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Abstract: One of the most common and deadly types of pancreatic cancer (PC) is pancreatic ductal
adenocarcinoma (PDAC), with most patients succumbing to the disease within one year of diagnosis.
Current detection strategies do not address asymptomatic PC; therefore, patients are diagnosed
at an advanced stage when curative treatment is often no longer possible. In order to detect PC
in asymptomatic patients earlier, the risk factors that could serve as reliable markers need to be
examined. Diabetic mellitus (DM) is a significant risk factor for this malignancy and can be both a
cause and consequence of PC. Typically, DM caused by PC is known as new-onset, pancreatogenic,
pancreoprivic, or pancreatic cancer-related diabetes (PCRD). Although PCRD is quite distinct from
type 2 DM (T2DM), there are currently no biomarkers that differentiate PCRD from T2DM. To identify
such biomarkers, a better understanding of the mechanisms mediating PCRD is essential. To this end,
there has been a growing research interest in recent years to elucidate the role of tumour-derived
exosomes and their cargo in the pathogenesis of PCRD. Exosomes derived from tumours can be
recognized for their specificity because they reflect the characteristics of their parent cells and are
important in intercellular communication. Their cargo consists of proteins, lipids, and nucleic acids,
which can be transferred to and alter the behaviour of recipient cells. This review provides a concise
overview of current knowledge regarding tumour-derived exosomes and their cargo in PCRD and
discusses the potential areas worthy of further study.

Keywords: exosomes; pancreatic cancer-related diabetes; biomarkers; pancreatic cancer; pancre-
atic adenocarcinoma

1. Introduction

Pancreatic cancer (PC) is the seventh leading cause of cancer-related deaths in the
world, with the most common type, comprising >90% of PC cases, taking the form of
pancreatic ductal adenocarcinoma (PDAC) [1–3]. The incidence of PC is around 45 out of
every 100,000 people, and currently, the 5-year survival rate is dismal, hovering around
11.5% [4]. Deaths from PC are on the rise. For example, in Australia, PC was the fourth most
common cause of cancer deaths in 2020 and the third most common cause of death from
cancer in 2022 [4]. The disease is often silent in nature, and symptoms only manifest after it
has progressed to an advanced stage. Indeed, the symptoms of PC are often non-specific,
ranging from vague abdominal pain, general malaise, nausea and vomiting, poor appetite,
and weight loss. The poor clinical outcomes in this disease are a result of several factors,
including late diagnosis, early distant metastasis, resistance to most conventional treatment
options, and a dense tumour microenvironment that inhibits the penetration of drugs into
the tumour and actively facilitates tumour progression via a range of mechanisms [5].

The major risk factors for PC include older age, sex (high prevalence in men), smok-
ing, a history of chronic pancreatitis (CP), gene mutations, obesity, and diabetes mellitus
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(DM) [6]. Obesity and CP are also associated with metabolic disorders such as insulin
resistance and glucose intolerance, which are characteristics of diabetes [7,8]. However, as
CP is a known cause of diabetes, whether the metabolic defects seen in obesity are causes
or effects of diabetes and/or PC remains to be clearly established [9,10].

1.1. Pancreatic Cancer and Diabetes

Diabetes mellitus is a heterogeneous metabolic disorder that is characterized by the
presence of hyperglycaemia due to the impairment of insulin secretion and/or defective
insulin action leading to peripheral insulin resistance. It is a major public health problem
that affects over 462 million people worldwide [11]. Its incidence is predicted to reach
7079 per 100,000 by 2030 and 7862 per 100,000 by 2040 [12]. It is associated with increased
risks for stroke, blindness, amputations, heart disease, kidney disease and cancer. DM can
be classified into three main categories, namely type 1 DM (T1DM), type 2 DM (T2DM),
and gestational diabetes. A form of DM associated with diseases of the exocrine pancreas is
known as type 3c DM (T3cDM) [13]. DM can be both a cause and a consequence of PC [14].

1.2. Pancreatic Cancer-Related Diabetes (PCRD)

A subset of PC patients reported being diagnosed with DM within 3–5 years before
their diagnosis of PC. This recent onset of diabetes has also been termed pancreatic cancer-
related diabetes (PCRD) and may be a harbinger of PC [9]. PCRD may be caused by
mediators of β cell dysfunctions and peripheral insulin resistance, the interaction between
PC and adipose tissue, the control of DM-associated PC pathway genes by miRNAs and
the accelerated transforming growth factor β (TGF-β) signalling due to the increased
secretion of TGF-β, causing the depletion of β cells [15–28]. There are distinct differences
between the clinical picture of PCRD and that of type 2 DM (T2DM). Unlike T2DM, PCRD
is characterized by weight loss and often normal insulin levels. Notably, the resolution of
diabetes occurs after pancreatic tumour resection [29–31] (Table 1).

Table 1. Differences between PCRD and T2DM.

S/N PCRD T2DM

1. Patients develop DM despite preceding weight loss Patients gain weight at the time of DM onset

2. Occurs many months before the occurrence of cachexia
(with greater than a 5% weight loss over 6 months) Not associated with cachexia

3. Occurs within 3–5 years before the clinical diagnosis of PC Occurs with or without PC development

4. Insulin levels are normal or low Insulin levels are high and there is a marked insulin resistance

5. Usually improves or is resolved following PC treatments,
including the surgical resection of the tumour

Persistent DM accompanies PDAC patients with
long-standing T2DM even after surgical resection

6. Low levels of the glucose-dependent insulinotropic
polypeptide (GIP) are evident Variable levels of GIP

7. Pancreatic polypeptide (PP) levels are low or absent PP levels are high or normal

8. Low glucagon levels High glucagon levels

9. Occurs at any age Occurs mainly in adulthood

The underlying association between PC and DM is complicated due to the presence
of a bidirectional link. The ability to distinguish DM caused by PC from T2DM is criti-
cal for recognizing that the new onset of DM may indicate a developing PC. Therefore,
identifying novel, clinically applicable biomarkers of high sensitivity and specificity in the
setting of PCRD may lead to earlier PC detection and subsequently improved therapeutic
outcomes [32,33]. It is possible that developing cancer from its earliest stage, called pancre-
atic intraepithelial neoplasm (PanIN), secrete factors that are carried within exosomes (a
type of extracellular vesicle, EV) to impair the function of islets and other peripheral cells,
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leading to decreased insulin secretion and/or peripheral insulin resistance. Thus, studies
of tumour-derived exosomes and their cargo have recently become a focus of research in
order to understand their role in PCRD.

Since the best-studied EVs in the literature are exosomes, this review focused on
the possible role of exosomes as mediators of PCRD. We summarized the recent work
on exosomes in relation to PC as well as DM and the specific roles of pancreatic tumour-
derived exosomes in PCRD development. By unveiling the putative adverse influence
of PC on systemic glucose metabolism resulting in PCRD, potential biomarkers could be
uncovered to improve the early diagnosis and treatment of PC.

2. Exosomes

Exosomes are part of a family of membrane-derived particles that are collectively
known as EVs. They facilitate intercellular communication (in health as well as in diseased
states) via their cargo which consists of a mixture of bioactive molecules such as nucleic
acids (mRNAs, miRNAs, DNA), lipids and proteins, which can be transported to the
targeted cells/tissues via the blood or lymph circulation [34]. Based on their molecular
sizes and mode of formation, EVs can be classified as apoptotic bodies, microvesicles and
exosomes [35].

2.1. Exosome Formation and Characterization

Exosomes are small Evs (sEVs) that are contained within multivesicular bodies (MVBs)
and are released when the MVBs fuse with the plasma membrane (Figure 1). Exosome
biogenesis begins when the early-sorting endosome matures into a late-sorting endosome
or MVB [36]. The MVBs contain intraluminal vesicles (ILVs), which are the exosome
precursors. MVBs can either be degraded (via fusion with lysosomes) or transported to the
plasma membrane for exosome release. The fusion of MVBs with the plasma membrane
results in ILVs being released as exosomes into body fluids.
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The mechanism of this uptake adopted by target cells for a given exosome may depend 
on proteins and glycoproteins, which can be found on the surface of both the exosome 
and the target cell [38]. Upon being taken up by target cells, exosomes may influence cell 
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pancreatic tumour-derived exosomes or the ability of β cells to produce insulin and that 
of other cells to produce, take up or utilize glucose. 

Figure 1. Biogenesis and the secretion of exosomes. Exosome biosynthesis begins during the
maturation of the early sorting endosome into the late sorting endosome or multivesicular body
(MVB). Exosome precursors known as intraluminal vesicles (ILVs) are contained within MVBs. MVBs
can either be degraded (via fusion with lysosomes) or transported to the plasma membrane. Then,
ILVs are released as exosomes into body fluids during the fusion of MVBs with the plasma membrane.

Exosomes are cup-shaped, cell-specific, small double-membraned EVs that are het-
erogeneous in size and range from 30 to 150 nm; they are produced by different cell types
and can be found in all biological fluids. They are identified based on their size, density,
morphology, and the presence of certain surface markers. The common surface markers
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of exosomes are tetraspanins (CD63, CD81 and CD9), fusion proteins (Flotilin, Annexins,
GTPases), endosome-associated proteins (Alix, TSG101) and heat shock proteins (Hsp70,
Hsp90) [37].

2.2. Uptake of Exosomes by Recipient Cells

Generally, cells may take up exosomes through a variety of endocytic pathways,
namely: clathrin-independent pathways such as direct membrane fusion, macropinocytosis,
phagocytosis or via clathrin-dependent endocytosis (Figure 2). Other pathways of exosome
uptake include caveolin-mediated uptake and lipid raft-mediated internalization. The
mechanism of this uptake adopted by target cells for a given exosome may depend on
proteins and glycoproteins, which can be found on the surface of both the exosome and the
target cell [38]. Upon being taken up by target cells, exosomes may influence cell function
via the release of cargo molecules which can activate intracellular signalling. Exosomes and
their cargo are involved in the pathogenic processes of both PC [39–41] and DM [42,43].
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Figure 2. Exosome release and uptake. Exosomes released by parent cells (tumour cells) can be taken
up via the receptors on recipient cells or through mechanisms such as direct membrane fusion, phago-
cytosis, macropinocytosis and clathrin-dependent endocytosis. Exosomal cargo: green = proteins,
yellow = lipids, grey = nucleic acids.

As noted earlier, the mechanisms of PCRD may be centred around the influence of
pancreatic tumour-derived exosomes or the ability of β cells to produce insulin and that of
other cells to produce, take up or utilize glucose.

3. Pancreatic Cancer-Derived Exosomes

The use of tumour-derived exosomes as liquid biopsies in cancer management is
currently an attractive area of investigation with promising results [44]. This is because
obtaining samples from patients for exosome isolation is minimally invasive as exosomes
are present in body fluids such as blood, saliva, ascites or urine. In addition, exosomes
are highly stable and specific, and the exosome cargo, namely, proteins, lipids and nucleic
acids are highly reflective of parental cells. As such, it is possible to understand the
behaviour of certain cells by examining the cargo contained in their exosomes. Exosomes
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produced under pathological conditions often exhibit tendencies that are different from
those obtainable under normal conditions. In cancers, exosomes produced by tumour cells
contain molecules that are cell-specific, and these molecules can be used to differentiate
tumour cells from normal cells and hence, cancer patients from healthy individuals [45].
However, the processes surrounding these differences in the exosome composition among
cells are not yet known, and the means by which these processes are regulated remains to
be fully elucidated.

4. Role of Pancreatic Tumour-Derived Exosomes in PCRD

Exosomes originating from PC cells can transport cargo molecules to different cell
types, ultimately affecting disease progression. PC-derived exosomes can regulate an-
giogenesis, deliver tissue factor (TF) promoting cancer-associated thrombosis, regulate
immune functions, promote tumour growth, invasion and metastasis, confer chemore-
sistance, and regulate pancreatic functions. The role of tumour cell-derived exosomes in
pancreatic cancer per se has been reported in detail within previous publications [46,47].
Here, we discuss the current knowledge about the role of PC-derived exosomes and their
cargo in PCRD.

4.1. Exosomal Protein Cargo and PCRD

Studies have shown that certain proteins contained within exosomes derived from
pancreatic tumour cells play key roles in the development of PCRD: the most important
being adrenomedullin (AM).

Adrenomedullin

This component of PC-derived exosomes is a multifunctional vasoactive peptide that
has been implicated in inflammation and sepsis and is overexpressed in PC at both the
mRNA and protein levels [48]. High expressions of AM can cause decreased β-cell insulin
secretion, as evidenced by studies showing that when β cell lines have been treated with glu-
cose followed by exposure to AM, glucose-stimulated insulin secretion was inhibited [17].
This effect is more pronounced in β-cell lines or islets when isolated from mice but has also
been rectified following the small hairpin RNA (shRNA)-mediated knockdown of AM in
PC cells. Another study showed that PC-derived exosomes containing AM and carbohy-
drate antigen 19-9 (CA19-9, also known as sialyl Lewis-a (sLea)—a widely used diagnostic
and prognostic marker for PC [49]—readily entered β cells through caveolin-mediated
endocytosis or macropinocytosis, and induced cyclic adenosine monophosphate (cAMP)
production which is usually associated with increased insulin secretion [42]. However, low
insulin secretion was also observed in this study despite the overexpression of cAMP; this
points to the induction of endoplasmic reticulum (ER) stress in a process independent of
cAMP. Interestingly, the ER stress markers immunoglobulin heavy chain binding protein
(BiP) and C/EBP homologous protein (CHOP) were overexpressed, causing an increase
in the unfolded protein response (UPR) and overwhelming ER stress in the β cells. This
resulted in the upregulation of oxidative stress as indicated by the high expressions of
reactive oxygen species (ROS) and reactive nitrogen species (RNS), leading to marked β cell
dysfunction. Hence, one of the ways in which PC causes paraneoplastic β cell dysfunction
may be through the shedding of AM(+)/CA19-9(+) exosomes into the circulation that
inhibit insulin secretion in PCRD; this is likely through the AM-induced failure of UPR and
ER stress [42].

Studies in mice have also shown that AM and its receptor components—the calcitonin
receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs)—are
present in pancreatic islets and can be co-localized with insulin [50]. Another AM receptor
(ADMR) found on β cells acted as a peptide mediator for AM and was carried within
PC-derived exosomes. The interaction of AM with this receptor caused impaired insulin
secretion, as seen in PCRD, to initiate the dysfunction of the recipient cells [42]. Inter-
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estingly, the ADMR blockade abrogated the inhibitory effect of exosomes during insulin
secretion [51] (Figure 3).
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Figure 3. Integrated schematic workflow elucidating the potential mechanism of action of pancreatic
cancer (PC)-derived adrenomedullin (AM) on PC cells and β cells. (a) AM may be present in tumour
cell-derived exosomes either alone or (b) Together with CA 19-9, (c) Alternative channels for AM
secretion are yet to be brought to scientific limelight. AM may then further act upon PC cells in
an autocrine manner and on β cells in a paracrine manner with a variety of pro-tumorigenic and
pro-diabetogenic effects, respectively. ? = unknown.

Aggarwal et al. demonstrated that mice bearing pancreatic tumours formed from
PC cell lines and overexpressing AM were significantly glucose intolerant compared to
control mice bearing tumours formed from PC cells transfected with the control vector [17].
In addition to inducing glucose intolerance, PC-derived exosomal AM was found to
promote lipolysis in murine and human adipocytes. AM interacted with its receptor on the
adipocytes, activated p38, extracellular signal-regulated kinase 1/2 (ERK1/2) and mitogen-
activated protein kinases (MAPKs) and promoted lipolysis through the phosphorylation of
hormone-sensitive lipase [51]. Hence, AM in pancreatic tumour exosomes may play a role
in PCRD not only via its effects on the β cell function but also by inducing lipolysis, which
is a major contributor to insulin resistance.

Studies have also identified other proteins which have been speculated to be involved
in the pathogenesis of PCRD and which have not yet been identified or characterized as
exosomal cargo. These include:

1. The PC-derived S-100A8 N-terminal peptide: a diabetogenic agent with reduced
glucose consumption and lactate production by myoblasts in vitro [52]. This peptide
also hindered the growth of myoblasts by inhibiting myotubular differentiation and
increasing caspase-3 activation in cultured C2C12 myoblasts. S-100A8 is, therefore,
suggested to be a cause of hyperglycemia because it impairs glucose catabolism in
myoblasts and is speculated to be a promising biomarker for the diagnosis of PCRD.
In addition, S-100A8 N-terminal alters β-cell insulin secretion by inhibiting glucose-
stimulated insulin exocytosis (early response), which is characteristic of PCRD [53].

2. The insulin-like growth factor 1 (IGF-1) and Insulin-like growth factor-binding protein-
2 (IGFBP-2) are biomarkers of pancreatic diseases, especially CP and PC. Since the
expression of IGF-1 in CP and DM was elevated compared with that in PC and DM,
IGF-1 may be an indicator that signals whether pancreatic diabetes is from CP or
PC [54].
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3. In the serum taken up to 4 years before a PC diagnosis, circulating Thrombospondin 1
(TSP-1) levels were found to be significantly reduced up to 24 months prior to diagno-
sis. Low serum TSP-1 levels in PC patients were associated with DM. Interestingly,
TSP1 levels in PC patients with DM were lower compared to patients with T2DM
alone. TSP-1 was also decreased in PC patients, compared to the healthy controls and
patients with benign biliary obstruction at clinical diagnosis. Not only did circulating
TSP-1 levels decrease up to 24 months before the diagnosis of PC, but a combination of
TSP-1 and CA19-9 also produced a diagnostic capacity that significantly outperformed
both markers alone. Decreased TSP-1 levels may be an indication of PCRD, and early
PC detection strategies could include exploring the clinical relevance of TSP-1.

4. The vascular noninflammatory molecule 1 (Vanin 1/VNN1) is a pantetheinase that is
anchored to the extracellular membrane of epithelial and myeloid cells. It belongs to
an enzymatic pathway and causes oxidative stress, inflammation and cell migration
and is suggested to be a biomarker for certain malignancies, including systemic lupus
erythematosus and type 1 diabetic nephropathy [55,56]. It was overexpressed in PC
and inhibited the growth of insulin-secreting cell lines (β-TC-6 and INS-1) when they
were treated with conditioned media derived from PC cell lines. This loss of cell
viability was even greater when the cells were exposed to conditioned media from
PC cells transfected with a VNN1-overexpressing vector, indicating that the high
expression of VNN1 causes injury to paraneoplastic insulin-secreting cells. The high
expression of VNN1 also altered the expressions of oxidative stress-related factors,
including the downregulation of the anti-oxidative stress/anticancer peroxisome-
proliferator activated receptor γ (PPAR-γ), the upregulation of cysteamine which is
a product of VNN1, the downregulation of the antioxidant glutathione (GSH) and
upregulation of ROS. Hence, the overexpression of VNN1 in PC cells modulated
the viability and function of β cells by promoting oxidative stress in the β cells’
microenvironment [57]. Additionally, VNN1, when used in combination with the
matrix metalloproteinase 9 (MMP9), could be a more effective blood biomarker panel
for the discrimination of PCRD from T2DM [58].

4.2. Exosomal Lipid Cargo and PCRD

There is currently no experimental evidence to show the role of exosomal lipids
in PCRD. However, adiponectin, a hormone, which is mainly produced by adipocytes
(fat cells), is known to increase insulin sensitivity and regulate peripheral glucose levels
and fatty acid metabolism [59]. Additionally, the combination of the adiponectin and
interleukin-1 receptor antagonist (IL-1Ra), which was elevated in PC patients with DM
compared to those with T2DM and the healthy controls showed strong diagnostic potential
for the distinction of PCRD from T2DM [60]. Tumour cells produce a range of interleukins;
hence, IL1-R antagonist levels in PC cell-derived exosomes could be worthy of study,
particularly in screening for PC in individuals newly diagnosed with T2DM.

4.3. Exosomal RNA Cargo and PCRD

The two types of ribonucleic acid (RNA)—coding and non-coding RNA—are both
essential for gene expression. Altered processing or the activity of RNA, whether coding or
non-coding, is a hallmark of cancers [61]. However, over the years, there has been accumu-
lated evidence regarding the role of the aberrant expression of non-coding RNAs (ncRNAs)
in many cancers [62–65], including PC and also in other diseases such as DM. These ncR-
NAs play important roles in epigenetic processes, transcription and post-transcriptional
regulation and can, thus, affect the growth, migration and invasion of cells. The role of
ncRNAs in cancers (including PC) and other human diseases (including DM) has been
reviewed elsewhere [66,67].

Examples of ncRNAs include small RNAs such as microRNAs (miRNAs), small inter-
fering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs),
small nuclear RNAs (snRNAs), small cajal body-specific RNAs (scaRNAs), as well as extra-
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cellular RNAs (exRNAs), long non-coding RNAs (lncRNAs), long intergenic non-coding
RNAs (lincRNAs), circular RNAs (cirRNAs), transfer RNAs (tRNAs), messenger RNAs
(mRNAs) and ribosomal RNAs (rRNAs). Of these non-coding RNAs, the best studied with
regard to exosmal cargo and PCRD are miRNAs, with little information available about
other exosomal non-coding RNAs.

Exosomal miRNAs and PCRD

Several studies indicate that microRNA (miRNA) fragments have diagnostic, predic-
tive and therapeutic usefulness in different cancer types, including PC. With regard to
PCRD, the effects of exosomes released by PC cells (MIA PaCa-2) on the intestinal secretin
tumour cell line (STC-1), which expresses many features of normal enteroendocrine cells,
were explored. Normally, enteroendocrine cells are responsible for the production of a
glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1), both
of which function in maintaining glucose homeostasis by enhancing insulin secretion and
sensitivity [68]. Zhang et al. found that the treatment of STC-1 cells with exosomes derived
from PC cells resulted in the downregulation of GLP-1 and GIP [69]. These authors reported
that this effect was mediated by miR-6796-3p, miR-6763-5p, miR-4750-3p and miR-197-3p
within the exosomes, as evidenced by the fact that the inhibition of the expression of these
miRNAs in the parental tumour cells (MiaPaCa-2) reversed the downregulation of GLP-1
and GIP by downregulating the post-translational proprotein convertase subtilisin/kexin
type 1/3 (PCSK1/3) levels in STC-1 cells [69].

In a study by Su et al., exosomal miR-19a from PC cells was found to downregulate
insulin secretion in mouse insulinoma 6 cells (MIN6) and primary islets by targeting
Neurod1: the validated gene involved in insulin secretion [70]. cAMP, which potentiates
insulin secretion, is produced by the cell membrane protein adenylyl cyclase (ADCY) and
ATP, and Adcy1 is a member of the ADCY family, which is activated by extracellular Ca2+

in MIN6 cells [71]. The binding of miR-19a to Neurod1 caused the downregulation of
cAMP and Ca2+ expression in β cells, leading to decreased insulin secretion [70]. Another
independent report demonstrated that PC-derived exosomal miR-19a targets Adcy1 and
Epac2 were an exchange protein directly activated by cAMP 2. Both these factors are
involved in insulin secretion, thereby inducing β cell dysfunction in PCRD [43]. This
indicates that signal changes between PC cells and β cells via exosomes might be important
in the pathogenesis of PCRD and provide a possible basis for the application of exosomal
miR-19a in a PC screening strategy.

Regarding insulin resistance, PC-derived exosomes were found to readily enter C2C12
myotubes, causing lipidosis and the inhibition of glucose uptake by impairing glucose
transporter type 4 (GLUT4) trafficking and preserving forkhead box protein O1 (FOXO1)
nuclear exclusion [72]. FOXO1 is a nuclear transcription factor whose expression can be
induced by the presence of insulin; therefore, it can be overexpressed in skeletal muscles
in energy-deprived states such as diabetes and is a key target of the PI3K/Akt signalling
pathway [73]. Once activated/phosphorylated by activated Akt, FOXO1 could be excluded
from the nucleus, resulting in the repression of transcription and muscle insulin resis-
tance. FOXO1 in PC-derived exosomes inhibited GLUT4 expression as well as insulin
and PI3K/Akt signalling [72]. Interestingly, miRNAs were found to be upregulated in
PC-derived exosomes including miR-666-3p, miR-540-3p, miR-125b-5p and miR-450b-3p
promoted FOXO1 expression, while miR-883b-5p, 666-3p, miR-450b-3p and miR-151-3p
downregulated GLUT4 expression. Therefore, PC-derived exosomal miRNAs were found
to be capable of inducing the insulin resistance of skeletal muscle cells through insulin and
PI3K/Akt/FoxO1 signalling pathways [72].

Another miRNA that could play a role in insulin resistance is miRNA-let-7b-5p, which
has been shown to interact directly with SLC6A15: a gene associated with the insulin
resistance of metabolic disorders. miRNA-let-7b-5p inhibits SLC6A15 expression via its
effects on the SLC6A15 3′-untranslated region (3′-UTR) and is thought to promote insulin
resistance in C2C12 myotube cells [74].
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Studies have also shown a few other non-coding RNAs, including miRNAs and long
non-coding RNAs (lncRNAs), which may be involved in the pathogenesis of PCRD but
are yet to be investigated in exosomes. For instance, a panel of six serum miRNAs (miR-
483-5p, miR-19a, miR-29a, miR-20a, miR-24, miR-25) upregulated in PCRD was developed
as a biomarker for PCRD, with a significant diagnostic efficacy for the discrimination of
PCRD from non-cancer new-onset T2DM, signifying that they may be involved in PCRD
development [75].

Another study reported the association of seven lncRNAs and two miRNAs with
prognosis in patients with PCRD. The lncRNAs included (i) the DiGeorge syndrome
critical region gene 9 (DGCR9), (ii) FLJ33360, (iii) H19, (iv) HOX Transcript Antisense
RNA (HOTAIR), (v) KIAA0125, (vi) Small Cajal Body-Specific RNA 2 (SCARNA2) and
(vii) Urothelial Cancer Associated 1 (UCA1). The two miRNAs were (i) hsa-miR-214 and
(ii) hsa-miR-429. Notably, hsa-miR-214 was predicted to target the lncRNA HOTAIR and
its downstream mRNA target Coiled-Coil Domain Containing 33 (CCDC33). Similarly,
hsa-miR-429 could target Cat Eye Syndrome Chromosome Region, Candidate 7 (CECR7)
and the Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4) downstream, suggesting
that these RNAs regulate each other post-transcriptionally as they compete when binding
to the miRNAs (a phenomenon known as the competing endogenous RNA network).
‘HOTAIR-hsa-miR-214-CCDC33’ and ‘CECR7-hsa-miR-429-CTLA4’ regulations might be
two important mechanisms for PC progression, requiring further investigation. HOTAIR,
CECR7, UCA1, hsa-miR-214, hsa-miR-429, CCDC33 and CTLA4 were also highlighted as
potential diagnostic biomarkers [76], though these were not characterized in exosomes.

5. Tumour-Derived Exosomal Cargo and Pancreatic Cancer

Additionally, worthy of note is the fact that exosomes derived from pancreatic tu-
mours can exacerbate the aggressiveness of PC mainly via their protein and RNA cargo
components [77]. By taking up exosomes/exosomal cargo released by highly malignant PC
cell lines, moderately malignant PC cell lines acquire increased proliferative, migratory, and
invasive abilities. For example, the zinc/iron-regulated transporter-like protein 4 (ZIP4) is
a protein upregulated in the highly malignant PC cell line—PC-1.0 that promotes tumour
growth both in vitro and in vivo [78]. When less malignant PC cell lines such as PC-1 take
up ZIP4-containing exosomes derived from PC-1.0 cells, the recipient cells become more
aggressive, suggesting the role of exosomal ZIP4 in PC progression. Exosomal proteins
have also been reported to be associated with the resistance of PC cells to gemcitabine treat-
ment. Exosomes derived from the PANC-1 cell line (which is more prone to gemcitabine
resistance) were shown to overexpress the Ephrin type-A receptor 2 (EphA2) compared
with other less chemoresistant cell lines (MIA PaCa-2 and BxPC-3) [79]. When EphA2
expression was suppressed in PANC-1 cells, their ability to transmit exosome-mediated
chemoresistance to MIA PaCa-2 and BxPC-3 cells was inhibited, suggesting the possible
role of EphA2 in promoting the resistance of PANC-1 cells to gemcitabine treatment and
the transmission of the same to other cells.

Regarding RNAs, many studies have shown how RNAs, especially non-coding RNAs
contribute to PC development and progression. For instance, miR-301a-3p derived from
hypoxic PC cells induced the differentiation of macrophages into the M2 phenotype and
enhanced the metastatic competence of PC cells by activating the PTEN/PI3Kγ signalling
pathway [80]. Similarly, exosomal LINC01133 was found to be overexpressed in PC and
associated with disease progression and metastasis [81]. LINC01133 interacted with the
enhancer of zeste homolog 2 (EZH2) to promote the trimethylation of histone H3 on
lysine 27 (H3K27). This was achieved via the suppression of the axis inhibition protein
2 (AXIN2) and glycogen synthase kinase 3 (GSK-3) activities, resulting in the activation
of β-catenin. This promoted an epithelial-mesenchymal transition (EMT). These and
many other studies [82–85] have proven that exosomal RNAs can be associated with
pancreatic malignancy.
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6. Pancreatic Stellate Cell-Derived Exosomes and PCRD

Pancreatic stellate cells (PSCs) are stromal cells that are present around the earliest
neoplastic lesions and around islets. PSCs are responsible for producing the collagenous
stroma of PC and interact closely with cancer cells to drive cancer progression. Recent
studies suggest that exosomes secreted by PSCs may play a major role in stroma-tumour
cross-talk [86].

In this regard, exosomal miR-5703 was found to target CKLF Like MARVEL Trans-
membrane Domain Containing 4 (CMTM4) which is known to regulate the expression
of the inhibitory programmed death-ligand 1 (PD-L1) and to stabilize the PD-L1 recep-
tor in cancers. By binding to CMTM4, the PC-derived exosomal miR-5703 promoted the
proliferation of PC cells via the PAK4-activated PI3K/Akt pathway [87]. Additionally,
when PC cells internalized PSC-derived exosomes, this resulted in high miR-21 levels,
which promoted cell migration, EMT, increased matrix metalloproteinase-2/9 activity and
enhanced Ras/ERK signalling activity by increasing ERK1/2 and Akt phosphorylation in
the PC cells [88]. Additionally, hypoxia-induced PSC-derived exosomal miRNAs—miR-
4465 and miR-616-3p—targeted the tumour-suppressing phosphatase and tensin homolog
(PTEN) and activated AKT signalling in PC cells, promoting proliferation, migration and
invasion [89].

Of particular relevance to this review is a recent study that demonstrated how exo-
somes derived from co-cultures of mouse PSCs and PC cells caused mouse β cell dysfunc-
tion by decreasing the β cell proliferation and inhibiting their insulin secretion capacity
in response to glucose stimulation, showing that exosomes secreted by PSCs and PC cells
carry factors that negatively regulate the functions of islet cells [90] (Figure 4). Whether
PSC-derived exosomes play a role in peripheral insulin resistance is yet to be determined.
Nevertheless, it is possible that the exosomal cargo from both PC cells and stromal cells
(PSCs) play a role in the pathogenesis of PCRD.
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7. Other Biomarkers for PCRD

Studies have also identified some mechanisms and genomic markers for PCRD, al-
though the localization of these biomarkers in exosomes has not yet been established.
For example:

1. Nitric oxide (NO), which is overexpressed in PCRD, has diabetogenic effects, and
the absence of specific fragments of NO correlates with the development of DM [91].
Hence, PCRD might be a result of the diabetogenic effects of tumour products, possibly
acting via NO.

2. In a study aimed at identifying the mediators of PCRD by comparing the gene ex-
pression between PCRD patients and PC patients without DM, low levels of Kinesin
Family Member 22 (KIF22) and glycogen Phosphorylase L (PYGL) were found to be
associated with good survival outcomes for PC patients with DM and may be prognos-
tic biomarkers for PCRD. Additionally, bioinformatic predictions revealed that KIF22,
PYGL, Ribosomal Protein S27a (RPS27A), and ubiquitin A-52 residue ribosomal protein
fusion product 1 (UBA52) could be involved in the pathogenesis of PCRD [92].

Further studies are required to determine whether the role of these markers in PCRD
is exosome-based. Considering the stability, relevance, and reliability of exosome-based
biomarkers, we recommend that in future studies, the functions of these biomarkers are
examined to determine whether they are enhanced by exosomes.

8. Summary

Pancreatic cancer-related diabetes (PCRD) is a condition that identifies a specific
subset of patients who may feasibly benefit from the screening strategies for pancreatic
cancer. Understanding the pathogenesis of PCRD, particularly the role of pancreatic cancer-
derived exosomal cargo in disrupting glucose homeostasis is an important first step when
identifying the factors that could be used as biomarkers for early diagnosis, the prediction
of response to therapy as well as prognosis. The role of PC-derived exosomal cargo
components, particularly proteins and microRNAs, in PCRD, is becoming increasingly
elucidated. Additionally, the exosomal factors involved in PCRD but not longstanding
Type 2 diabetes have also been identified. Thus, there are some promising advances in
this field that bode well for the development of clinical applications in the near future and
could enable timely diagnosis and improved outcomes for patients with pancreatic cancer.
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