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Abstract: The structure of cellulolytic enzyme lignin (CEL) prepared from three bamboo species
(Neosinocalamus affinis, Bambusa lapidea, and Dendrocalamus brandisii) has been characterized by dif-
ferent analytical methods. The chemical composition analysis revealed a higher lignin content, up
to 32.6% of B. lapidea as compared to that of N. affinis (20.7%) and D. brandisii (23.8%). The results
indicated that bamboo lignin was a p-hydroxyphenyl-guaiacyl-syringyl (H-G-S) lignin associated
with p-coumarates and ferulates. Advanced NMR analyses displayed that the isolated CELs were
extensively acylated at the γ-carbon of the lignin side chain (with either acetate and/or p-coumarate
groups). Moreover, a predominance of S over G lignin moieties was found in CELs of N. affinis and B.
lapidea, with the lowest S/G ratio observed in D. brandisii lignin. Catalytic hydrogenolysis of lignin
demonstrated that 4-propyl-substituted syringol/guaiacol and propanol guaiacol/syringol derived
from β-O-4′ moieties, and methyl coumarate/ferulate derived from hydroxycinnamic units were
identified as the six major monomeric products. We anticipate that the insights of this work could
shed light on the sufficient understanding of lignin, which could open a new avenue to facilitate the
efficient utilization of bamboo.

Keywords: bamboo; lignin; structural characterization; hydrogenolysis; phenolic monomers

1. Introduction

As the cell wall component of terrestrial plants, lignin is widely distributed in nature,
and its content is second only to (hemi)cellulose [1,2]. Lignin contains a complex struc-
ture of the phenolic polymer, which is especially suitable for the production of aromatic
chemicals, and its components vary with different plant materials [3–8]. However, most
biorefinery schemes focus on the use of easy-to-use compositions, while lignin is relatively
underutilized [9–11]. For example, about one million t/y of lignosulfonate accounted for
only 2% of the total production for commercialization [12,13]. Catalytic conversion of lignin
for the production of small molecule chemicals or fuels has received much attention be-
cause of its high yield and widespread availability [14]. Nevertheless, it is still a significant
challenge for lignin valorization in biorefinery owing to its complexity and heterogeneity of
the internal macromolecular structure [15,16]. To solve the above-mentioned challenges, it
is necessary to gain a broad understanding of the “main” structural characteristics of lignin
to provide a theoretical basis for biomass upgrading, pulping, and biorefinery [14,17].

The content and composition of lignin vary with wood type, cell type and single cell
wall layer, and environmental conditions [18]. In recent years, herbaceous plants, such as
bamboo and hemp, have gradually attracted extensive attention due to their short growth
cycle and mild growth conditions. As typical of fast-growing plants, most of the herbaceous
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plants contain relatively low lignin contents but with high levels of hydroxycinnamic acid,
i.e., p-coumaric acid (pCA) and ferulic acid (FA) [19–22] Generally, cellulolytic enzyme
lignin (CEL), which is obtained by extraction of the residue from cellulase treated ball-
milled materials with 96% dioxane solvent, is more representative of the total lignin in
lignocellulosic biomass [23,24]. The structural characterization of lignin macromolecules
isolated from different hardwood and bamboo species [17,18,25] using advanced nuclear
magnetic resonance (NMR) technologies, inducing 13C, 31P, and 2D HSQC, could facilitate
the development of efficient utilization strategies to meet current biorefinery toward a
circular economy [26].

Over the years, more and more scientific researchers used precious metals (Pd [27–33],
Ru [5,27,34–38], and Pt [39–41]) or non-precious metals (Ni [42–46], Fe [47,48], Mo [49,50],
and Cu [51,52]) for the catalytic transformation of lignin into chemicals and fuel products.
For example, Luterbacher and co-workers [34] reported that adding formaldehyde during
biomass pretreatment produced a soluble lignin fraction that could be converted into
guaiacyl and syringyl monomers at near theoretical yields (47 mole% of Klason lignin for
beech and 78 mole% for a high-syringyl transgenic poplar) during subsequent hydrogenol-
ysis using a Ru/C catalyst. We have recently developed ruthenium nanoparticles (NPs)
anchored on defective nitrogen-doped carbon (Ru@NC) via facile pyrolysis of a mixture of
ruthenium trichloride and urea with carbon support [53]. Experimental insights indicated
that the highly distributed Ru-NPs, constituted by N-enriched graphene shells, have been
established as an excellent catalyst for the selective hydrodeoxygenation of lignin and
furan derivatives toward biofuel upgrade [53]. As a continuation of our ongoing interest in
effectively developing reductive catalytic depolymerization of lignin, we envision that this
catalyst exhibits efficient performance for the hydrogenolysis of lignins and β-O-4′ model
compounds through the scission of C–O bonds.

In this study, to better unravel the lignin structural variation in three bamboo species
(Neosinocalamus affinis, Bambusa lapidea, and Dendrocalamus brandisii), which are widely
grown in southwest China, typical CEL preparations were successively isolated from
different bamboo species. The composition and structures of the obtained CEL fractions
were comprehensively investigated. In order to obtain further insights into their structures,
the CEL samples were also analyzed by catalytic hydrogenolysis. The results of this work
are important not only for providing new insights into the bamboo lignin characteristics
but also for the industrial processing of bamboo for pulp, chemical, or biofuel production.

2. Results and Discussion
2.1. Composition Analysis of Bamboo

The contents of main constituents (i.e., Klason lignin, acid-soluble lignin, glucan, xylan,
arabinan, galactan, rhamnan, mannan, glucuronic acid, galacturonic acid, and ash) in the
selected three bamboo species (N. affinis, B. lapidea, and D. brandisii) are summarized in
Table 1. Quantitative measurement of lignin is an important aspect of the study of lignin
structure [54]. It was observed that the total lignin content (Klason lignin plus acid-soluble
lignin) of B. lapidea amounted to 32.6%, which was significantly higher than those of N.
affinis (20.8%) and D. brandisii (23.8%). This result was consistent with previously reported
Phyllostachys pubescens (26.1~28.2%) [12,55–57] and Dendrocalamus sinicus (28.6%) [58]. After
a general analysis of the chemical composition of the three bamboo species, the variations in
the isolated CEL preparations were systematically analyzed, especially with the advanced
NMR technologies (13C, 31P, and 2D HSQC).
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Table 1. Abundances (%) of the main constituents of three bamboo species a.

Constituents
Bamboo Species

N. affinis B. lapidea D. brandisii

Total Lignin 20.78 32.57 23.78
Klason lignin 18.29 28.73 23.06

Acid-soluble lignin 2.49 3.84 0.72
Cellulose (as glucan) 50.82 45.93 53.19
Hemicellulosic sugars 25.84 18.72 22.17

Xylan 22.94 16.19 20.47
Arabinan 1.13 0.85 0.75
Galactan 0.51 0.43 0.28
Rhamnan 0.02 0.20 0.15
Mannan 0.37 0.28 0.30

Glucuronic acid 0.87 0.66 0.17
Galacturonic acid ND b 0.11 0.05

Ash 2.13 1.65 0.67
a The structural carbohydrates, lignin, and ash in bamboo sawdust were determined according to the laboratory
analytical procedures (LAPs) of the National Renewable Energy Laboratory. b ND, not detectable.

2.2. FT-IR Spectroscopy

Figure 1 shows the FT-IR spectra of lignin extracted from three species of bamboo,
which can identify the characteristic functional groups [33–35]. Obviously, the broad
absorption band at 3429 cm−1 is associated with the OH stretching vibration. The bands at
1664 and 1655 cm−1 indicate the unconjugated carbonyl of the keto group and the carbonyl
stretch of the conjugated carbonate, respectively. The peaks at 1599, 1511, and 1426 cm−1

correspond to aromatic backbone vibrations and C-H deformations, and the methoxy
group at 1460 cm−1 is the asymmetric C-H vibration. The analysis of the spectra of the
three lignins demonstrated that the aromatic skeleton of the lignin structure was kept well
during the isolation process [12]. Syringyl and condensed guaiacyl absorb the band at
1239 cm−1, and the fused G-unit with the C–O stretching at 1253 cm−1 [58–60]. The 1125
and 834 cm−1 peaks dominate as unambiguous signals for HGS lignin, which proves that
the three bamboo lignins exhibit the pattern of typical grass lignin.
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Figure 1. FT-IR spectra of (a) CELN, (b) CELB, and (c) CELD. CELN, CELB, and CELD were isolated 
from N. affinis, B. lapidea, and D. brandisii, respectively. 
Figure 1. FT-IR spectra of (a) CELN, (b) CELB, and (c) CELD. CELN, CELB, and CELD were isolated
from N. affinis, B. lapidea, and D. brandisii, respectively.

2.3. Molecular Weight Distribution and Thermal Stability

The molecular weight distribution of the CEL preparations after acetylation was deter-
mined by gel permeation chromatography (GPC). It was observed that CELN displayed
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the lowest weight average molecular weight (Mw) of 8.13 kDa in comparison with those of
CELB (9.08 kDa) and CELD (9.55 kDa) in Figure 2. However, all these data were compara-
ble with previously reported bamboo CELs [61–63]. Moreover, the polydispersity index
(Mw/Mn, Ð) of the three CELs was found to be relatively narrow (Ð < 3.0) and with no
significant differences (Table 2).
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Figure 2. GPC of (a) CELN, (b) CELB, (c) CELD and lignin oil obtained from the catalytic hydrogenol-
ysis of (d) CELN, (e) CELB, (f) CELD over a Ru@NC catalyst.

Table 2. Weight-average (Mw), number-average (Mn) molecular weights, and the polydispersity
index (Mw/Mn, Ð) of bamboo CELs and the corresponding lignin oil products.

Lignin Samples Lignin Oily Products

CELN CELB CELD CELON CELOB CELOD

Mw (kDa) 8.13 9.08 9.55 0.66 0.70 0.71
Mn (kDa) 3.36 3.30 3.36 0.55 0.59 0.55

Ð 2.4 2.4 2.8 1.2 1.2 1.3

As depicted in Figure 3, the percentages of residues at different stages and the corre-
sponding temperatures (Tm) at the maximum rate of quality loss were obtained from the TG
and DTG curves of the three bamboo CELs. Among them, CELN showed the lowest resid-
ual amount, whereas CELB and CELD were in an incremental residual amount, indicating
that CELN was lower in thermal stability. Moreover, a three-stage weight loss process was
observed in the TG curve. The first stage was a slight weight loss due to the volatilization
of bound water and loss of the residue extracts at 50~200 ◦C. The pyrolysis rate was high
in the second stage at 200~500 ◦C, which was due to the pyrolysis of carbohydrates and
lignin. The curve in the third stage gradually flattened, which was mainly attributed to
the degradation of tar and coke. As discussed above, lignin was easier to convert into
char due to its highly agglomerated properties [64,65]. The cleavage of the β-O-4′ bonds
mainly occurred at 250~350 ◦C [66]. By analyzing the DTG curves, CELN exhibited the
representative lowest decomposition peak, which might be related to the content of β-O-4′

linkages in it. Therefore, it could be concluded that the thermal stabilities of CELB and
CELD were relatively higher than that of CELN.



Int. J. Mol. Sci. 2023, 24, 10304 5 of 16Int. J. Mol. Sci. 2023, 24, 10304 5 of 16 
 

 

100 200 300 400 500 600 700

40

60

80

100

W
ei

gh
t (

%
)

Temperature (oC)

 a
 b
 c

Vm
Tm

0.4

0.3

0.2

0.1

0.0

D
TG

 (%
/m

in
)

 
Figure 3. TG and DTG curves of (a) CELN, (b) CELB, and (c) CELD. 

2.4. NMR Characterization 
The 13C NMR spectroscopy provides valid evidence for the analysis of the chemical 

structure of bamboo lignin [41–43]. As shown in Figure 4, the peaks of S-type were 
identified by signals at 151.1–155.1 ppm (C-3/C-5 etherified and condensed), 146.6–148.7 
ppm (C-3/C-5 non-etherified), 138.1 ppm (C-4 etherified), 133.0–136.6 ppm (C-1), and 
102.5–106.5 ppm (C-2/C-6). The G-units give signals at 148.7–151.0 ppm (C-3 etherified 
and condensed), 146.6–148.7 ppm (C-4 etherified), 144.0–146.6 ppm (C-3/C-4 non-
etherified), 133.0–136.6 ppm (C-1), 119.5 ppm (C-6), 113.1–118.0 ppm (C-5), and 110.0–
113.1 ppm (C-2). The H units were detected at 128.1 ppm (C-2/C-6), and 113.1–118.0 ppm 
(C-3/C-5). Moreover, the pCA was evidenced by five signals at 166.7, 160.1, 130.5, 125.3, 
and 113.1–118 ppm, which originated from C-9, C-4, C-2/C-6, C-3/C-5, and C-β in the 
structures, respectively. Additionally, we assigned the above spectral regions to functional 
groups and quantified them by integration (Table S1). The analysis results of quantitative 
13C NMR spectroscopy further revealed that the bamboo CEL was a typical HGS-type 
lignin, which was in good accordance with the aforementioned results of FT-IR. 

2D HSQC NMR spectrum has been reported to be capable of providing important 
structural information about the complex polymer substructures bonded between lignin 
units and S/G ratio. The aliphatic (δC/δH 10–45/0–3.5 ppm), aliphatic-oxygenated (δC/δH 49–
90/2.4–5.8 ppm), and aromatic (δC/δH 90–150/5.7–8.0 ppm) regions of the 2D HSQC NMR 
of CELN are illustrated in Figure 5. The assignments of main lignin cross-signals in the 
HSQC spectra were assigned according to previously reported literature [12,58,62,67–71], 
which are listed in Table S2, and the main substructures are depicted in Figure 5. 

The aliphatic-oxygenated region of the spectra (Figure 5b) provided information 
about the different interunit linkages present in the lignin. In this region, correlation peaks 
from methoxyls and side chains in β-O-4′ substructures (A, 61.2%) were the most 
prominent in the HSQC spectra of the isolated CELN. Other substructures were also visible 
in the HSQC spectrum of the CELN, including signals for phenylcoumarans (B, 2.3%) and 
resinols (C, 4.6%). Notably, a large predominance of β-O-4′ linkages (up to 48.6% of all 
linkages) was observed at δC/δH 63.5/4.21, which was assigned to the γ-acylated lignin 
units A′. This indicated that the structure of native lignin was highly remarkable, being 
extensively acylated (acetylated and/or p-coumaroylated) in bamboo [69]. The main cross-
signals from S, G, and H units are visible in the aromatic region of the HSQC spectra 
(Figure 5c), which correspond to the benzenic rings of lignin units. The prominent signal 
at δC/δH 103.9/6.58 ppm was associated with C2,6-H2,6 in S-type units. The peaks at δC/δH 

Figure 3. TG and DTG curves of (a) CELN, (b) CELB, and (c) CELD.

2.4. NMR Characterization

The 13C NMR spectroscopy provides valid evidence for the analysis of the chemical
structure of bamboo lignin [41–43]. As shown in Figure 4, the peaks of S-type were identified
by signals at 151.1–155.1 ppm (C-3/C-5 etherified and condensed), 146.6–148.7 ppm (C-3/C-
5 non-etherified), 138.1 ppm (C-4 etherified), 133.0–136.6 ppm (C-1), and 102.5–106.5 ppm
(C-2/C-6). The G-units give signals at 148.7–151.0 ppm (C-3 etherified and condensed),
146.6–148.7 ppm (C-4 etherified), 144.0–146.6 ppm (C-3/C-4 non-etherified), 133.0–136.6 ppm
(C-1), 119.5 ppm (C-6), 113.1–118.0 ppm (C-5), and 110.0–113.1 ppm (C-2). The H units were
detected at 128.1 ppm (C-2/C-6), and 113.1–118.0 ppm (C-3/C-5). Moreover, the pCA was
evidenced by five signals at 166.7, 160.1, 130.5, 125.3, and 113.1–118 ppm, which originated
from C-9, C-4, C-2/C-6, C-3/C-5, and C-β in the structures, respectively. Additionally, we
assigned the above spectral regions to functional groups and quantified them by integration
(Table S1). The analysis results of quantitative 13C NMR spectroscopy further revealed that
the bamboo CEL was a typical HGS-type lignin, which was in good accordance with the
aforementioned results of FT-IR.

2D HSQC NMR spectrum has been reported to be capable of providing important
structural information about the complex polymer substructures bonded between lignin
units and S/G ratio. The aliphatic (δC/δH 10–45/0–3.5 ppm), aliphatic-oxygenated (δC/δH
49–90/2.4–5.8 ppm), and aromatic (δC/δH 90–150/5.7–8.0 ppm) regions of the 2D HSQC
NMR of CELN are illustrated in Figure 5. The assignments of main lignin cross-signals in the
HSQC spectra were assigned according to previously reported literature [12,58,62,67–71],
which are listed in Table S2, and the main substructures are depicted in Figure 5.

The aliphatic-oxygenated region of the spectra (Figure 5b) provided information
about the different interunit linkages present in the lignin. In this region, correlation
peaks from methoxyls and side chains in β-O-4′ substructures (A, 61.2%) were the most
prominent in the HSQC spectra of the isolated CELN. Other substructures were also visible
in the HSQC spectrum of the CELN, including signals for phenylcoumarans (B, 2.3%)
and resinols (C, 4.6%). Notably, a large predominance of β-O-4′ linkages (up to 48.6%
of all linkages) was observed at δC/δH 63.5/4.21, which was assigned to the γ-acylated
lignin units A′. This indicated that the structure of native lignin was highly remarkable,
being extensively acylated (acetylated and/or p-coumaroylated) in bamboo [69]. The main
cross-signals from S, G, and H units are visible in the aromatic region of the HSQC spectra
(Figure 5c), which correspond to the benzenic rings of lignin units. The prominent signal at
δC/δH 103.9/6.58 ppm was associated with C2,6-H2,6 in S-type units. The peaks at δC/δH
110.9/6.93, 114.4/6.69, and 118.9/6.80 ppm were assigned to C2-H2, C5-H5, and C6-H6 of
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the G-type unit, respectively. The C2,6-H2,6 of the H-type hydroxyphenyl building block
appeared at δC/δH 127.8/7.28 ppm. In addition, the pCA and FA units were detected in the
HSQC spectra. The series of signals at δC/δH 130.0/7.35, 115.8/6.81, and 113.8/6.20 ppm
were associated with C2,6-H2,6, C3,5-H3,5, and Cβ-Hβ in pCA, respectively. The crossover
signals of C2-H2 and Cβ-Hβ in FA appeared at δC/δH 110.9/7.25 and 115.3/6.29 ppm.
In addition, the HSQC spectra showed signals of C8-H8 and C6-H6 at δC/δH 94.3/6.62
and 98.9/6.15 ppm, respectively, which were attributed to the grass-specific tricin (T)
lignin units [72,73].
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Figure 5. 2D HSQC NMR spectra of the prepared (a,d) CELN, (b,e) CELB, and (c,f) CELD isolated
from ball-milled bamboo. The colors of the contours correspond to the structures drawn. (g) The main
structures and lignin-derived monomers found are as follows: (A) β-O-4′ alkyl-aryl ether; (A′) γ-OH
with p-coumaroylated β-O-4′ alkyl-aryl ethers; (B) phenylcoumarans; (C) resinols; (D) spirodienones;
(T) tricin; (S) syringyl units; (S′) oxidized syringyl units bearing a carbonyl at Cα; (G) guaiacyl units;
(H) p-hydroxyphenyl unites; (pCA) p-coumarates; and (FA) ferulates.

To further investigate the differences in the chemical structures of the three bamboo
lignin species, quantitative 31P NMR technique was employed (Figure S4), and the quanti-
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tative data on the distribution of different OH groups in the CELs are listed in Table S3 [57].
The results of phenolic OH content revealed no significant differences among the three
CELs. However, the highest content of aliphatic hydroxyl groups was detected in CELB,
and the lowest content of total hydroxyl groups in CELN.

2.5. Catalytic Hydrogenolysis of Lignin

Catalytic hydrogenolysis was developed to produce aromatic products and phenolic
moieties from lignin. Typically, alkyl aryl ether linkages in the lignin biomacromolecules
are cleaved during this process. Moreover, secondary (benzylic) alcohols are removed,
and aliphatic double bonds are reduced, which provides more additional information
regarding the characteristics of the lignin side chain. On treatment of bamboo CELN with
10 wt% of Ru@NC at 240 ◦C and 3 MPa of H2 in MeOH for 4 h in a Parr autoclave, a
brown soluble oily product was obtained after extraction with CH2Cl2 (Figure S1). This
catalytic hydrogenolysis process afforded a monophenol yield of 26.6 wt% (Table 1), and the
detailed monomer distribution is depicted in Figure S5. Both syringyl- and guaiacyl-derived
phenols were detected with an S/G ratio of 2.2, slightly higher than that of S/G monomer
composition in the original lignin (1.8). Among the monomers, 4-propyl-substituted
syringol (S1, 12.2 wt%) and guaiacol (G1, 4.1 wt%) were identified as the two major products,
corresponding to 61.9 mol% selectivity of total monomers. Small quantities of 4-n-propanol
guaiacol/syringol (G2/S2, 5.1 wt%) were also detected (Table 3). As a typical herbaceous
species, bamboo lignin features hydroxycinnamic acid, which is bonded with α-OH or
γ-OH of β-O-4′ moieties through ester or ether linkages [74,75]. Accordingly, two specific
phenolic monomers (3, 4.1 wt%; 4, 1.1 wt%) were also generated from the pCA and FA units,
which amounted to 20.9 mol% selectivity of total monomers. Moreover, the analysis of the
oily product (CELON) and by GPC revealed a significant decrease in molecular weight (Mw
0.66 kDa) relative to the initial CELN (Mw 8.13 kDa) (Table 2). These results demonstrated
the successful scission of most C–O bonds under such a catalytic condition.

Table 3. Catalytic hydrogenolysis of bamboo CEL over a Ru@NC catalyst a.
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b Determined by 2D HSQC NMR. c Determined by comparison of lignin degradation products with authentic
samples on GC. d G1, 4-propylguaiacol; G2, 4-n-propanol guaiacol; S1, 4-propylsyringol; S2, 4-n-propanol sy-
ringol; 3, methyl 3-(4-hydroxyphenyl)propionate; 4, methyl 3-(4-hydroxy-3-methoxyphenyl)propionate. e The
mole ratios were determined by comparison of the CEL hydrogenolysis products with authentic samples on GC.

The as-obtained oily product was further characterized by 2D HSQC NMR spec-
troscopy (Figure 6). All signals of monomeric phenols were assigned based on the compari-
son with authentic samples. Notably, no detectable signals for lignin linkages remained
in Figure 6b, such as β-aryl ether (β-O-4′, A), phenylcoumaran (β-5, B), and resinol (β–β,
C), indicating efficient depolymerization of lignin over the Ru@NC catalyst. The cross
peaks at δC/δH 13.5/0.85, 24.5/1.53, and 36.6/2.48 ppm ascribed to the propyl end chains
in G1/S1 could be easily observed (Figure 6c). A family of cross peaks located at δC/δH
31.8/2.51, 34.6/1.71, and 61.3/3.25 emerged, relating to the propyl end chain in G2/S2.
In addition, signal at δC/δH 51.0/3.58 was attributed to the ester group (CO2Me) in the
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product (Figure 6b). In the aliphatic region, the signal peaks of the C7, C8, and C9 belonging
to G- and S-products were found, while the signal peaks of 3 and 4 were mainly found in
the aromatic region (Figure 6a,c). The characteristic of the monomers was further verified
by the addition of the 3D version in Figure 6d.
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Figure 6. 2D HSQC NMR spectra (in DMSO-d6) of the lignin oily product (a–c) obtained from the
Ru@NC-catalytic hydrogenolysis of CELN (in DMSO-d6); (d) three-dimensional version of the 2D
HSQC end-chain region; (e) detected lignin monomers. Reaction conditions: CELN (50 mg), Ru@NC
catalyst (5 mg, 10 wt%), MeOH (10 mL), 240 ◦C, H2 (3 MPa at 25 ◦C, 12 MPa at 240 ◦C), and 4 h.

We further evaluated the catalytic hydrogenolysis performance of the other two
bamboo lignin species over the Ru@NC catalyst (Figures S2 and S3). Notably, CELB
afforded a relatively higher yield of phenolic monomer (26.5 wt%) than that of CELD
(16.5 wt%), which was due to the high proportion of β-O-4′ linkages in CELB [15,71]. As
expected, both CELB and CELD gave G1 and S1 as the dominant products (60.5~64.6%
selectivity). Moreover, the 2D HSQC NMR spectroscopies of lignin oils from those two
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lignin preparations indicated that there were no β-O-4′ structures existing, illustrating the
fullest cleavage of C–O linkages, which was in good accordance with the GPC analysis in
Table 2 and Figure 2.

2.6. Catalytic Hydrogenolysis of Lignin β-O-4′ Model Compounds

To further understand the pathway of lignin during the Ru@NC-catalyzed hydrogenol-
ysis reactions, the typical lignin β-O-4′ model compounds were tested (Figure 7) [76,77].
Catalytic hydrogenolysis of phenolic β-O-4′ dimer 1 offered G1 (13.6%) and G2 (16.8%) as
the major phenolic monomer products (reaction a, Figure S6). Nonphenolic β-O-4′ dimer
2 could efficiently afford 4-propylveratrole (D1) and benzenepropanol (D2) in 62.6% and
24.5% yields, respectively (reaction b, Figure S7). All the product distributions were similar
to those of the Ru@NC-catalyzed hydrogenolysis of CEL samples. These results further
confirmed that Ru@NC displayed excellent activity for the hydrogenation of C=C/C=O
bonds and hydrogenolysis of C–O bonds in β-O-4′ moieties.
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2.7. Elemental Composition of Bamboo, Lignin, and Lignin Oil

The elemental compositions of the three bamboo species, CELs, and the corresponding
lignin oily products were investigated, which is summarized in Table S4 and depicted
in Figure 8 as the van Krevelen diagram [32,78]. The solid, dashed, and dotted lines in
the diagram represent the processes of demethanation, decarboxylation, and dehydration
reactions, respectively. Notably, the H/C ratio of BambooB was slightly lower than that of
the other two bamboo samples (BambooN and BambooD) because of the lower content of
carbohydrates, which was consistent with the compositional analysis results in Table 1. It
was found that the average H/C molar ratios of lignin oil were significantly higher than
those of CELs. This was reasonable as (hemi)celluloses were removed in the preparation
of CEL samples, which was further verified by the O/C ratios between bamboo and CEL
samples. Moreover, it was found that the average O/C molar ratio of lignin oil products
(0.26~0.30) was close to those of CEL samples (0.33~0.35) but much lower than those of
bamboo materials (0.57~0.61). The results of reduced oxygen content but increased hydro-
gen content further indicated the efficient C–O bond scission in the catalytic hydrogenolysis
of lignin, which led to deoxygenation and decarboxylation process.
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3. Materials and Methods
3.1. Materials

Three bamboo species (N. affinis, B. lapidea, and D. brandisii) were harvested from
Yunnan Province, China. Methanol (MeOH), dichloromethane (DCM), and tetrahydrofuran
(THF) were purchased from Energy Chemical (Shanghai, China). The commercial cellu-
lase was kindly provided by Novozymes (Beijing, China) Biotechnology Co., Ltd. Lignin
model samples for catalytic degradation were synthesized independently. Dimeric lignin
model compounds were prepared following previously reported procedures with modifi-
cations [49,52,79]. The Ru@NC catalyst used in this work was prepared and described in
detail as previously described [53].

3.2. Preparation of Cellulolytic Enzyme Lignin

The bamboo raw materials were smashed into sawdust (40~60 mesh), dried in an oven
at 60 ◦C, and then extracted with ethanol/toluene (1:2, v/v) using a Soxhlet extractor for
10 h. The preground and extracted bamboo samples were then planetary ball milled (Fritsch
GmbH, Idar-Oberstein, Germany) at 400 rpm for 4 h with zirconium dioxide (ZrO2) vessels
containing ZrO2 ball bearings (10 mm× 30). One cycle of the ball-milling condition consists
of a 10 min milling and a 10 min cooling cycle. Subsequently, the ball-milled samples were
subjected to digestion (72 h × 2) to obtain enzyme lignin samples by cellulose at 50 ◦C
in NaOAc buffer (pH 4.8). After that, the solid residue was obtained after centrifugation
(5000 rpm for 5 min), washing three times with deionized water, lyophilization, and finally
ladled as CEL.

3.3. Chemical Components Analysis

The structural carbohydrates and lignin, as well as ash in the dewaxed bamboo
sawdust, were determined according to the standard analytical procedures (NREL/TP-510-
42618 and NREL/TP-510-42622) [80,81].

3.4. Catalytic Hydrogenolysis of Lignin or Lignin Model Compounds

Typically, CEL (50 mg) or lignin model compounds (15 mg), Ru@NC (5 mg), and
MeOH (10 mL) were charged into an autoclave (50 mL, Parr Instrument Company, Moline,
IL, USA), which was then flushed with N2 for three times and pressurized with 3 MPa
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H2 at room temperature. Afterwards, the mixture was stirred at 800 rpm and heated to
the desired temperature. After the reaction, the autoclave was cooled and depressurized
carefully. The reaction mixture was filtered through a nylon 66 membrane filter (0.22 µm),
and the insoluble fraction was washed with DCM. Lignin oily product was obtained after
removing DCM under a vacuum condition. An external standard (1,3,5-trimethoxybenzene)
was added to the lignin oily solution in DCM.

3.5. Characterizations

Gas chromatography-mass spectrometry (GC-MS) and GC analysis were performed for
qualitative and quantitative analysis of the aromatic monomers, respectively, as described
previously [15,49,52,71].Briefly, GC-MC analyses of the lignin oily product were carried out
on a Shimadzu GCMS-QP2010SE equipped with an HP-5 MS (30 m × 250 µm × 0.25 µm,
Agilent, Santa Clara, CA, USA) capillary column and an MS detector. GC analyses were con-
ducted with a Shimadzu GC-2010 equipped with an HP-5 column (30 m × 250 µm × 0.25 µm,
Agilent) and a flame ionization detector. The monomeric yield obtained from lignins and
β-O-4′ model compounds were calculated using Equations (1) and (2), respectively:

Monomer yield (wt%) =
w(monomer)

w(initiallignin)
× 100% (1)

Monomer yield (wt%) =
Mole(monomer)

Mole(ligninmimics)
× 100% (2)

Advanced NMR technologies, including 13C, 31P, and 2D HSQC, were used, and
analysis of lignin or lignin oily products was performed on a Bruker Ascend-400 MHz
spectrometer instrument (Bruker, Hanau, Germany) [52,71]. The molecular weights of
lignin and lignin oil were determined by GPC as described previously [52,71].

4. Conclusions

In summary, the structure characterization of CEL isolated from three bamboo species
(N. affinis, B. lapidea, and D. brandisii) was investigated. The chemical composition analysis
revealed a higher lignin content, up to 32.6% of B. lapidea in comparison with that of N.
affinis (20.7%) and D. brandisii (23.8%). The results showed that bamboo lignin was an H-G-
S lignin associated with p-coumarates and ferulates, indicating typical characteristics of
herbaceous lignin. Moreover, advanced NMR analyses displayed that CEL was extensively
acylated at the γ-carbon of the lignin side chain (with either acetate and/or p-coumarate
groups). A predominance of S over G lignin moieties was found in CELs of N. affinis
and B. lapidea, with the lowest S/G ratio observed in D. brandisii lignin. The catalytic
hydrogenolysis of lignin provided deep information on the well-defined low-molecular-
weight phenols, giving evidence on the relative abundances of the various C–O bonds
and the type of units involved in each of the linkage types. Six major monophenols, e.g.,
4-propyl-substituted syringol/guaiacol and propanol guaiacol/syringol derived from β-
O-4′moieties, and methyl coumarate/ferulate derived from hydroxycinnamic units, were
generated in the range of 16.5~26.6 wt% yields. A sufficient understanding of the structural
characteristics of lignin macromolecules in bamboo will facilitate the subsequent utilization
of lignocellulosic biomass in an integrated biorefinery.
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