isoflavone, flavonol, flavanone, flavanol, flavanonol,
anthocyanin, leucoanthocyanidin, and chalcone.

Flavones consist of a backbone of 2-phenylchromen-4-one bearing a phenyl substituent
at position 2 (Figure 1B). Flavones are widely found in leaves, flowers, and fruits, and
luteolin, apigenin, tangeritin, chrysin, and 6-hydroxyflavone are flavonins.

Isoflavones are isomers of flavones that differ from flavones in the location of the
phenyl group. Flavones are chromones substituted with a phenyl group at the 2-position,
whereas isoflavones have a phenyl group at the 4-position of the C ring (Figure 1B). The
most common sources of isoflavones are soybeans and leguminous plants, and the major
isoflavones in soybeans are genistein and daidzein. Isoflavones are phytoestrogens that
exert pharmacological effects on various hormonal and metabolic diseases [85].

Flavonols have a 3-hydroxyflavone backbone with a hydroxyl group at position 3 of
the C ring and are diverse at different positions in the patterns of glycosylation, methylation,
and hydroxylation (Figure 1B). Various vegetables, fruits, teas, and red wine are rich sources
of flavonols. Quercetin, kaempferol, morin, myricetin, and fisetin belong to this subclass
of flavonoids.

Flavanones, also known as dihydroflavones, have the same structure, but the C ring
is saturated between positions 2 and 3 (Figure 1B). Flavanones are generally present
in many citrus fruits and are responsible for their bitter taste. Many flavanones, such
as hesperidin, hesperetin, narirutin, naringenin, naringin, and eriodictyol, have been
discovered over the past decade. Interestingly, flavanones have been demonstrated to
have various pharmacological activities, including antioxidative, anti-inflammatory, and
antiallergic effects [86,87].

Flavanols, also known as flavan-3-ols, are derivatives of flavans that possess a
2-phenyl-3,4-dihydro-2H-chromen-3-ol backbone and have a saturated C ring between
2 and 3 (Figure 1B). Flavanols are abundant in some fruits and include a wide range of
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compounds, such as catechin, epicatechin gallate, epigallocatechin, epigallocatechin gallate,
proanthocyanidins, theaflavins, and thearubigins.

Flavanonols, also known as dihydroflavonols or catechins, consist of the backbone
of 3-hydroxy-2,3-dihydro-2-phenylchromen-4-one and are 3-hydroxy derivatives of fla-
vanones (Figure 1B). Flavanonols are highly diversified and multi-substituted in structure,
and like flavanones and flavanols, they have a saturated C ring between 2 and 3 (Figure 1B).
Flavanonols are found in some plants, such as Myrsine seguinii, Paepalanthus argenteus, and
Smilax glabra, [88,89] and include xeractinol, taxifolin, aromadendrin, and engeletin.

Anthocyanins are flavonoids with the most complicated chemical structure and are
based on the chemical structure of the flavylium cation with various substituted groups of
hydrogen atoms (Figure 1B). Anthocyanins are predominantly found in various fruits and
flowers and are responsible for their color. More than 30 anthocyanins have been identified,
including cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin.

Leucoanthocyanidins are a group of derivatives of anthocyanidins and anthocyanins
that possess the structure of flavan-3,4-diols (Figure 1B). Leucoanthocyanidins have been
identified as intermediates in anthocyanidin biosynthesis in flowers [90] and are found in
Anadenanthera peregrina and several species of Nepenthes and Acacia. Leucoanthocyanidins
include leucocyanidin, leucodelphinidin, leucofisetinidin, leucomalvidin, leucopelargoni-
din, leucopeonidin, leucorobinetinidin, melacacidin, and teracacidin.

Chalcones have a unique structure characterized by the absence of the C ring of
the basic flavonoid skeleton, and are referred to as open-chain flavonoids (Figure 1B).
Chalcones are found in some fruits and vegetables as well as in certain wheats. The major
chalcones include phloridzin, arbutin, phloretin, and chalconaringenin.

3. Caspase-11 Non-Canonical Inflammasome
3.1. Discovery and Structure

Numerous studies have investigated the roles of canonical inflammasomes in innate
immune responses stimulated by various PAMPs and DAMPs. Inflammatory responses
are highly activated in response to cholera toxin B in an NLRP3 inflammasome-dependent
manner in LPS-primed macrophages, and this inflammatory response is abolished in
macrophages derived from the mouse strain 129S6, which expresses a truncated nonfunc-
tional caspase-11 protein [9]. This strain of 129S6 mice is also much more resistant to
the lethal dose of LPS that induces acute septic shock [9], which suggests that caspase-11
is different from the canonical inflammasomes and plays a unique role in inflammatory
responses in macrophages with a molecular mechanism distinct from that of the canonical
inflammasomes. Follow-up studies have successfully established that caspase-11-mediated
inflammatory responses are activated by the caspase-11 inflammasome, which does not be-
long to canonical inflammasomes; therefore, this inflammasome was named the caspase-11
non-canonical inflammasome [9].

Caspase-11 belongs to a group of inflammatory caspases that is distinguished from
a group of apoptotic caspases. Caspase-11 is an intracellular PRR consisting of an amino-
terminal caspase recruitment domain (CARD), followed by two catalytic domains: a p20
large catalytic domain and a carboxyl-terminal p10 small catalytic domain (Figure 2A).
Caspase-11 was initially discovered in mice, and many studies have attempted to iden-
tify human caspase-11. Unexpectedly, human caspase-11 has not yet been identified;
however, numerous studies have confirmed that caspase-4/5 are homologs of mouse
caspase-11 [12,13,15,91]. Human caspase-4/5 has a domain structure similar to that of
mouse caspase-11, but their amino acid lengths are different; mouse caspase-11 and human
caspase-4/5 are 373, 377, and 434 amino acids in length, respectively (Figure 2A).
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3.2. Caspase-11 Non-Canonical Inflammasome-Activated Inflammatory Signaling Pathways

Canonical inflammasomes are activated in response to a variety of PAMPs and
DAMPs [1,2]. However, unlike canonical inflammasomes, LPS is the only PAMP that
activates non-canonical inflammasomes [13–16]. LPS is an endotoxin found in the cell walls
of gram-negative bacteria. Extracellular LPS derived from gram-negative bacteria enters
host cells via endocytosis mediated by cell surface receptors, such as Toll-like receptor 4 and
receptor for advanced glycation end-product [17]. Extracellular LPS also enters the host
cells via bacterial outer membrane vesicle-mediated internalization [17]. LPS is released
from internalized endosomes or vacuoles containing intracellular gram-negative bacteria.
Guanylate-binding proteins (GBPs) are interferon (IFN)-inducible GTPase family members
that are expressed in response to IFN stimulation. The GBPs bind with endosomes and
vacuoles and consequently disrupt their membrane integrity, leading to the release and
cytosolic access of LPS to mouse caspase-11 and human caspase-4/5 [92–95].

Caspase-11 senses intracellular LPS via direct interactions. This direct interaction is
mediated by the binding of the CARDs of the caspase-11 with the lipid A moiety of LPS,
which is a highly conserved component of LPS, resulting in the formation of LPS-caspase-11
complexes (Figure 2B) [13–16]. The caspase-11 non-canonical inflammasome is then formed
by oligomerization of LPS-caspase-11 complexes through CARD-CARD interaction, and
the caspase-11 non-canonical inflammasome is subsequently activated by auto-proteolysis
(Figure 2B) [96]. Auto-proteolysis is a key determinant of caspase-11 non-canonical inflam-
masome activation. Activation of the caspase-11 non-canonical inflammasome is mediated
by auto-proteolysis at the 285 aspartic acid residue (Asp285) of caspase-11, and the 254
cysteine residue (Cys254) of caspase-11 has been identified as a critical residue that has
enzymatic activity that triggers Asp285 auto-proteolysis (Figure 2B) [97].

Activation of the caspase-11 non-canonical inflammasome induces two main inflam-
matory signaling pathways by activating several downstream effector molecules [13–16].
Caspase-11 non-canonical inflammasome activation directly promotes proteolytic process-
ing of GSDMD at the 276 asparagine residue (Asp276) to produce both N-GSDMD and
carboxyl-terminal GSDMD fragments. N-GSDMD then moves to the cell membranes and
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generates GSDMD pores in them, leading to cell swelling and osmotic rupture, known as
pyroptosis. Caspase-11 non-canonical inflammasome activation also promotes proteolytic
activation of caspase-1, and the active form of caspase-1 subsequently induces proteolytic
maturation and secretion of the pro-inflammatory cytokines IL-1β and -18 through GS-
DMD pores. Interestingly, the caspase-11 non-canonical inflammasome indirectly activates
caspase-1 through functional interplay with the NLRP3 canonical inflammasome. The
direct interaction between caspase-11 non-canonical and NLRP3 canonical inflammasomes
potentiates the activation of the NLRP3 canonical inflammasome, leading to the prote-
olytic activation of caspase-1 [98]. Caspase-11 non-canonical inflammasome also indirectly
activates the NLRP3 canonical inflammasome. Potassium ion (K+) efflux is a key event
in the activation of the NLRP3 canonical inflammasome, and caspase-11 non-canonical
inflammasome activation induces potassium ion (K+) efflux through pyroptosis-mediated
cell membrane damage and membrane gate proteins, such as P2X7 channels, bacterial
pore-forming toxins, and pannexin 1 channels [17–20]. These results strongly suggest that
canonical and non-canonical inflammasomes play a cooperative rather than an independent
role in inflammasome-activated inflammatory signaling pathways. The caspase-11 non-
canonical inflammasome-activated inflammatory signaling pathway is shown in Figure 2C.

4. Flavonoid-Mediated Anti-Inflammatory Roles by Targeting Caspase-11
Non-Canonical Inflammasome

Many studies have demonstrated the anti-inflammatory roles of various flavonoids in
inflammatory responses and diseases by suppressing the activation of canonical inflamma-
somes, particularly the NLRP3 canonical inflammasome [49,55–59]. Interestingly, a growing
number of studies have also reported that flavonoids exert strong anti-inflammatory activ-
ity by inhibiting the activation of the caspase-11 non-canonical inflammasome, which is a
key player in inflammatory responses and various immunopathological conditions. Here,
we summarize and discuss recent studies that have investigated the anti-inflammatory role
of various flavonoids in inflammatory responses and diseases.

4.1. Luteolin

Luteolin is a 3′,4′,5,7-tetrahydroxyflavone (Figure 3A) found in various vegetables,
fruits, flowers, and medicinal plants, and plays an anti-inflammatory role by decreasing
the production of inflammatory mediators and pro-inflammatory cytokines [99]. Luteolin
also exerts an anti-inflammatory effect by inhibiting the activation of the NLRP3 canon-
ical inflammasome in macrophages [100,101]. Recently, Hwang et al. demonstrated the
in vitro and in vivo anti-inflammatory roles of luteolin by targeting the caspase-11 non-
canonical inflammasome in macrophages. Luteolin in Viburnum pichinchense inhibited
caspase-11 non-canonical inflammasome-activated pyroptosis and IL-1β production in
macrophages [102]. An in vivo study further showed that luteolin-containing V. pichinchense
ameliorated HCl/EtOH-induced gastritis in mice [102], suggesting that the ameliorative
effect of luteolin on gastritis may be mediated by inhibiting the activation of the caspase-11
non-canonical inflammasome in macrophages. Yan et al. investigated luteolin-inhibited
caspase-4/11 non-canonical inflammasome activation in sepsis. Luteolin inhibited in vitro
activity of human caspase-4, pyroptosis, and the secretion of the pro-inflammatory cy-
tokines IL-1β, -16, and -1α in macrophages [103]. Luteolin also suppresses LPS-induced
lethal sepsis in mice [103]. These results indicated that luteolin suppresses inflammatory
responses by targeting human caspase-4 and mouse caspase-11 non-canonical inflam-
masomes in macrophages, which can protect against endotoxin-stimulated lethal sepsis.
Zhang et al. demonstrated an inhibitory effect of luteolin on caspase-11 non-canonical
inflammasome activation in sepsis-induced lung injury. Luteolin reduces the serum levels
of pro-inflammatory cytokines and alleviates caspase-11 non-canonical inflammasome-
activated pyroptosis in the lung tissues of cecal ligation and puncture (CLP)-induced acute
lung injury (ALI) in mice [104]. Luteolin also attenuates CLP-induced ALI in mice [104],
which strongly suggests that it exerts an inhibitory action on pro-inflammatory cytokine
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production and lung pyroptosis by inhibiting the caspase-11 non-canonical inflammasome
and, as a result, ameliorates sepsis-induced ALI. Taken together, luteolin has strong anti-
inflammatory activity by targeting human caspase-4 and mouse caspase-11 non-canonical
inflammasomes in inflammatory responses and immunopathologies, such as gastritis,
sepsis, and sepsis-induced ALI.
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112]. Recently, Ye et al. reported an inhibitory role of scutellarin in non-canonical inflam-
masome-activated inflammatory responses in macrophages. Scutellarin suppressed LPS-
stimulated proteolytic activation of caspase-11 and GSDMD, resulting in reduced pyrop-
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al. also reported the role of scutellarin in inflammasome-activated inflammatory re-
sponses and idiopathic pulmonary fibrosis (IPF). Inflammatory responses, including the 
elevated expression of NLRP3, caspase-11, caspase-1, ASC, GSDMD, and pro-inflamma-
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the key molecule in scutellarin-mediated inhibitory effects on inflammatory responses 
and IPF pathogenesis. Given the evidence from these studies, scutellarin is an anti-

Figure 3. The chemical structure of the flavonoids discussed in this review. (A) Luteolin,
(B) scutellarin, (C) apigenin, (D) epigallocatechin-3-gallate, (E) quercetin, (F) kaempferol, (G) icariin,
(H) baicalin, (I) morin, and (J) naringenin.

4.2. Scutellarin

Scutellarin is a 4′,5,6-hydroxyflavone-7-glucuronide (Figure 3B) that is frequently
found in the genera Scutellaria (Lamiaceae) and Erigeron (Asteraceae) and has long been
used in traditional Chinese medicine. Scutellarin has been demonstrated to show various
pharmacological activities for neurodegenerative, metabolic, infectious, and cardiovascular
diseases as well as cancers [105,106]. Studies have also demonstrated the anti-inflammatory
activity of scutellarin by inhibiting canonical inflammasomes, particularly the NLRP3
canonical inflammasome, in inflammatory responses and various diseases [107–112]. Re-
cently, Ye et al. reported an inhibitory role of scutellarin in non-canonical inflammasome-
activated inflammatory responses in macrophages. Scutellarin suppressed LPS-stimulated
proteolytic activation of caspase-11 and GSDMD, resulting in reduced pyroptosis and IL-1β
secretion in bone marrow-derived macrophages and J774A.1 macrophages [113]. Scutel-
larin also inhibits NLRP3 canonical inflammasome activation, but scutellarin-mediated
inhibition of caspase-11 non-canonical inflammasome activation is independent of NLRP3
canonical inflammasome pathways in macrophages [113], suggesting that scutellarin simul-
taneously inhibits both caspase-11 non-canonical and NLRP3 canonical inflammasomes,
leading to reduced pyroptosis and IL-1β secretion in macrophages. Peng et al. also reported
the role of scutellarin in inflammasome-activated inflammatory responses and idiopathic
pulmonary fibrosis (IPF). Inflammatory responses, including the elevated expression of
NLRP3, caspase-11, caspase-1, ASC, GSDMD, and pro-inflammatory cytokines IL-1β
and -18, were significantly induced in the lung tissues of bleomycin-induced pulmonary
fibrosis mice [108]. Interestingly, scutellarin alleviated lung damage and suppressed in-
flammatory responses, except for the increased expression of caspase-11 [108], indicating
that caspase-11 non-canonical inflammasome activation may not be the key molecule in
scutellarin-mediated inhibitory effects on inflammatory responses and IPF pathogenesis.
Given the evidence from these studies, scutellarin is an anti-inflammatory flavonoid that
may selectively inhibit caspase-11 non-canonical inflammasome-activated inflammatory
responses depending on the disease type.

4.3. Apigenin

Apigenin is a 4′,5,7-trihydroxyflavone (Figure 3C) found in a wide variety of fruits,
vegetables, chamomile teas, and medicinal herbs. Apigenin presents multiple pharmaco-
logical activities, including antioxidative, anticardiovascular, antidiabetic, neuroprotective,
and anticancer activities [114–118]. Apigenin has also been demonstrated to exert anti-
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inflammatory effects by inhibiting inflammatory mediators, pro-inflammatory cytokines,
cell adhesion molecules, and signaling molecules [119–121] and by ameliorating various
immunopathological conditions [120–122]. Numerous studies have further demonstrated
apigenin-mediated anti-inflammatory action in the activation of canonical inflammasomes,
particularly the NLRP3 inflammasome [56,123–125]; however, studies demonstrating the
non-canonical inflammasome-inhibited anti-inflammatory role of apigenin have been very
limited. A recent study reported the anti-inflammatory role of apigenin in inflammatory
bowel disease by targeting the caspase-11 non-canonical inflammasome. Dietary apigenin
ameliorated colon damage in dextran sulfate sodium-induced colitis in mice [124]. Apigenin
also inhibits the proteolytic activation of caspase-11 and -1, resulting in decreased secretion
of IL-1β and -18 in the colon tissues of mice with colitis [124]. These results strongly suggest
that apigenin is an anti-inflammatory flavonoid that protects against the development of
chronic ulcerative colitis by targeting caspase-11 non-canonical inflammasome activation,
and as a result, inhibits the production of downstream pro-inflammatory cytokines.

4.4. Epigallocatechin-3-Gallate (EGCG)

Epigallocatechin-3-gallate (EGCG), a type of catechin, is a gallate ester obtained by
the formal condensation of gallic acid with the (3R)-hydroxy group of (−)-epigallocatechin
(Figure 3D). EGCG is most abundant in teas and is also found in fruits, such as apples and
plums; vegetables, such as onions; and nuts, such as pecans and hazelnuts. EGCG has thera-
peutic potential against various pathological conditions, such as neurodegenerative, cardio-
vascular, and infectious diseases; obesity; diabetes; oxidative stress; and cancer [126]. EGCG
has anti-inflammatory activity and therapeutic potential against chronic inflammatory dis-
eases, such as rheumatoid arthritis, gouty arthritis, and systemic lupus erythematosus, by
targeting various inflammatory molecules and pro-inflammatory cytokines [58,126]. EGCG
also plays an anti-inflammatory role and ameliorates some chronic inflammatory diseases
by inhibiting canonical inflammasomes, such as NLRP1, NLRP3, and AIM2 [56,127–130].
An interesting study further reported the anti-inflammatory role of EGCG through the
inhibition of the non-canonical inflammasome in microglial inflammation and neurotox-
icity. EGCG decreases LPS/A-stimulated inflammation and neurotoxicity in microglial
cells [129]. EGCG reduced the proteolytic activation of caspase-11 and further inhibited
caspase-11 non-canonical inflammasome-activated secretion of IL-1β and IL-18 in LPS/A-
stimulated microglial cells [129]. These results suggest that EGCG attenuates microglial
inflammation-mediated neurotoxicity by inhibiting the activation of the caspase-11 non-
canonical inflammasome and subsequent production of pro-inflammatory cytokines in
microglial cells.

4.5. Quercetin

Quercetin is a 3,3′,4′,5,7-pentahydroxyflavone (Figure 3E) that occurs naturally in
various fruits and vegetables. Quercetin is a strong antioxidant that belongs to the flavonol
group and is generally present in the glycoside form. Quercetin and its derivatives show
promising pharmacological effects, including antioxidant, antidiabetic, antimicrobial, neuro-
protective, anticardiovascular, and anticancer effects [131–138]. Quercetin is one of the most
studied flavonoids in inflammatory responses and diseases [139–142]. Quercetin also plays
an anti-inflammatory role by inhibiting inflammasomes, particularly the NLRP3 canonical
inflammasome [143–146]. Recently, an interesting study demonstrated that quercetin plays
an anti-inflammatory role by inhibiting the caspase-11 non-canonical inflammasome in
macrophages and in gastritis. Quercetin in V. pichinchense ameliorated HCl/EtOH-induced
gastritis in mice and inhibited caspase-11 non-canonical inflammasome-activated pyrop-
tosis and IL-1β secretion in RAW264.7 macrophages [102]. These results indicated that
quercetin in V. pichinchense plays an anti-inflammatory role and ameliorates gastritis by
inhibiting the caspase-11 non-canonical inflammasome in macrophages.
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4.6. Kaempferol

Kaempferol is a 3,4′,5,7-tetrahydroxyflavone (Figure 3F) and a natural flavonol abun-
dantly found in a variety of plants, such as Pteridophyta, Pinophyta, and Angiospermae;
plant-originating foods, such as broccoli, spinach, kale, beans, and tea; and fruits, such
as apples, grapes, tomatoes, and peaches [147]. Kaempferol has been demonstrated to
have pharmacological activity in various immunopathological conditions, including in-
fectious, neuronal, cardiovascular, and metabolic diseases, as well as cancers [147–152].
Similar to quercetin, kaempferol is a flavonoid that exhibits a strong anti-inflammatory
effect and has potential as an anti-inflammatory therapeutic [153–157]. Kaempferol also
suppresses canonical inflammasomes, and as a result, alleviates numerous inflamma-
tory diseases [56,158–160]. However, few studies have reported the anti-inflammatory
role of kaempferol by inhibiting non-canonical inflammasomes. A recent study reported
kaempferol-mediated anti-inflammatory activity by inhibiting the caspase-11 non-canonical
inflammasome in macrophages. Kaempferol in V. pichinchense suppressed caspase-11 in-
flammasome activation, leading to reduced pyroptosis and IL-1β secretion in RAW264.7
macrophages [102]. Kaempferol also alleviated HCl/EtOH-induced gastritis in mice [102],
suggesting that, similar to quercetin, kaempferol mitigates gastritis by targeting caspase-11
non-canonical inflammasome in macrophages, which provides evidence that quercetin
and kaempferol might be promising anti-inflammatory therapeutics against gastritis by
targeting both canonical and non-canonical inflammasomes in macrophages.

4.7. Icariin

Icariin is a 7-(β-D-glucopyranosyloxy)-5-hydroxy-4′-methoxy-8-(3-methylbut-2-en-1-yl)-3-
(α-L-rhamnopyranosyloxy) flavone, which is an 8-prenyl derivative of kaempferol (Figure 3G).
Icariin is a natural flavonoid found in several plant species belonging to the Epimedium genus.
Icariin has biological roles and pharmacological activities, including antiaging, antiosteoporosis,
antioxidative, antiatherosclerotic, and anticancer activities [161–165]. Additionally, icariin exerts
anti-inflammatory effects by inhibiting the priming step and canonical inflammasomes in in-
flammatory responses and diseases [166–171]. Icariin also plays an anti-inflammatory role by
inhibiting non-canonical inflammasomes in LPS-stimulated inflammatory responses [172].
Icariin and phosphorylated icariin reduced LPS-induced inflammatory responses and
decreased the expression of caspase-4, a human homolog of mouse caspase-11, in LPS-
stimulated human LS174T intestinal goblet cells [172]. These results indicated that icariin
and phosphorylated icariin alleviate LPS-induced inflammatory responses by targeting the
caspase-4 non-canonical inflammasome in human intestinal goblet cells.

4.8. Baicalin

Baicalin is a 7-D-glucuronic acid-5,6-dihydroxyflavone that belongs to the flavone sub-
group (Figure 3H) and is found in several species of the genus Scutellaria, including Scutellaria
baicalensis and Scutellaria lateriflora. Baicalin is the major metabolite of baicalein originally
isolated from S. baicalensis. Baicalin has significant antiviral, antibacterial, antioxidative, and
anticancer activities [173–176]. Baicalin attenuates inflammatory responses and ameliorates
inflammatory diseases by modulating various inflammatory signaling pathways, including
the NLRP3 canonical inflammasome-activated signaling pathways [177–183]. Baicalin also
plays an anti-inflammatory role by targeting non-canonical inflammasomes and has been
demonstrated to protect against mycotoxin-induced liver and kidney injury by inhibiting the
caspase-11 non-canonical inflammasome. Baicalin ameliorated zearalenone (ZEA)-induced
inflammation and pathological changes in the liver and kidneys of chicks [184]. Baicalin de-
creased the ZEA-induced expression of caspase-11 and inflammatory cytokines in the liver
of chicks [184], suggesting that baicalin attenuates mycotoxin-induced inflammation and
tissue injury by inhibiting the caspase-11 non-canonical inflammasome and the subsequent
production of pro-inflammatory cytokines.
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4.9. Morin

Morin, a 2′,3,4′,5,7-pentahydroxyflavone (Figure 3I), is a natural pigment obtained
from the Moraceae family. Morin is associated with numerous pharmacological proper-
ties, such as antimicrobial, antioxidative, antidiabetic, anticancer, and tissue-protective
effects, and has been widely used in the treatment of various human diseases [185]. Morin
has also been reported to have anti-inflammatory activity, with neuroprotective, hep-
atoprotective, gastroprotective, and articular protective effects in various inflammatory
diseases [186–190]. Similar to a study demonstrating the baicalin-mediated inhibitory effect
on liver and kidney injury by targeting the caspase-11 non-canonical inflammasome [184],
a recent study also reported that morin plays a protective role in toxin-induced liver and
kidney injury by inhibiting the caspase-11 non-canonical inflammasome. Morin alleviated
aflatoxin B1 (AFB1)-induced liver and kidney damage in chicks [191]. Further mechanistic
studies revealed that morin suppressed the production of caspase-11, pro-inflammatory
cytokines, and inflammatory factors, resulting in the inhibition of caspase-11 non-canonical
inflammasome-induced inflammatory responses in AFB1-stimulated livers [191]. These
results suggest that morin reduces toxin-induced inflammatory responses and protects
against inflammatory liver and kidney injury by inhibiting the caspase-11 non-canonical
inflammasome and downstream pro-inflammatory cytokines.

4.10. Naringenin

Naringenin is a 4′,5,7-trihydroxyflavonone (Figure 3J) and within the flavonoid groups,
it is a flavanone derived from naringin or narirutin. Naringenin is predominantly present
in a variety of citrus fruits, such as grapefruits, oranges, herbs, and tomatoes. Naringenin
has many pharmacological properties, including antimicrobial, antiaging, antiasthma, an-
tidiabetic, antihyperlipidemic, antioxidative, anticancer, neuroprotective, cardioprotective,
and hepatoprotective effects [192]. Moreover, naringenin exhibits anti-inflammatory prop-
erties by targeting various signaling pathways involved in priming-induced and canonical
inflammasome-activated inflammatory responses, leading to the attenuation of a wide
range of immunopathological conditions [192–195]. Recently, an interesting study reported
the anti-inflammatory and protective roles of naringenin in ER stress-induced renal is-
chemia/reperfusion (I/R) injury by targeting non-canonical inflammasomes. Naringenin
ameliorated renal I/R injury by improving renal function and attenuating renal tissue
damage in mice [196]. Naringenin also significantly reduced the generation of caspase-4
and -11 as well as proteolytic cleaved GSDMD, resulting in the inhibition of pyroptosis and
apoptosis in the renal tissues of I/R mice and hypoxia/reoxygenation (H/R)-exposed HK-2
cells [196]. These results suggest that naringenin has strong anti-inflammatory properties
and protects renal tissues against I/R injury by inhibiting the caspase-11 non-canonical
inflammasome and inflammasome-activated pyroptosis.

5. Conclusions

Flavonoids are naturally occurring bioactive compounds that modulate many biologi-
cal activities. Considerable efforts have been made to elucidate the protective and phar-
macological roles of flavonoids in a wide range of human immunopathologies. However,
many previous studies have demonstrated that these effects are mediated by flavonoids,
mainly focusing on the priming step of inflammatory responses. In addition, despite
numerous studies focusing on the triggering step of inflammatory responses, the effects
of flavonoids have focused heavily on canonical inflammasomes, particularly the NLRP3
inflammasome [55,56,58], which has prompted questions regarding the pharmacological
roles of flavonoids in inflammatory responses and diseases induced by the activation of non-
canonical inflammasomes, such as mouse caspase-11 and human caspase-4 non-canonical
inflammasomes. Interestingly, recent studies have provided substantial evidence to support
the new anti-inflammatory roles of flavonoids in inflammatory responses and diseases
by targeting non-canonical inflammasomes, as summarized in Table 1. Despite these suc-
cessful studies, there remain several limitations in understanding the anti-inflammatory
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roles of flavonoids in non-canonical inflammasome-activated inflammatory responses and
diseases. First, as summarized in Table 1, most studies have used mouse cells and animal
disease models, particularly mouse disease models, in which flavonoids target the mouse
caspase-11 non-canonical inflammasome rather than the human caspase-4 non-canonical
inflammasome in inflammatory responses and diseases. This is unavoidable because
non-canonical inflammasomes were first discovered in mice, and studies should prove
the pharmacological effects of flavonoids on inflammatory diseases using animal models
before using patients. However, the pharmacological roles of flavonoids in inflammatory
diseases should be investigated in patients by targeting the human caspase-4 non-canonical
inflammasome. Second, previous studies have been limited to several inflammatory dis-
eases, such as gastritis, colitis, endotoxemia, and organ injuries. Given the evidence that
non-canonical inflammasome-activated inflammatory responses share common molecular
mechanisms, future studies should be extended to cover a larger number of inflammatory
diseases. Third, although over 6000 naturally occurring flavonoids have been identified [84],
only a few have been demonstrated to attenuate non-canonical inflammasome-associated
inflammatory responses and diseases. Since substantial evidence has emphasized that
non-canonical inflammasomes are key players in inducing inflammation, leading to the
exacerbation of multiple inflammatory and infectious diseases [13–15,24,37,197–200], fur-
ther studies to identify new flavonoids targeting non-canonical inflammasomes and to
demonstrate their pharmacological roles in diseases associated with non-canonical inflam-
masomes need to be undertaken. Fourth, most of the studies demonstrated the preventive
effect of flavonoids in the inflammatory responses and diseases, and the therapeutic effect
of flavonoids should also be examined in the inflammatory responses and diseases. Finally,
as discussed in this review, flavonoids effectively ameliorate the inflammatory responses
and various inflammatory diseases mediated by the activation of caspase-11 non-canonical
inflammasome, which strongly suggests that flavonoids could be potential nutraceuticals
for the treatment of inflammatory diseases exacerbated by the activation of caspase-11 non-
canonical inflammasome. Therefore, the importance of the identification and validation
of more flavonoids that have the pharmacological activity for the inflammatory diseases
exacerbated by the activation of caspase-11 non-canonical inflammasome cannot be empha-
sized enough. In conclusion, this review discusses the emerging anti-inflammatory roles
of flavonoids in inflammatory responses and multiple immunopathologies induced by
non-canonical inflammasomes, as summarized in Figure 4. This review improves current
knowledge of the new anti-inflammatory roles of flavonoids and provides insights into
the development of flavonoids as nutraceuticals to prevent and treat a variety of human
diseases associated with non-canonical inflammasomes.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 4. Schematic summary of flavonoid-mediated ameliorative properties in inflammatory re-
sponses and immunopathologies by targeting non-canonical inflammasomes. 

Table 1. Flavonoid-mediated anti-inflammatory roles by targeting the caspase-11 non-canonical in-
flammasome. 

Flavo-
noids Diseases Roles Models Ref. 

Luteolin 

Gastritis 

• Luteolin in Viburnum pichinchense inhibited 
caspase-11 non-canonical inflammasome-
activated pyroptosis and IL-1β production 
in macrophages 

• Viburnum pichinchense containing luteolin 
ameliorated HCl/EtOH-induced gastritis 
in mice 

RAW264.7 
cells 

HCl/EtOH-
induced gas-

tritis mice 

[102] 

Sepsis 

• Luteolin inhibited in vitro activity of hu-
man caspase-4 

• Luteolin reduced pyroptosis and the secre-
tion of IL-1β, IL-16, and IL-1α in macro-
phages 

• Luteolin suppressed LPS-induced lethal 
sepsis in mice 

RAW264.7, 
THP-1 cells 

LPS-induced 
sepsis mice 

[103] 

ALI 

• Luteolin reduced the serum levels of pro-
inflammatory cytokines in the lung tissues 
of CLP-induced ALI in mice 

• Luteolin alleviated caspase-11 non-canoni-
cal inflammasome-activated pyroptosis in 
the lung tissues of CLP-induced ALI in 
mice 

• Luteolin attenuated CLP-induced ALI in 
mice 

CLP-induced 
ALI mice 

[104] 

Figure 4. Schematic summary of flavonoid-mediated ameliorative properties in inflammatory re-
sponses and immunopathologies by targeting non-canonical inflammasomes.



Int. J. Mol. Sci. 2023, 24, 10402 12 of 21

Table 1. Flavonoid-mediated anti-inflammatory roles by targeting the caspase-11 non-
canonical inflammasome.

Flavonoids Diseases Roles Models Ref.

Luteolin

Gastritis

• Luteolin in Viburnum pichinchense inhibited caspase-11
non-canonical inflammasome-activated pyroptosis and IL-1β
production in macrophages

• Viburnum pichinchense containing luteolin ameliorated
HCl/EtOH-induced gastritis in mice

RAW264.7 cells
HCl/EtOH-induced gastritis mice [102]

Sepsis

• Luteolin inhibited in vitro activity of human caspase-4
• Luteolin reduced pyroptosis and the secretion of IL-1β, IL-16,

and IL-1α in macrophages
• Luteolin suppressed LPS-induced lethal sepsis in mice

RAW264.7, THP-1 cells
LPS-induced sepsis mice [103]

ALI

• Luteolin reduced the serum levels of pro-inflammatory
cytokines in the lung tissues of CLP-induced ALI in mice

• Luteolin alleviated caspase-11 non-canonical
inflammasome-activated pyroptosis in the lung tissues of
CLP-induced ALI in mice

• Luteolin attenuated CLP-induced ALI in mice

CLP-induced ALI mice [104]

Scutellarin

Inflammatory
response

• Scutellarin suppressed LPS-stimulated proteolytic activation of
caspase-11 and GSDMD in macrophages

• Scutellarin reduced pyroptosis and IL-1β
secretion in macrophages

• Scutellarin inhibited NLRP3 canonical
inflammasome activation

• Scutellarin-mediated inhibition of caspase-11 non-canonical
inflammasome activation was independent of NLRP3 canonical
inflammasome pathways in macrophages

BMDMs, J774A.1, RAW264.7 cells [113]

IPF

• Expression of NLRP3, caspase-11, caspase-1, ASC, GSDMD,
IL-1β, and IL-18 significantly increased in the lung tissues of
bleomycin-induced pulmonary fibrosis mice.

• Scutellarin alleviated the lung damage of bleomycin-induced
pulmonary fibrosis mice.

• Scutellarin suppressed the inflammatory responses except for
the increased expression of caspase-11 in the lung tissues of
bleomycin-induced pulmonary fibrosis mice

Bleomycin-induced pulmonary
fibrosis mice [108]

Apigenin Colitis

• Apigenin ameliorated colon damage in
DSS-induced colitis mice

• Apigenin inhibited proteolytic activation of caspase-11 and
-1 in the colon tissues of colitis mice

• Apigenin decreased the secretion of IL-1β and IL-18 in the
colon tissues of colitis mice

DSS-induced colitis mice [124]

EGCG Inflammatory
response

• EGCG decreased LPS/Aβ-stimulated inflammation and
neurotoxicity in microglial cells

• EGCG reduced proteolytic activation of caspase-11 in
LPS/Aβ-stimulated microglial cells

• EGCG inhibited the caspase-11 non-canonical
inflammasome-activated secretion of IL-1β and IL-18 in
LPS/Aβ-stimulated microglial cells

BV-2, SH-SY5Y cells [129]

Quercetin Gastritis

• Quercetin in Viburnum pichinchense ameliorated
HCl/EtOH-induced gastritis in mice

• Quercetin inhibited caspase-11 non-canonical
inflammasome-activated pyroptosis and IL-1β
secretion in macrophages

RAW264.7 cells
HCl/EtOH-induced gastritis mice [102]

Kaempferol Gastritis

• Kaempferol in Viburnum pichinchense suppressed caspase-11
inflammasome-activated pyroptosis and IL-1β
secretion in macrophages

• Kaempferol alleviated HCl/EtOH-induced gastritis in mice

RAW264.7 cells
HCl/EtOH-induced gastritis mice [102]

Icariin Intestine injury

• Icariin and phosphorylated icariin reduced the LPS-induced
inflammatory responses in human LS174T intestinal goblet cells

• Icariin and phosphorylated icariin decreased the expression of
caspase-4, a human homolog of mouse caspase-11, in
LPS-stimulated human LS174T intestinal goblet cells

LS174T cells [172]

Baicalin Liver & kidney
injury

• Baicalin ameliorated ZEA-induced inflammation and
pathologic changes of the liver and kidneys in chicks

• Baicalin decreased ZEA-induced expression of caspase-11 and
inflammatory cytokines in the liver of chicks

ZEA-induced liver and kidney
injury chicks [184]
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Table 1. Cont.

Flavonoids Diseases Roles Models Ref.

Morin Liver & kidney
injury

• Morin alleviated AFB1-induced liver and kidney
damage in chicks

• Morin suppressed the production of caspase-11,
pro-inflammatory cytokines, and inflammatory factors in
AFB1-stimulated livers

AFB1-induced liver and kidney
injury chicks [191]

Naringenin Renal I/R injury

• Naringenin refined renal functions and attenuated renal tissue
damage in I/R mice

• Naringenin ameliorated renal I/R injury in mice
• Naringenin inhibited pyroptosis and apoptosis in renal tissues

of I/R mice and H/R-exposed HK-2 cells
• Naringenin reduced the generation of caspase-4, caspase-11,

and proteolytic cleaved GSDMD in renal tissues of I/R mice
and H/R-exposed HK-2 cells

HK-2 cells
I/R injury mice [196]
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Abbreviations

PRR Pattern recognition receptor
PAMP Pathogen-associated molecular pattern
DAMP Danger-associated molecular pattern
NLR NOD-like receptor
CARD Caspase recruitment domain
AIM2 Absent in melanoma 2
LPS Lipopolysaccharide
GSDMD Gasdermin D
GBP Guanylate-binding protein
ALI Acute lung injury
IPF Idiopathic pulmonary fibrosis
EGCG Epigallocatechin-3-gallate
I/R Hypoxia/reoxygenation
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