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Abstract: Dopamine (DA) and dopamine agonists (DA-Ag) have shown antiangiogenic potential
through the vascular endothelial growth factor (VEGF) pathway. They inhibit VEGF and VEGF
receptor 2 (VEGFR 2) functions through the dopamine receptor D2 (D2R), preventing important
angiogenesis-related processes such as proliferation, migration, and vascular permeability. However,
few studies have demonstrated the antiangiogenic mechanism and efficacy of DA and DA-Ag in
diseases such as cancer, endometriosis, and osteoarthritis (OA). Therefore, the objective of this review
was to describe the mechanisms of the antiangiogenic action of the DA-D2R/VEGF-VEGFR 2 system
and to compile related findings from experimental studies and clinical trials on cancer, endometriosis,
and OA. Advanced searches were performed in PubMed, Web of Science, SciFinder, ProQuest,
EBSCO, Scopus, Science Direct, Google Scholar, PubChem, NCBI Bookshelf, DrugBank, livertox, and
Clinical Trials. Articles explaining the antiangiogenic effect of DA and DA-Ag in research articles,
meta-analyses, books, reviews, databases, and clinical trials were considered. DA and DA-Ag have
an antiangiogenic effect that could reinforce the treatment of diseases that do not yet have a fully
curative treatment, such as cancer, endometriosis, and OA. In addition, DA and DA-Ag could present
advantages over other angiogenic inhibitors, such as monoclonal antibodies.

Keywords: antiangiogenic; cancer; dopamine (DA); dopamine agonists (DA-Ag); endometriosis;
osteoarthritis (OA); vascular endothelial growth factor (VEGF); vascular endothelial growth factor
receptor (VEGFR)
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1. Introduction

Dopamine (DA) and dopamine agonists (DA-Ag) are known for their therapeutic
effects in diseases involving neurochemical alterations in the nervous system [1]. However,
these compounds have different biochemical properties that allow them to be applied to
treat other diseases, as is the case with their antiangiogenic effect, a property that can be
applied to treat pathologies where angiogenesis is an important physiological mechanism,
such as cancer [2], endometriosis [3], and osteoarthritis (OA) [4].

The formation of blood vessels, especially in cancer, can occur through different mech-
anisms such as germinative angiogenesis, intussusceptive angiogenesis, vasculogenesis,
endothelial progenitor cells recruitment, vascular mimicry, and cancer stem cells transdif-
ferentiation. The vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR 2)
pathway is involved in all these mechanisms [5,6]. Different antiangiogenic strategies
have been proposed; one of them is DA and DA-Ag since their effect has been related
to the inhibition of the VEGF/VEGFR 2 pathway, where it has been observed that these
compounds showed antiproliferative effects by blocking the formation of blood vessels
in tumors [7], decreasing endometriotic lesions [8–10], and decreasing inflammation and
apoptosis in cartilage degeneration and bone sclerosis [11–13]. DA and DA-Ag inhibit
VEGF/VEGFR 2 functions through the dopamine receptor D2 (D2R), which promotes
VEGFR 2 endocytosis and prevents VEGFR 2 phosphorylation [14–16] and decreases the
main proangiogenic stimulus (VEGF binding to VEGFR 2). With this knowledge, clinical
trials are currently underway to test different DA-related drugs to evaluate their efficacy as
antiangiogenic options in both related and unrelated diseases of the nervous system.

Moreover, although there are other antiangiogenic agents targeting the VEGF/VEGFR
2 pathway, especially monoclonal antibody inhibitors of VEGF/VEGFR 2, DA and DA-
Ag have several advantages, as they are more economically accessible and have greater
availability and probably fewer adverse effects [17–19]. Therefore, the purpose of this
review is to describe the mechanisms associated with the angiogenesis of DA and DA-Ag
in cancer, endometriosis, and OA through the analysis of experimental and clinical studies
that show their potential as adjuvants. In addition, we analyzed the advantages and
disadvantages of DA and DA-Ag compared with VEGF/VEGFR 2 monoclonal antibodies.
Although the antiangiogenic mechanism mediated by the VEGF/VEGFR 2 pathway is one
of the most important mechanisms [5,6], we should not omit that alternative proangiogenic
pathways could be activated [6], especially in cancer and possibly in endometriosis and OA
as an adaptive response. Further studies are needed to describe whether DA and DA-Ag
treatment could activate the alternative proangiogenic mechanism. Therefore, the study
of DA and DA-Ag as an antiangiogenic combined with other alternative proangiogenic
pathway inhibitors could be an effective antiangiogenic treatment.

2. Methodology

For the selection and analysis of the articles included in this review, the following
databases were consulted: PubMed, Web of Science, SciFinder, ProQuest, EBSCO, Sco-
pus, Science Direct, Google Scholar, PubChem, NCBI Bookshelf, DrugBank, livertox, and
Clinical Trials. Articles on DA, DA-Ag, and its receptors, as well as those postulating or
demonstrating their antiangiogenic effect in any phase of study, particularly in cancer,
endometriosis, and osteoarthritis, were considered. Original manuscripts, reviews, minire-
views, systematic reviews, meta-analyses, clinical trials, books, and specialized databases
were included. The search was performed by applying the following keywords alone or in
combination: “dopamine”, “dopaminergic drug”, “chemical compounds”, “chemical struc-
ture”, “DA receptors”, “precursors”, “experimental DA-Ag and antagonists”, “receptor
blockers”, “cancer”, “endometriosis”, “osteoarthritis”, and “drug repositioning”. Finally, a
total of 203 references were considered. A total of 203 bibliographic sources from 1972 to
2023 were obtained.
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3. Dopamine (DA) and Its Receptors

DA is a key neuromodulator that is synthesized in both the central nervous system
(CNS) and the peripheral nervous system [20,21]. In the brain, DA is involved in the
regulation of executive functions, including locomotor activity, cognition, emotion, arousal,
reward, sexual behavior, and lactation [22]. Recently, it has been shown to play a critical
role in metabolic regulation [23]. DA exerts its actions through the activation of G protein-
coupled receptors. Due to the relevant functions of DA, the dysregulation of dopaminergic
signaling is implicated in the development of several pathologies, such as Parkinson’s
disease, Huntington’s disease, schizophrenia, attention deficit and hyperactivity disorder,
and addiction [22]. In the late 1980s, Bunzow et al. cloned the first five DA receptor
proteins [24] and classified them according to their pharmacological, biochemical, and
physiological function as D1-like (D1R, D5R) and D2-like (D2R, D3R, and D4R) and showed
their expression in a wide range of structures within the CNS [25]. They are encoded by
different genes located at different chromosomal loci and show considerable homology in
their protein structure and function. The D1R and D5R receptors are encoded by genes
with no introns and share 80% of their identity, whereas D2R and D3R share 75% and 3%
of their identity in the D4R transmembrane domains, respectively. The last three receptor
subtypes are encoded by genes with introns. Among all the DA receptors, D1R and D2R are
the most abundant in the CNS; specifically, they are found in the medium spiny striatum
neurons and hippocampus [26–29]. DA receptors are integral membrane proteins coupled
to G proteins (Gs) with seven membrane-spanning α-helical domains to maintain the
three-dimensional structure of the receptor [30].

Functionally, DA receptors mediate the effects of DA and dopaminergic compounds
through different signaling pathways; thus, upon activation by dopaminergic compounds,
D1R activates adenylyl cyclase (AC), which in turn increases the amount of the second mes-
senger cyclic AMP (cAMP). In contrast, dopamine D2-like receptors (D2R, D3R, and D4R)
have an inhibitory effect on adenylyl cyclase, leading to a decrease in cAMP levels [31,32].
This signaling is mediated by different G proteins (Gs), mainly Gsα for the stimulation and
Giα for the inhibition of AC [33,34]. In addition to the G protein-dependent pathway, other
signaling pathways are utilized by D1R; thus, after activation by DA, D1R promotes the
accumulation of β-arrestin2 protein that is subsequently internalized by endocytosis and
concomitantly results in a loss of cell surface receptors and additional arrestin-mediated
signaling events [35]. Interestingly, altered D1R and D2R signaling has been associated
with many neurological diseases, such as schizophrenia, Parkinson’s disease, attention
deficit hyperactivity disorder, and autism [36–39]. Due to the relevance of dopaminergic
signaling, many drugs that are targets of D1R and D2R have been developed to combat
various CNS diseases through the modulation of the dopaminergic system, whose home-
ostasis is indispensable for the treatment of various CNS disorders by maintaining normal
dopaminergic homeostasis and restoring homeostasis in disease states.

4. Dopamine (DA) and Dopamine Agonists (DA-Ag)

DA synthesis begins with the hydroxylation of L-tyrosine by the tyrosine hydroxylase
enzyme (TH) to generate L-3,4-dihydroxyphenylalanine (L-DOPA); then, aromatic L-amino acid
decarboxylase (DOPA decarboxylase) enables cytosolic DA production. DA is released into the
synaptic cleft and then recycled and degraded by enzymes for catabolism [34,40,41]. In glial cells,
monoamine oxidase (MAO) breaks down DA, producing 3,4-dihydroxyphenylacetaldehyde
(DOPAL); in turn, aldehyde dehydrogenase (ALDH) converts DOPAL to carboxylic acid 3,4-
dihydroxyphenylacetic acid (DOPAC), or alcohol dehydrogenase (ADH) reduces DOPAL to
3,4-dihydroxyphenylethanol (DOPET) [34,41,42]. The enzyme catechol O-methyl-transferase
(COMT) catalyzes the methylation of DA to 3-methoxytyramine (3-MT), which is a MAO
substrate that forms 3-methoxy-4-hydroxyphenylacetaldehyde (HMPAL). Finally, the enzyme
ALDH catalyzes HMPAL to generate homovanillic acid (HVA), the major end-product of
DA degradation [34,41,42]. DA binds to D1-like and D2-like receptors, which are G-protein-
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coupled channels. The D1-like receptor increases protein phosphorylation, whereas the
D2-like receptor decreases protein phosphorylation [34,43–45].

Regarding the role of DA as a therapeutic agent, the literature has shown the use of
DA precursors, agonists, antagonists, and blockers as therapeutic agents in some diseases.
DA precursors such as L-DOPA (levodopa) have been used for Parkinson’s disease, and
L-phenylalanine and L-tyrosine have been used as antidepressants [46–48]. DA-Ag, apo-
morphine, bromocriptine, cabergoline, lisuride, piribedil, pramipexole, ropirinole, and
rotigotine have been used as anti-Parkinsonians [49–55]. In addition, ropinirole and rotigo-
tine have been used for restless legs syndrome [56,57]; cabergoline and quinagolide have
been used for hyperprolactinemia [50,52]; bromocriptine has been used for amenorrhea,
galactorrhea, and female infertility [52]; and DA and fenoldopam have been used for
hemodynamic imbalances [52,58]. Experimental agonists such as LS-186,899, pukateine,
quinpirole, and SKF 38393 are currently being tested in different scientific studies [34,59–65].

5. Antiangiogenic Capacity of Dopamine (DA) and Dopamine Agonists (DA-Ag) and
the Mechanisms of Action

Angiogenesis, the generation of new blood vessels from the existing vasculature, plays
a key role in physiological processes such as embryonic development, wound healing, and
organ regeneration, as well as in various pathologies, such as cancer, diabetes, retinopathies,
and tumor metastasis [15,66]. Several molecular mechanisms have been explored to under-
stand the basic processes underlying angiogenesis. Signaling mediated by VEGF and its
target receptors has been identified as an important player in angiogenesis and vascular
permeability, among others [66,67]. The VEGF family genes are composed of five members,
including VEGF-A (VEGF), VEGF-B, VEGF-D, and placental growth factor [68–71], whereas
VEGFR is represented by three members, namely, VEGFR 1, VEGFR 2, and VEGFR 3, where
VEGFR 2 is the main regulator of physiological and pathological angiogenesis [15,72,73].
The signal transduction cascade begins when VEGF binds to VEGFR 2, leading to a confor-
mational change, dimerization, and phosphorylation of tyrosine residues of the receptor,
which leads to the activation of several intracellular molecules that serve as downstream
signaling elements that propagate the signal to activate angiogenesis [72]. This system
mediates angiogenesis through the proliferation, migration, and survival of endothelial
cells, promoting new vessel formation (Figure 1) [74,75]. The potent proangiogenic activity
of VEGF was first described as essential for vascular endothelial cells; however, VEGF
and VEGF receptors are expressed on numerous nonendothelial cells, including tumor
cells [72,76]. In addition, VEGFR 2 is associated with the mitogenic, angiogenic, and
permeability-enhancing effects of VEGF in a wide variety of tissues [75,77].

DA and DA-Ag (e.g., bromocriptine, cabergoline, quinagolide, and quinpirole) have
demonstrated antiangiogenic properties in different pathologies [14,78–82]. Sarkar et al.
demonstrated that DA administered intraperitoneally (50 mg/kg/day) in mice with colon can-
cer was able to inhibit angiogenesis and tumor growth without apparent adverse effects [83].
This antiangiogenic capacity has been associated with the VEGF pathway [66,67,83], and
several mechanisms have been described. For example, Basu et al. reported that DA and
its D2R DA-Ag, bromocriptine, and quinpirole inhibited mouse ovarian tumor-induced
angiogenesis and inhibited human umbilical vein endothelial cell proliferation and mi-
gration [14]. The authors described, for the first time, the antiangiogenic relationship of
the DA-D2R/VEGF-VEGFR 2 mechanism, with the induction of VEGFR 2 endocytosis
being the key act for the arrest of angiogenesis by DA [14]. Indeed, the internalization
and inactivation of VEGFR 2 downregulate several proangiogenic factors and upregulate
antiangiogenic factors, resulting in an unstructured blood supply (Figure 2) [80].

Another D2R-related antiangiogenic mechanism was observed in tumor and normal
endothelial cells. Normal endothelial cells show very low or no expression of DA-D2R
compared to tumor endothelial cells [14,84]. Through paracrine signaling, VEGF secreted
by tumor cells can stimulate D2R expression by activating the extracellular-signal-regulated
kinase1/2 (ERK1/2) signaling cascade and increasing Krüppel-like factor 11 (KLF11) ex-



Int. J. Mol. Sci. 2023, 24, 10199 5 of 24

pression in endothelial cells (Figure 2) [79]. Increased D2R can inhibit VEGF-induced
angiogenesis [14,84,85] as a feedback mechanism that regulates the actions of VEGF on
endothelial cells [79].
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Figure 1. Signaling mediated by vascular endothelial growth factor (VEGF) and its target recep-
tor VEGFR 2 plays an important role in angiogenesis under both physiological and pathological
conditions. The signal transduction cascade begins when VEGF binds to VEGFR 2, leading to a confor-
mational change, dimerization, and phosphorylation of tyrosine residues of the receptor, resulting in
the activation of several intracellular molecules that act as downstream signaling elements involved
in cell survival, vascular permeability, proliferation, and cell migration that promote angiogenesis.

Furthermore, through its D2R, DA not only has an effect on decreasing angiogene-
sis [86,87], but it also inhibits tumor endothelial cell proliferation through the inactivation
of VEGF-induced mitogen-activated protein kinase (MAPK) and focal adhesion kinase
(FAK) phosphorylation (Figure 2) [78,88]. FAK is a tyrosine kinase that promotes p53 degra-
dation via ubiquitination, leading to tumor cell growth and proliferation, angiogenesis,
and vascular permeability [89]. In addition, D2R receptors can decrease matrix metallo-
protease (MMP-9) (ERK1/2-mediated) release by endothelial progenitor cells, inhibiting
their mobilization from the bone marrow and preventing their participation in tumor
neovascularization [88,90,91].

Moreover, it has been reported that DA can inhibit VEGF-induced endothelial cell
migration. By acting through D2R, DA can regulate the phosphorylation of different tyro-
sine residues of VEGFR 2, leading to the inactivation of different downstream signaling
pathways [15,92,93]. Sinha et al., 2009, in isolated human umbilical cord endothelial cells,
demonstrated that treatment with 10 µM DA prior to VEGF stimulation at 10 ng/mL
produced an increase in the VEGF-induced phosphorylation of phosphatase-2 containing
Src homology region 2 domain (SHP-2) and its phosphatase activity. Active SHP-2 de-
phosphorylates VEGFR 2 at Y951, Y996, and Y1059 but not at Y1175 (15). The decreased
phosphorylation of VEGFR 2 at Y951 leads to a subsequent decrease in Src phosphorylation
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at Y418 and its kinase activity, inhibiting cell migration (Figure 2) [15]. SHP-2 knock-
down was also observed to affect the DA-regulated inhibition of VEGF-induced VEGFR
2 phosphorylation and, subsequently, the activation of Src, a protein related to cancer
progression [15,94].

Figure 2 shows an integrated and simplified scheme of the main antiangiogenic mech-
anisms of the DA-D2R/VEGF-VEGFR 2 system in different pathologies. These mechanisms
can occur in isolation or together in different cells, organs, or diseases. Future research
should be carried out to clarify this question.
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Figure 2. Simplified and integrated scheme of the main antiangiogenic mechanisms described for the
DA-D2R/VEGF-VEGFR 2 system in different pathologies. DA (and its DA-Ag, such as bromocriptine,
cabergoline, and quinagolide) strongly and selectively inhibit VEGF/VEGFR 2 functions; for example,
(1) DA/D2R promote the induction of VEGFR 2 endocytosis, which reduces a series of proangiogenic
factors and increases antiangiogenic factors [14,80]; (2) VEGF can stimulate D2R expression by
activating the ERK1/2 signaling cascade and upregulating KLF transcription factor 11 expression,
and upregulation of D2R can inhibit VEGF-induced angiogenesis (perhaps by promoting VEGFR 2
endocytosis) [79]; (3) DA/D2R inhibits VEGF-induced activation of MAPK and FAK phosphorylation,
blocking cell proliferation and migration [88]; and (4) DA may regulate dephosphorylation of different
tyrosine residues of VEGFR 2, leading to inactivation of different downstream signaling pathways.
DA causes an increased association of D2R with VEGFR 2. DA also induces an increase in the
association between SHP-2 (a protein phosphatase) and D2R and stimulates the phosphorylation
of SHP-2. Then, active SHP-2 inhibits the phosphorylation of VEGFR 2. The decrease in VEGFR 2
phosphorylation leads to a subsequent decrease in Src phosphorylation, blocking VEGF-induced
migration [15]. All these mechanisms (separately or together) may be involved in the inhibition of
angiogenesis in different diseases, such as endometriosis, cancer, and osteoarthritis.
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6. Therapeutic Potential of Dopamine (DA) and Dopamine Agonists (DA-Ag) as
Antiangiogenic Agents

As mentioned above, cancer, endometriosis, and OA are diseases in which angiogene-
sis is an important physiological mechanism; therefore, the development and maintenance
of these conditions can be affected by antiangiogenic therapy, a promising strategy that in
the last decade has had an increasing number of studies in which different antiangiogenic
agents have been used to inhibit tumor growth, induce the regression of endometriotic
lesions, and inhibit osteogenesis by targeting their blood supply [83–85,95–97]. Drugs
related to the VEGF/VEGFR 2 signaling pathway, phytochemicals, immunomodulators, an-
tihormonal drugs, and DA-Ag have been used for their antiangiogenic capacity [3,80,81,98].
Of relevance has been the use of monoclonal antibodies targeting the VEGF pathway for
cancer therapy, where studies have shown them to be key inhibitors of tumor angiogenesis
during adjuvant, maintenance, or combination therapy against some solid tumors [99,100].
However, not all these compounds have demonstrated safety or tolerability; therefore,
it would be important to test antiangiogenic treatments or adjunctive treatments for en-
dometriosis, cancer, or OA with compounds that have been shown to have a favorable
safety profile and are already clinically approved for the treatment of other diseases [80,101].
In this context, since DA and DA-Ag have an acceptable safety profile and are clinically
approved, they may represent an alternative to many antiangiogenic agents.

6.1. Therapeutic Potential of Dopamine and Dopamine Agonists in Endometriosis

Endometriosis is a common gynecologic disease characterized by the presence of
endometrial tissue, glands, and stroma outside the uterine cavity and is a common estrogen-
dependent disorder associated with pelvic pain and infertility. Its etiology is unknown, and
treatment is surgical with a high risk of recurrence [81,95,102]. Although many aspects of
the pathogenesis of endometriosis are not fully established, endometriotic lesions grow in
areas with a constant and abundant blood supply, and angiogenesis is a prerequisite for the
invasion, proliferation, long-term growth, and maintenance of ectopic implants [81,98,103].
Under this rationale, the use of commercial antiangiogenic drugs has been explored in
preclinical models of endometriosis; however, endometriosis specifically affects women of
reproductive age, and the selection of antiangiogenic agents is very important, as physio-
logical angiogenic processes such as follicle maturation, corpus luteum function, eutopic
endometrial proliferation, and embryo development must be carefully protected [98,101].

DA and DA-Ag have shown a benign clinical profile and several advantages for
women with endometriosis, as they are already used for hyperprolactinemia and lactation
suppression, do not seem to interfere with physiologic angiogenesis in reproductive organs,
and do not interfere with ovulation and spontaneous pregnancy [3,80,96]. The ergot
cabergoline and bromocriptine and the nonergot quinagolide are the main D2R DA-Ag
tested in different preclinical and clinical studies [82,104,105]. In experimental models of
endometriosis, these DA-Ag have been shown to downregulate a series of proangiogenic
factors and upregulate antiangiogenic factors in inflammatory, endothelial, and endometrial
cells, targeting the newly formed and mature vasculature and resulting in an unstructured
blood supply and reduction in lesion size [80]. Table 1 shows the different experiments
and doses used by multiple authors, as well as their results regarding their effect on
endometriosis in animals and humans.
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Table 1. Experimental studies and/or clinical trials in which the effects of DA and DA-Ag on
endometriosis are being studied.

Intervention Model Analyzed Observations

Cabergoline every three days at 50 µg/kg by
oral gavage [3] Heterologous mouse model

Cabergoline significantly decreased the
lesion size, vascular density, and
innervation in DA-Ag and anti-VEGF
groups in comparison with control.

Cabergoline at 0.05 or 0.1 mg/kg/day orally
for 14 days [81]

Implantation of human endometrium
in female mice

The formation of new blood vessels was
suppressed in endometriosis lesions, and
a decrease in cellular proliferation was
observed. VEGFR 2 phosphorylation was
significantly lower in cabergoline-treated
animals than controls.

Cabergoline at 0.05 (low dose) and 0.1 (high
dose) mg/kg per day for 14 days [82]

Implantation of human endometrium
(with mild or severe endometriosis)

in female mice

D2R gene and protein expression was
observed in human endometrial implants.
Moreover, VEGF gene and VEGF and
VEGFR 2 protein expressions were
significantly lower in endometrial lesions
treated with cabergoline than in controls.

Cabergoline 50 mg/kg per day orally or
quinagolide 50 or 200 mg/kg per day for
14 days [95]

Nude mice with eutopic human
endometrial fragments

Quinagolide and cabergoline both were
effective at decreasing endometriotic
lesion size and its cellular proliferation.
Additionally, a reduction in VEGFR 2 and
VEGF gene expression was observed.

Quinagolide at 200 µg/kg/day [102]
Wistar rats with Endometriosis was

surgically induced by transplantation
of autologous endometrial tissue

Quinagolide induced a significant
regression in
endometriotic implants and reduced the
interleukin (IL)-6 and VEGF levels in
peritoneal fluid.

Vaginal bromocriptine at a dose of 5 mg daily
for 6 months of treatment [104] Women with adenomyosis

Bromocriptine induced a significant
improvement in menstrual bleeding
and pain.

Cabergoline at 0.1 mg/kg/day by oral
gavage for 4 weeks [106]

Autotransplantation of endometrial
tissue on adult Sprague–Dawley rats

Cabergoline was not effective at
endometriotic implant regression.

Cabergoline and Bromocriptine at
0.1 mg/kg/day orally for 30 days [107] Induced endometriosis in Wistar rats

Bromocriptine and cabergoline
significantly decreased the area (stromal
and glandular tissue) of the
endometriotic implants in comparison
with controls.

Cabergoline at 0.5 mg/kg/day
subcutaneously for 21 days [108]

Sprague–Dawley rats with
endometriosis implantation

Cabergoline decreased the size and
histopathological grade of the induced
endometrial lesions.

Cabergoline at 0.075 mg/kg for 22 days [109] Wistar rats with induction
of endometriosis

Cabergoline produced a pronounced
inhibitory effect on ectopic
endometrioid formation.

Cabergoline at 0.05 mg/kg for 14 days [110] C57BL/6 mice and ICR mice with
induced endometriosis

Treatment with cabergoline diminished
the inflammation in the uterus,
peritoneum, and intestine in the recipient
mice. Additionally, cabergoline decreased
the expression pattern and localization of
estrogen receptor beta (ER-β) and nerve
growth factor (NGF).
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Table 1. Cont.

Intervention Model Analyzed Observations

Cabergoline 0.5 mg tablets, twice a week for
12 weeks [111] Women with endometriosis Cabergoline decreased the size of

endometrioma.

Cabergoline 0.25 mg twice weekly for
6 months [112]

Women with
endometriosis-associated

pain syndrome

Cabergoline combined with hormone
therapy standard schemes reduced the
pain syndrome in patients with genital
I–III endometriosis degree.

Quinagolide at 50 or 200 mg/kg per day for
14 days [113] Women with endometriosis Quinagolide induced a 69.5% reduction

in the size of the lesions.

Cabergoline (0.5 mg twice
weekly × 6 months) [114] Clinical trial
NCT02542410. Status: completed

Women with endometriosis

In this pilot study, the change in the
worst pain score (time frame: 6 months)
after receiving cabergoline was measured.
Moreover, changes in the sizes (mm) of
endometrioma, deep infiltrating
endometriosis, and adenomyosis lesions
summed by type on magnetic resonance
images at cycle 4 were also measured
(time frame: at baseline and at menstrual
cycle 4). Cabergoline decreased the pain
score, and changes in the endometrial
lesions inhibiting size and blood vessel
growth was observed.

Quinagolide (1080 µg with daily target
release rate of 13.5 µg) [115]. Clinical trial
NCT03749109. Status: completed

Women with endometriosis

In this clinical trial, changes in the sizes
(mm) of endometrioma, deep infiltrating
endometriosis, and adenomyosis lesions
(time frame: at baseline and at menstrual
cycle 4) were measured via magnetic
resonance at cycle 4. Quinagolide
decreased the number and size of the
endometrial and adenomyosis lesions.

Cabergoline (0.5 mg twice weekly for
6 months) [116]. Clinical trial NCT03928288.
Status: recruiting

Women with endometriosis

In this clinical trial, the authors will
measure changes in pain severity with
different scales: the brief pain inventory
interference scale (BPI), visual analog
scale (VAS), and Biberoglu and Behrman
patient ratings scale (B&B) over 6 months
(time frame: every 6 weeks for 6 months).

6.2. Therapeutic Potential of Dopamine and Dopamine Agonists in Cancer

It has been shown that D2R is upregulated in many cancers, and the use of D2R DA-Ag
has an anticancer efficacy. The protein and gene expression of D2R was observed in patient
samples or cell lines with different types of breast, cervical, brain, and lung cancers. The
use of D2R DA-Ag affects different metabolic processes, including autophagy, apoptosis,
survival signaling, and proliferation, showing that the use of these drugs as anticancer
agents might have chemotherapeutic utility [2]. In relation to the angiogenesis process,
it is well established that DA-Ag decreases tumor angiogenesis by inhibiting VEGFR 2-
mediated signaling in endothelial cells. Previous studies have shown that DA inhibits the
proliferation and migration of the VEGF-induced endothelial cell line HUVEC [117–120].
The D2R agonist stopped the growth of lung cancer in a human xenograft model, and
some of the beneficial antiangiogenic effects of D2R DA-Ag may occur through the inhibi-
tion of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (responsible for
producing reactive oxygen species) since it promotes angiogenesis [86]. Regarding cate-
cholamine tumor studies, DA, by acting through D2R, inhibits angiogenesis by suppressing
the action of the vascular permeability factor and VEGF [121] in both adult endothelial
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cells and endothelial progenitor cells. In contrast, norepinephrine and epinephrine, by
acting through β-adrenoceptors, promote the synthesis of proangiogenic factors in tumor
cells [122]. Angiogenesis is related to tumor growth. In aggressive cancer, the blood supply
is increased, and endothelial epinephrine cells mobilize from the bone marrow to the tumor
site. DA in different kinds of cancer reduces both angiogenic mechanisms [87,123]. Subse-
quently, further studies with DA-Ag showed the capability to increase D2R expression in
endothelial cells, promoting the internalization of VEGFR 2 (Figure 2). Endothelial cells and
macrophages reduce VEGF expression and release into peritoneal fluid. In addition, the
availability of plasminogen activator inhibitor-1 decreases, which improves fibrinolysis and
diminishes angiogenesis [80]. The antiangiogenic activity of cabergoline is expressed in two
ways. First, the interaction of cabergoline with D2Rs results in a reduction in prolactin (PLR)
cell function, causing a general and local decrease in PRL levels [124]. Cabergoline causes
a decrease in PRL, leading to hemoxygenase-1-dependent angiogenesis in macrophages
due to decreased VEGF levels. Second, the interaction of cabergoline with D2R leads to
the disruption of VEGF binding to its receptor VEGFR 2 and the blockage of VEGF and
VEGFR 2 transcription, resulting in an antiangiogenic effect [112]. The antiangiogenic effect
of DA and DA-Ag has been demonstrated in vitro and in vivo (Table 2) in different types
of cancer; however, more research is still required in this regard.

Table 2. Experimental studies and/or clinical trials in which the effects of DA and DA-Ag on cancer
are being studied.

Intervention Model Analyzed Observations

Cancer therapy using cobalt ferrite (CF)
nanoparticles as a DA delivery agent by
functionalizing CF-DA-polyethylene
glycol (PEG) [125]

Human
A549 cells lung cancer

CF-DA-PEG nanoparticles showed an
anticancer effect by inducing apoptosis
through activating the cytochrome-c and
caspase-dependent apoptotic pathway and
reactive oxygen species generation.

DA delivery via
pH-sensitive nanoparticles [126] Breast cancer mouse model

Nanoparticles induce tumor blood vessel
normalization, improving the antitumor
chemotherapeutic efficacy of doxorubicin.

DA 25 mg/kg twice a week [127] Mouse model
(C57BL/6) of pancreatic cancer

DA has synergistic roles with
chemotherapy for pancreatic cancer by
suppressing tumor-associated
macrophages-derived inflammations.

Cabergoline (total week dose of 3.5 mg,
starting 6 months after transsphenoidal
surgery) [128]. Clinical trial NCT03271918.
Status: completed

Subjects with pituitary adenoma
Tumor shrinkage, tumor rest stabilization,
and cardiovascular safety (time frame:
24 months).

Cabergoline at a dose of 1 mg orally, twice a
week for 4 weeks [129] Women with breast cancer

Cabergoline was well tolerated, and
although the overall response rate was low,
a small subgroup of patients experienced
prolonged disease control.

DA vasopressor dose individually titrated
according to mean arterial pressure [130].
Clinical trial NCT02241083 Status: completed

Subjects with head and neck cancer Evidence of clinically definite ischemia
(time frame: 72 h).

Cabergoline, bromocriptine, or quinagolide
(DA-Ag) [131]. Clinical trial NCT04107480.
Status: recruiting

Subjects with prolactinoma
Health-related quality of life (time frame:
12 months) and long-term remission (time
frame: 36 months).

Ropirinole
(0.25 mg/day–6.0 mg/day oral) [132].
Clinical trial: NCT03038308.
Status: Completed

Subjects with prolactinoma

Percentage of subjects that achieved stable
PRL normalization (time frame:
6–12 months). A dose-dependent PRL nadir
occurred 4.4 ± 1.2 h after drug intake, and
PRL concentrations transiently normalized.

Cabergoline (twice weekly for weeks 1–4.
Courses repeat every 4 weeks in the absence
of disease progression or unacceptable
toxicity) [133]. Clinical trial NCT01730729
Status: Completed

Women with breast cancer
Overall response rate at 2 months (time
frame: after 8 weeks (2 cycles)
of treatment).
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6.3. Therapeutic Potential of Dopamine and Dopamine Agonists in Osteoarthritis

One of the fundamental characteristics of OA is the wear and tear of articular cartilage.
During this process, the reactivation of chondrocyte maturation toward hypertrophy occurs,
resulting in bone formation at the edges of the articular surface (osteophytes) [134–136].
Articular cartilage maintains a stable phenotype throughout life; however, with aging
or articular cartilage injury, OA appears. Healthy articular cartilage lacks nerve endings
and blood vessels, which form simultaneously with bone formation during OA [137,138].
Because of the formation of these nerve endings, OA is a chronic pain condition; however,
the role of neurotransmitters during OA is just beginning to be understood [139–144].
Although cartilage lacks nerve endings, chondrocytes have been found to express some
catecholamine receptors, and the role of DA during bone formation has been studied
in vitro and also in fracture models in adult individuals [140,145,146]. Another important
aspect in the pathogenesis of OA is inflammation, which is exacerbated in the initial phase
of OA, mainly by cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor alpha
(TNFα), which can also contribute to the damage of articular chondrocytes and ultimately
to the dedifferentiation of chondrocytes to a fibrocartilaginous phenotype and finally to
bone formation [144,147–149].

DA has an anti-inflammatory effect; it has been shown to inhibit the production of
proinflammatory cytokines such as interleukin-6 (IL-6), TNFα, and inducible nitric oxide
synthase (iNOS) induced by lipopolysaccharide in microglia, and this appears to occur
through blocking nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)
signaling [150]. This led us to believe that the role of DA in OA would have a “protective”
role on articular cartilage damage in vivo and in vitro models of OA. In a study performed
in an in vitro experimental model of OA that consisted of treating chondrocytes with IL-1β,
it was shown that in DA-treated chondrocytes, they also upregulate the NF-κB and Janus
kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathways,
inhibiting their nuclear activation and leading to the inhibition of articular cartilage damage
markers such as iNOS, cyclooxygenase-2 (COX-2), metalloproteases-1, -3 and -13 (MMP-1,
MMP-3, and MMP-13), while markers of healthy articular cartilage such as type II collagen
and glycosaminoglycan content were downregulated [139]. In the same work, they found
that in an animal model of OA, in mice with destabilization of the medial meniscus, when
treated with DA, the effects of joint damage were reversed.

Articular cartilage is an avascular tissue, but in OA, when the synovial membrane
becomes inflamed, angiogenesis begins, which is the appearance of blood vessels in the
articular cartilage, accelerating the process of bone formation on the cartilage surface with
subsequent osteophyte formation [151,152]. Angiogenesis can be caused by synovitis from
inflammatory cells such as macrophages that secrete VEGF [153] and in turn induce other
cell types such as endothelial cells and fibroblasts to secrete other angiogenic factors such as
TNFα and IL-1β [154,155]. On the other hand, angiopoietin plays a regulatory role in angio-
genesis by controlling cartilage vascularization [156], and this angiopoietin under normal
conditions is produced by synoviocytes. Cartilage degradation accompanies pannus forma-
tion and is regulated by the activity of MMP-3, MMP-9, and MMP-13 [157–161], which pro-
mote the IL-1β-promoted turnover of the extracellular matrix [149,162–164]. Under normal
conditions, articular chondrocytes produce antiangiogenic factors such as Troponin-1 and
Chondromodulin-1, among others, as well as inhibitors of metalloproteinase [159,165–167].
In contrast, hypertrophic chondrocytes present receptors for angiogenic factors, which
initiates the last phase of the endochondral ossification in long bones, but in joints, this
only occurs when chondrocytes are damaged [166,168]. Another important factor regu-
lating angiogenesis is hypoxia-inducible factor (HIF-1), which joint chondrocytes need to
survive in a hostile environment with low oxygen levels (hypoxia) [169,170]; if these levels
increase, then the transcription factor SRY-box transcription factor 9 (SOX-9) decreases its
expression, and chondrocytes rapidly mature into hypertrophic chondrocytes [171,172],
which is an important step in endochondral ossification but also in the establishment of
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OA. Additionally, the adipokine visfatin has been reported to increase VEGF-dependent
angiogenesis, and patients with OA have elevated visfatin levels [173].

The regulation of angiogenesis is thus one of the important points for the treatment of
OA. Thus, VEGF signaling may be one of the main therapeutic targets for this disease. The
inhibition of VEGF signaling can reduce the progression of OA, and the use of bevacizumab,
which is an antibody against VEGF, inhibited angiogenesis and the progression of OA in a
rabbit model of OA and increased the thickness and quality of articular cartilage [174,175].
In addition, how miR-485-5p, which is the shRNA of visfatin, inhibits angiogenesis and
OA progression in a rat model of OA has been studied [173]. All this creates opportunities
for researchers to design treatments that block angiogenesis in OA patients and reduce
articular cartilage damage.

It is possible that during OA, DA may act on stem cells that contribute to osteophyte
formation during OA, as several papers show how DA inhibits mesenchymal stem cell
migration through its D2R [176] and may contribute to bone mass loss and inhibit osteoge-
nesis [97], as it has also been shown to suppress rat bone marrow stem cell differentiation
through the protein kinase B/Glycogen synthase kinase-3 beta/β-catenin (AKT/GSK-
3β/β-catenin) pathway. Thus, the modulation of DA receptors in osteoblasts has also been
proposed as a possible therapy to induce healing in those with rheumatoid arthritis [140]
and possibly osteoporosis. We think that, in contrast, the activation or application of DA can
regulate the wear and deterioration of articular cartilage in different mechanisms, such as
by regulating inflammation, controlling chondrocyte maturation toward hypertrophy, and
consequently inhibiting osteoblast formation on the articular surface, where osteophytes
are usually formed from fibrochondrocytes or bone marrow stem cells; additionally, we
think that DA can reduce angiogenesis through D2R, which suggests that using DA can be
an important antiangiogenic strategy to treat OA, but further studies are needed to clarify
this issue.

Another indication that DA contributes to cartilage maintenance may be due to a
reciprocal role in the sonic hedgehog (Shh) signaling pathway, as it is well known that Shh
is required for dopaminergic neuronal development [177,178], rat bone marrow mesenchy-
mal stem cells express dopaminergic genes, and Indian hedgehogs control chondrocyte
differentiation and maturation during skeletogenesis. However, the role of the hedgehog
pathway is controversial; although there is much evidence that the overactivation of the
pathway leads to OA pathogenesis, the complete abrogation of the pathway also results in
the same problem [179–182].

Although there are indications that DA may help reduce articular cartilage wear and
reduce pain, few treatments for OA are being applied. One study proposed crosslinked
hyaluronic acid infiltration with DA to improve joint lubrication and repair articular
cartilage [4]. However, studies have not focused on demonstrating the impact of DA on
the inhibition of angiogenesis in OA. Table 3 shows some studies that have evaluated DA
in OA.

Table 3. Experimental studies and/or clinical trials in which the effects of DA and DA-Ag in
osteoarthritis (OA) are being studied.

Intervention Model Analyzed Observations

In vitro: DA 100 µM
In vivo: DA was administered by
intra-articular injection once a
week for 12 weeks
[139]

C28/I2 cells and primary cell culture of
human chondrocytes
Eight-week-old C57BL/6 male mice with
surgically induced destabilization of the
medial meniscus

In vitro, DA treatment inhibited the
production of inducible nitric oxide
synthase, COX-2, MMP-1, MMP-3, and
MMP-13. DA reversed IL-1β-treated
nuclear factor-kappa B activation and
JAK2/STAT3 phosphorylation.
In vivo, DA suppressed the degradation
of cartilage matrix and reduced OA.

Copolymer P(DMA-co-MPC) with DA
hydrochloride (5 g, 26.5 mmol)
[183]

Mouse MC3T3-E1 osteoblastic cells
Improved lubrication and decreased
reactive oxygen species in
joint inflammation.
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Table 3. Cont.

Intervention Model Analyzed Observations

DA–melanin nanoparticles [184]
Primary chondrocytes were isolated from
knee joint cartilage of 3-day-old
Sprague–Dawley rats

DA–melanin nanoparticles have excellent
anti-inflammatory and chondroprotective
effects by inhibiting intracellular reactive
oxygen species and reactive nitrogen
species in vitro and in vivo.

Injectable hydrogel (alginate–DA,
chondroitin sulfate, and
regenerated silk fibroin) [185]

The adhesive strength of the material was
measured by using a porcine skin
interface and porcine cartilage ex
vivo model

Hydrogel enhanced
bone-marrow-derived mesenchymal
stem cells recruitment, proliferation, and
differentiation, as well as cartilage
regeneration in a rat model.

D1R stimulation with fenoldopam
D2R stimulation with ropinirole [186]

Cell culture and synovial fibroblasts from
knee tissue from patients with
rheumatoid arthritis and OA who
underwent knee joint
replacement surgery

Showed the involvement of the
dopaminergic pathway in migration of
synovial fibroblasts, supporting the
therapeutic potential of the dopaminergic
pathway in RA and in OA.

7. Advantages and Disadvantages of Dopamine (DA) and Dopamine Agonists
(DA-Ag) Compared to Monoclonal Antibody Inhibitors of the VEGF/VEGFR
2 Pathway

Traditionally, antiangiogenic agents targeting the VEGF signaling pathway can be
broadly divided into three categories: (1) anti-VEGF antibodies, (2) anti-VEGFR antibodies,
and (3) VEGFR tyrosine kinase inhibitors (TKIs) [18,19]. Monoclonal antibody-based ther-
apy is one of the most important strategies used to treat patients with various diseases. To
date, since 1975, at least 570 therapeutic monoclonal antibodies have been studied in clinical
trials by commercial companies, 79 therapies have been approved by the U.S. Food and
Drug Administration and are currently on the market, and many more are being evaluated
in clinical trials [187]. Antiangiogenesis monoclonal therapy began in 2004 with the ap-
proval of bevacizumab (avastin), a humanized anti-VEGF-A monoclonal antibody that acts
by selectively binding to circulating VEGF and thereby inhibits the binding of VEGF to its
cell surface receptors [188]. Other examples of VEGF-A antagonist monoclonal antibodies
include ranibizumab and brolucizumab [187]. Moreover, ramucirumab (cyramza) and
tanibirumab were developed as direct VEGFR 2 antagonists that target VEGFR 2 and block
the binding of multiple VEGF ligands to that receptor [18,19,189,190]. In addition to mono-
clonal antibodies, TKIs were developed to block the kinase activity of VEGFRs and their
downstream signal transduction to suppress endothelial proliferation and disrupt vascular
nutrient and oxygen supply [19]. Several TKIs have been approved, including sunitinib,
sorafenib, pazopanib, vandetanib, axitinib, cediranib, vatalanib, motesanib, regorafenib,
cabozantinib, and lenvatinib [19,188,189]. Additionally, a second generation of multikinase
inhibitors with an improved target affinity, better toxicity profiles, and fewer off-target
effects have been developed [19].

Many biotech companies have heralded antiangiogenic monoclonal antibodies and
TIKs as “magic bullets”; however, two major drawbacks of these therapies must be con-
sidered: side effects and cost [17,83]. Although antiangiogenesis strategies have been
effective at suppressing tumor progression and metastasis in combination with chemother-
apy for years, an increased number of adverse events have been associated with them;
bleeding, clots that can lead to a stroke or myocardial infarction, arterial hypertension,
proteinuria, and gastrointestinal disorders have been reported [17]. Additionally, hand–
foot syndrome, diarrhea, and gastrointestinal perforation were significantly increased in
patients treated with angiogenesis inhibitors [191]. On the other hand, the TIKs sorafenib
and sunitinib were associated with hypertension, proteinuria, bleeding, skin reactions,
hand–foot syndrome, fatigue, and diarrhea [192]. Remarkably, bevacizumab, the leader in
clinical therapy to suppress tumor angiogenesis, showed significant side effects and drug
resistance. The bevacizumab treatment was associated with proteinuria, hypertension,
gastrointestinal perforation, hemorrhage, and stroke [190,192]. In addition, long-term
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treatment with bevacizumab may lead to the development of drug resistance due to the
upregulation of other redundant tumor-derived angiogenic factors [190]. Furthermore, in
most cancers, including breast, melanoma, pancreatic, and prostate cancer, bevacizumab
failed to increase survival [19].

DA and DA-Ag are not without side effects, and DA-Ag has been observed to cause
peripheral edema; orthostatic hypotension; hallucinations; and the sudden onset of sleeping
and impulse-control disorders, including hypersexuality and compulsive eating, gambling,
and shopping [17,193]. However, VEGF inhibitors have a higher and more severe side
effect profile than DA and its DA-Ag, which can be accepted for certain cancer patients due
to their critical situation but can certainly be improved for patients with endometriosis, OA,
and some types of cancer [17,81]. In addition, the DA treatment significantly reduced the
angiogenesis and growth of orthotopic HT29 colon cancer and subcutaneous Lewis lung
carcinoma tumors; DA was also able to ameliorate neutropenia induced by commonly used
anticancer drugs, and DA did not cause hypertension or hematologic, renal, or hepatic
toxicity in normal mice, HT29-bearing mice, or Lewis lung carcinoma-bearing mice [83].
Additionally, DA or D2R DA-Ag could be a safer option in patients with or at risk for car-
diovascular complications [17,83]. Treatment with a D2R agonist has been shown to block
tumor growth, induce the regression of an aberrant blood supply, and normalize blood
vessels in a mutant mouse model, and chronic treatment is able to restore the disturbed
balance between proangiogenic and antiangiogenic factors [194]. Furthermore, cabergoline
has been widely used and is considered a safe and nontoxic medication [195–200].

On the other hand, as we mentioned before, another major disadvantage of angio-
genesis inhibitory agents, especially monoclonal antibodies, is the cost. For example, two
studies estimated the average cost of an antiangiogenic therapy with bevacizumab, so-
rafenib, and sunitinib to be 13,500 USD, 6100 USD, and 6900 USD per patient per month,
respectively [201,202]. However, for DA and DA-Ag, the costs vary between 300 USD and
600 USD per patient per month [17,193,203]. This means that DA treatment is ~10 to 45
times cheaper than angiogenesis inhibitors. This significant difference in cost provides an
additional benefit to the antiangiogenic potential of DA.

However, although DA and DA-Ag have important advantages over monoclonal anti-
bodies and TKIs in that they are economically more accessible, have greater availability, and
probably have fewer adverse effects, large human studies are needed to clearly determine
the full spectrum of the safety, dosing, and efficacy of using DA-related therapy as a new
treatment in cancer, endometriosis, and OA. This could lead to lower costs and reduced
adverse effects, which is the priority of the health care system.

8. Conclusions

The antiangiogenic effects of DA and DA-Ag have therapeutic potential for cancer,
endometriosis, and OA, with potential advantages over angiogenic inhibitory monoclonal
antibodies. However, further clinical studies are needed to demonstrate the efficacy and
safety of DA and DA-Ag as adjuvants in pathologies requiring a reduction in angiogenesis.
Further studies are needed to study which alternative proangiogenic pathways can be
activated in the pathologies in which DA and DA-Ag are used as adjuvants. After this, it is
possible to propose combinations of DA and DA-Ag with inhibitors of activated alternate
proangiogenic pathways to increase their therapeutic efficacy.
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DOPAL 3,4-dihydroxyphenylacetaldehyde
DOPET 3,4-dihydroxyphenylethanol
HMPAL 3-methoxy-4-hydroxyphenylacetaldehyde
3-MT 3-methoxytyramine
AC Adenylyl cyclase
ADH Alcohol dehydrogenase
AKT Protein kinase B
ALDH Aldehyde dehydrogenase
DOPAC Carboxylic acid 3,4-dihydroxyphenylacetic acid
COMT Catechol O-methyl-transferase
CNS Central nervous system
CF Cobalt ferrite
CF-DA-PEG Cobalt ferrite-dopamine-polyethylene glycol
cAMP Cyclic AMP
COX-2 Cyclooxygenase-2
DA Dopamine
DA-Ag Dopamine agonists
D2R Dopamine receptor D2
ER-β Estrogen receptor beta
ERK Extracellular-signal-regulated kinase
FAK Focal adhesion kinase
GSK-3β Glycogen synthase kinase-3 beta
HVA Homovanillic acid
HIF Hypoxia-inducible factor
iNOS Inducible nitric oxide synthase
IL Interleukin
JAK Janus kinase
KLF11 Krüppel-like factor 11
L-DOPA L-3,4-dihydroxyphenylalanine
L-amino acid decarboxylase DOPA decarboxylase
MMPs Matrix metalloproteases
MAPK Mitogen-activated protein kinase
MAO Monoamine oxidase
NGF Nerve growth factor
NADPH Nicotinamide adenine dinucleotide phosphate
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
OA Osteoarthritis
PLR Prolactin
SOX-9 SRY-box transcription factor 9
STAT Signal transducer and activator of transcription
Shh Sonic hedgehog
SHP-2 Phosphatase-2 containing Src homology region 2 domain
TNFα Tumor necrosis factor alpha
TH Tyrosine hydroxylase enzyme
TKIs Tyrosine kinase inhibitor
VEGF Vascular endothelial growth factor
VEGFR 2 Vascular endothelial growth factor receptor 2
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