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Abstract: Functions of about 10% of all the proteins and their associations with diseases are poorly
annotated or not annotated at all. Among these proteins, there is a group of uncharacterized
chromosome-specific open-reading frame genes (CxORFx) from the ‘Tdark’ category. The aim of
the work was to reveal associations of CxORFx gene expression and ORF proteins’ subinteractomes
with cancer-driven cellular processes and molecular pathways. We performed systems biology and
bioinformatic analysis of 219 differentially expressed CxORFx genes in cancers, an estimation of
prognostic significance of novel transcriptomic signatures and analysis of subinteractome composition
using several web servers (GEPIA2, KMplotter, ROC-plotter, TIMER, cBioPortal, DepMap, EnrichR,
PepPSy, cProSite, WebGestalt, CancerGeneNet, PathwAX II and FunCoup). The subinteractome
of each ORF protein was revealed using ten different data sources on physical protein–protein
interactions (PPIs) to obtain representative datasets for the exploration of possible cellular functions
of ORF proteins through a spectrum of neighboring annotated protein partners. A total of 42 out of
219 presumably cancer-associated ORF proteins and 30 cancer-dependent binary PPIs were found.
Additionally, a bibliometric analysis of 204 publications allowed us to retrieve biomedical terms
related to ORF genes. In spite of recent progress in functional studies of ORF genes, the current
investigations aim at finding out the prognostic value of CxORFx expression patterns in cancers. The
results obtained expand the understanding of the possible functions of the poorly annotated CxORFx
in the cancer context.

Keywords: uncharacterized proteins; open-reading frame; subinteractome; gene expression;
cancers; tumors

1. Introduction

Elucidation of molecular mechanisms underlying the malignant transformation of
cells is one of the most popular areas in biomedical investigations with preclinical and
clinical implications. Aberrant functioning of signal transduction, regulatory and metabolic
cascades significantly contribute to malignant transformation [1], therefore, many ways of
pharmacological correction of molecular components of cascades are being under devel-
opment [2–4]. In recent years, significant progress has been made in the identification of
proteins, which are directly involved in oncogenic cascades and modulate them by means
of protein–protein interactions (PPIs) and post-transcriptional regulation [5–8]. Thus, the
exploration of a spectrum of novel cancer-associated proteins is a promising strategy in
anticancer drug discovery.

Currently, up to 90% of predicted human proteins (19,467 proteins) have been detected
with high-confidence proteomic methods [9,10] and annotated, while 10% of proteins
have not yet been annotated or at least poorly annotated in structural, functional and
disease-specific context [10,11]. Among these proteins, there is a group of uncharacterized
chromosome-specific open-reading frame proteins (CxORFx or ORF proteins) [12–15]. The
nomenclature of CxORFx genes (ORF genes), encoding ORF proteins, means a chromosome
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number (Cx) and an open-reading frame number (ORFx). It is worth mentioning that
not all mapped ORF genes are protein coding. Of particular interest are studies devoted
to the elucidation of the possible involvement of uncharacterized ORF genes in cancers.
Some ORF genes such as C20orf27 [16] and C19orf53 [17] have already been described in
association with cell invasion and proliferation. C8orf48 gene overexpression has led to
a reduction of these biological processes in colorectal cancer cells [18]. C15orf39 protein
has been identified as a substrate for mitogen-activated protein kinase MAPK1 [19], which
is frequently deregulated in cancers. Recently, Joshi and colleagues [20] showed that
C16orf87 protein interacts with epigenetic master regulator histone deacetylase 1 targeted
by anticancer drugs. Additionally, there are data on gene expression (e.g., the Human
Proteome Atlas) and protein–protein interactions patterns with the participation of ORF
proteins. The above-mentioned facts point to a research relevance in functional and disease-
specific characterization of ORF genes, which is still missing for the vast majority of them.

A group of 342 ORF genes, belonging to the ‘T-dark’ category, was retrieved from the
PHAROS database. A ‘T-dark’ category includes genes (proteins) that were mentioned
in publications and other evidence, but their functional roles and pharmacological tar-
geting have not been fully studied or remain unknown. A list of 219 ORF genes that are
differentially expressed in a wide range of cancers was selected. Then, we used systems
biology and bioinformatic analysis to reveal associations between ORF genes and malignant
transformation of cells as well as to predict the involvement of uncharacterized proteins in
cellular functions and molecular cascades through a spectrum of neighboring annotated
proteins that physically interact and form binary or higher-order complexes with them.

2. Results
2.1. ORF Genes: Expression Patterns and Their Prognostic Significance
2.1.1. Gene Expression Patterns

For a panoramic view of 219 differentially expressed ORF genes, we used the prin-
cipal component analysis, which made it possible to separate at least two cancer clusters
(Figure 1) with similar expression patterns of ORF genes. One cluster includes 68 genes pre-
dominantly up-regulated in diffuse large B cell lymphoma (DLBC) and thymoma (THYM)
(cluster 1). Cluster 2 includes four cancer types: 16 up-regulated genes in uterine corpus
endometrial carcinoma (UCEC), 11 up-regulated genes in ovarian carcinoma (OV), 9 genes
in colorectal adenocarcinoma (COAD) and 12 genes in rectum adenocarcinoma (READ).
More specific expression patterns of ORF genes are characteristic of discrete (non-clustered)
cancers. Thus, 124 out of 219 genes are down-regulated in testicular germ cell tumor
(TGCT), except for one up-regulated (C6orf132), and 100 out of them are down-regulated
in TGCT only (mentioned here, ‘TGCT-specific 100-gene expression signature’, Figure S1).
Twenty-three ORF genes are up-regulated in acute myeloid leukemia (LAML) and ten
genes are down-regulated in skin cutaneous melanoma (SKCM) (Figure 1).

There is also a number of ORF genes with different expression in ≥ five cancers
(mentioned here, ‘a pan-cancer group’) (Figure 2): preferentially down-regulated genes
(C11orf96, C5orf38 and C8orf88); preferentially up-regulated genes (C19orf48, C1orf210,
C4orf48 and C6orf132); mixed type of gene expression (C1orf162, C2orf54, C2orf74 and
C14orf132). Figure 2 shows a heat map of gene expression changes at mRNA and total
protein levels. It can be seen that there is good consistency between the vectors of expression
changes at both levels for C11orf96, C6orf132 and C8orf88 genes, in particular, in UCEC.
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Figure 1. A panoramic view of clustered and non-clustered cancers according to the patterns of 
differentially expressed ORF genes in the coordinates of principle components PC2 and PC1. No 
scaling is applied to rows; singular value decomposition (SVD) with imputation was used to calcu-
late PCs. X- and Y-axis show PC2 and PC1 that explain 20.9% and 24.8% of the total variance, re-
spectively. Clusters 1 and 2 are highlighted in blue and purple, respectively. 

 
Figure 2. Visualization of differently expressed ORF genes in cancers (pan-cancer group). Up- and 
down-regulated genes are highlighted with yellow and violet colors, respectively. TGCT—testicular 
germ cell tumor, LAML—acute myeloid leukemia, DLBC—lymphoid neoplasm diffuse large B-cell 
lymphoma, THYM—thymoma, SKCM—skin cutaneous melanoma, LUSC—lung squamous cell 
carcinoma, LUAD—lung adenocarcinoma, GBM—glioblastoma multiforme, UCES—uterine corpus 
endometrial carcinoma, UCS—uterine carcinosarcoma, OV—ovarian serous cystadenocarcinoma, 

Figure 1. A panoramic view of clustered and non-clustered cancers according to the patterns of
differentially expressed ORF genes in the coordinates of principle components PC2 and PC1. No
scaling is applied to rows; singular value decomposition (SVD) with imputation was used to calculate
PCs. X- and Y-axis show PC2 and PC1 that explain 20.9% and 24.8% of the total variance, respectively.
Clusters 1 and 2 are highlighted in blue and purple, respectively.
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Figure 2. Visualization of differently expressed ORF genes in cancers (pan-cancer group). Up- and
down-regulated genes are highlighted with yellow and violet colors, respectively. TGCT—testicular
germ cell tumor, LAML—acute myeloid leukemia, DLBC—lymphoid neoplasm diffuse large B-cell
lymphoma, THYM—thymoma, SKCM—skin cutaneous melanoma, LUSC—lung squamous cell
carcinoma, LUAD—lung adenocarcinoma, GBM—glioblastoma multiforme, UCES—uterine corpus
endometrial carcinoma, UCS—uterine carcinosarcoma, OV—ovarian serous cystadenocarcinoma,
BRCA—breast invasive carcinoma, KICH—kidney chromophobe carcinoma, KIRC—kidney renal clear
cell carcinoma, KIRP—kidney renal papillary cell carcinoma, COAD—colon adenocarcinoma, READ—
rectum adenocarcinoma, PAAD—pancreatic adenocarcinoma, and ESCA—esophageal carcinoma.



Int. J. Mol. Sci. 2023, 24, 10190 4 of 23

2.1.2. Prognostic and Predictive Significance

The tissue-specific transcriptomic signatures are useful for the prognosis of cancer
outcomes (survival rates and disease monitoring) as well as for the prediction of the
immune and chemotherapy effectiveness. Prioritization of gene expression signatures with
prognostic significance will contribute to the development of multigene transcriptomic
panels for cancer molecular subtyping and a personalized approach to cancer treatment.
Prognostic significance is often connected with the overall survival of patients (OS, the
length of time from the date of diagnosis or the start of treatment for disease, during which
patients with a diagnosed disease are still alive) and disease-free survival (DFS, the length
of time after primary treatment for disease ends that the patient survives without any signs
of disease). Kaplan–Meier analysis is a statistical method for estimating the survival curve
with a log-rank test, which provides the comparison of groups with low and high levels of
gene expression.

The potential prognostic significance is already known for 85 out of 219 ORF genes
encoding chromosome-specific uncharacterized ORF proteins in 16 types of solid tumors
(according to the Human Proteome Atlas portal) (Table S1).

Endometrial, liver, pancreatic and renal cancers have the largest number of ORF genes
with prognostic significance—20, 20, 14 and 43 genes, respectively. In addition, many
genes have prognostic significance in more than one type of cancer. For example, a high
level of C3orf62 gene expression correlates with higher survival rates in patients with
urothelial/gastric/pancreatic/breast, lung/head and neck cancers, while in the case of
liver cancer, it correlates with lower survival rates.

We attempted to find novel transcriptomic signatures of differently expressed ORF
genes in cancers using a Kaplan–Meier analysis of The Cancer Genome Atlas cohorts. It
was shown that genes included in ‘TGCT-specific 100-gene expression signature’ have
no comprehensive prognostic significance in the TGCT cohort, except for a ‘panel’ of six
genes—C11orf94, C1orf105, C20orf144, C22orf31, C9orf13 and CXorf49. The low levels of
their expression correlate with better DFS of patients with TGCT (hazard ratio (HR) = 2.9
and p-value = 0.0047 for the high expression group, n = 136).

Interestingly, in colorectal adenocarcinoma (COAD) or liver hepatocellular carcinoma
(LIHC) cohorts, the high levels of gene expression of a total amount of 100 genes correlate
with poor OS (HR = 1.7 or 1.8, respectively, p-value < 0.05) (Figure 3a,b). Conversely, the low
levels of gene expression in pancreatic adenocarcinoma (PAAD) and UCEC correlate with
DFS (HR = 0.46–0.48, p-value < 0.05) (Figure 3c,d). It should note that with a more stringent
cut-off HR-values (0.5 > HR > 2), connections of expression patterns of total amount of
100 genes with DFS are kept in PAAD or UCEC only. Further, we determined that a ‘panel’
of seven genes (C16orf78, C16orf86, C16orf96, C19orf18, C20orf144, C22orf42 and C3orf62) out
of 100 genes make a decisive contribution since their exclusion from analysis leads to a
significant decrease in prognostic significance of remaining 93 genes in PAAD or UCEC
(p-value > 0.05). Moreover, it is found that the low levels of expression of all seven genes,
at least in PAAD, correlate with unfavorable DFS (HR = 0.24, p-value = 0.0012) and OS (9.8
vs. 16.6 months, HR = 0.37, p-value = 0.000018).

Table 1 shows the potential prognostic significance of several ORF genes that allowed
us to prioritize two novel transcriptomic gene signatures for PAAD and READ. First, the
high levels of C14orf119 and C5orf46 gene expression (gene signature I) correlate with poor
OS in PAAD (16.6 vs. 30.4 months, HR = 2.1 (1.37–3.18), p-value < 0.001). In addition,
this gene signature was specific for LIHC cohort only (14.2 vs. 54.1 months, HR = 2.82
(1.69–4.72), p-value < 0.001) (a plot not shown). Second, the low levels of C6orf132, C6orf222
and C4orf19 gene expression (gene signature II) correlate with poor OS in READ (33.1 vs.
52.7 months, HR = 0.36 (0.16–0.8), p-value < 0.01) (a plot not shown). A similar HR value
is observed in the kidney renal clear cell carcinoma cohort (KIRC) (HR = 0.44 (0.32–0.61),
p-value < 0.001) (a plot not shown). Thus, transcriptomic gene signatures I and II can be
considered sufficiently specific for these types of cancers with a clear difference in survival
times almost twice and higher in low and high-expression groups. From Table 1, it also
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follows that the expression levels of C11orf52, C9orf116, C17orf51 and C1orf53 genes in the
UCEC cohort have prognostic significance, but median five-year survival values were not
calculated, probably due to the small number of appropriate clinical cases.
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Table 1. Prognostic significance of ORF genes expression patterns in different cancers * (five-year
overall survival rates).

Gene Cancer Hazard
Ratio

Low
Expression

Group,
Months **

High
Expression

Group,
Months **

Log-Rank
p-Value

C14orf119 PAAD 1.76
(1.16–2.68) 24.4 17.0 0.0069

C5orf46 PAAD 2.1
(1.27–3.46) 16.2 9.77 0.0031

C6orf222 READ 0.41
(0.19–0.89) 24.5 47.8 0.0210

C4orf19 READ 0.44
(0.21–0.96) 33.1 52.2 0.0350

C6orf132 READ 0.37
(0.17–0.8) 33.1 52.2 0.0083

C11orf52 UCEC 0.42
(0.24–0.75) n/d n/d 0.0023

C9orf116 UCEC 0.28
(0.14–0.58) n/d n/d 0.0003

C17orf51 UCEC 2.51
(1.49–4.34) n/d n/d 0.0006

C1orf53 UCEC 2.13
(1.32–3.42) n/d n/d 0.0014

* according to predictions on the KMplotter server, URL: https://kmplot.com/ (accessed on 1–20 March 2023)
using pan-cancer RNAseq dataset; ** upper quartile survival; PAAD—pancreatic adenocarcinoma, READ—rectum
adenocarcinoma, UCEC—uterine corpus endometrioid carcinoma.

Connections between ORF genes expression levels and immune cell infiltration in the
corresponding cancers were also searched for. In general, overexpression of the C4orf46,
C9orf40, C17orf67 and C21orf58 gene of thymoma correlates with tumor immune cell infiltra-
tion and gene expression levels of C1orf162, C16orf54 and CXorf21 correlate with immune
cell infiltration in many primary and metastatic tumors (Table S2). A high positive cor-
relation is observed between the up-regulation of some ORF genes and increased tumor
immune cell infiltration, especially by dendritic cells.

Finally, connections between ORF gene expression in tumor tissues and responses
to chemotherapy (predictive significance) were investigated. C22orf42 gene expression
levels in OV correlate with good responses to platinum-based drugs (fold-change and AUC
values ≈ 2 and 0.7, respectively) (Figure S2).

2.1.3. Other Aspects of Differently Expressed ORF Genes

We prioritized a group of differentially expressed ORF genes in cancers, for which the
occurrence of significant effects on the viability of a limited number of cell lines (“strongly
selective genes” subgroup) or most cell lines (“common essential genes” subgroup) is
directly dependent on gene knockouts or knockdowns (Table 2). Up-regulation of some
ORF genes in cancers is consistent with activity changes of certain protein kinases that
are encoded by driver genes and involved in signaling pathways responsible for cancer
progression. The cancer-dependent regulation of C12orf49 gene expression through nuclear
transcription factor Y subunit alpha (NFYA) is not yet known, however, there is evidence of
its role in the trans-activation of some cancer-promoting genes [21,22]. Transcription factor
GATA3, which can bind to the C8orf76 gene promoter, is expressed at an early stage of
thymus development and participate in thymocyte differentiation [23] as well as in control
lymphoid cell differentiation, being a tumor suppressor in B-cell lymphomagenesis. It also
follows from Table 2 that at least C1orf109 and C8orf33 gene expression may depend on
binding in their promotor regions of cAMP-responsive element binding protein 1 (CREB1).
Since CREB1 functions in cancer signaling [24], together with data on the involvement
of ABL1 and ERBB2 protein kinases in pathways in cancers, it suggests the presence of

https://kmplot.com/
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upstream cancer-associated tissue-specific transcriptional regulation in DLBC and THYM
cancers. Thus, an upstream regulation of the expression of ORF genes, which are critical
for cell viability, can occur during malignant transformation of cells.

Table 2. Up-stream regulation of expression patterns of ORF genes, which are critical for cell viability.

Genes *
Up-Regulation of

Gene Expression in
Cancers

Protein Kinase **
Perturbation

Correlates with
up-Regulation of ORF

Gene Expression

Transcription Factors
Kinase Involvement in

Cancer-Associated
Signaling Pathways #

Common essential genes ***

C1orf109 THYM ABL1, ERBB2, FGFR1 CREB1 Pathways in cancer

C1orf131 DLBC, THYM ERBB2, MAPK1 n/d

ErbB receptor tyrosine
kinase; gastric cancer,

endometrial cancer, lung
cancer

C9orf16 OV AKT1, FGFR1 n/d Pathways in cancer,
proteoglycans in cancer

C12orf45 DLBC, THYM AKT1, FGFR2 n/d

Pathways in cancer,
PI3K-Akt

(phosphoinositide-3-
kinase, AKT and mTOR

kinases), MAPK
(mitogen-activated protein

kinase)

C17orf58 DLBC, THYM SYK n/d PI3K-Akt

C19orf53 DLBC, THYM ATM, JAK2, MET,
PDGFRA n/d Pathways in cancer,

microRNAs in cancer

Strongly selective genes ***

C1orf112 DLBC, THYM ABL1, AKT1, JAK1,
JAK2 n/d Pathways in cancer,

microRNAs in cancer

C1orf21 LAML, PAAD, THYM
AKT1, ERBB3,

MAP2K1, MET,
TGFBR2

n/d MAPK, proteoglycans in
cancer

C8orf33 DLBC, THYM ABL1, ERBB2, MET,
PDGFRA CREB1 Pathways in cancer,

microRNAs in cancer

C8orf76 DLBC, THYM CDK4, MAP2K4,
MAPK1 GATA2

Kaposi sarcoma-associated
herpesvirus infection,

Human T-cell leukemia
virus 1 infection

C9orf40 DLBC, THYM ATM, BTK, MET, SYK n/d NF-kappa B signaling
pathway

C12orf49 DLBC, PAAD ATM, FGFR3 NFYA, USF1 n/d

* Protein-coding genes only; ** genes containing mutations that are causally implicated in cancer (according to the
cancer Gene Census); *** according to the DepMap portal; # pathway mapping was performed at the PathwAX II
server, URL: https://pathwax.sbc.su.se/ (accessed on 15–28 February 2023) using the KEGG database v.94.1 as a
source. n/d—not determined.

2.2. ORF Proteins

Evidence on a protein level is found for 200 out of 219 ORF genes according to
immunohistochemistry and/or mass-spectrometry data. Nineteen genes (C1orf14, C1orf53,
C1orf115, C2orf81, C4orf45, C5orf66, C6orf48, C6orf99, C7orf71, C8orf49, C10orf25, C11orf94,
C11orf98, C16orf82, C16orf90, C16orf197, C19orf67, C20orf141 and C20orf173) are expressed at
a transcript level only, pointing to probable ‘missing’ proteins. For example, the functionally

https://pathwax.sbc.su.se/
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significant product of the C8orf49 gene is a long non-coding RNA [25,26]. The distribution
of ORF proteins by molecular weights (Mw) is shown in Figure S3. The major part (25%)
includes proteins with Mw from 20 to 30 kDa. In total, micro-proteins with Mw from five
to 20 kDa are almost 38%. It is known that micro-proteins possess a number of beneficial
biological activities, for example, C5orf46 protein possesses antimicrobial activity [27]. It is
also interesting that the micro-protein C19orf48 is widely expressed in cancers and can be
processed for cytotoxic T lymphocyte (CTL) recognition [28].

Data on 237 subcellular localization sites were retrieved from The Human Protein Atlas
for 135 out of 200 ORF proteins. Two major groups of proteins with nuclear localization
sites (nucleoplasm, nucleolus, nuclear membrane and nuclear bodies) and cytoplasmic
sites make up about 41% and 18%, respectively (Figure S4). It can also be noted that
seven (C1orf54, C4orf48, C5orf46, C17orf67, C17orf99, C21orf62 and C22orf15) out of
135 proteins are predicted to be secreted. Using the Exocarta server [29,30], seven other
secreted ORF proteins are additionally identified: exosome-derived proteins C2orf16,
C2orf74, C11orf52, C16orf87 and C19orf18 (from urine samples); C1orf198 and C2orf88
proteins (from blood samples). C2orf74 and C19orf18 proteins appear to be membrane
associated since they are predicted to contain typical alpha helices for anchoring in the
hydrophobic membrane bilayer. Thus, at least 14 secreted ORF proteins may be involved
in intercellular communication and signaling functions. We did not observe data on these
secreted ORF proteins as potential biomarkers.

2.3. Protein–Protein Interactions of ORF Proteins and Their Subinteractomes
2.3.1. Structural Data

There is still very little information on the protein 3D structures among 219 differen-
tially expressed ORF genes in cancers. The Protein Data Bank, URL: https://www.rcsb.org/
(accessed on 15 February 2023) contains two crystallographic 3D-models of C1orf123
monomeric protein (PDB ID: 5zlq) [31] and C9orf64 dimeric protein (PDB ID: 7ugk) [32].
Using the interactive tool PDBePISA v.1.52 for analysis of protein–protein interfaces,
URL: https://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver (accessed on 17 Febru-
ary 2023), we analyzed the last model with resolution of 1.78 Å. Despite the relatively small
interface area (6% of the total surface area), it is enriched with 13 hydrogen bonds and
10 salt bridges. Interestingly, the dimeric form of C9orf64 protein, according to CavityPlus
server [33]) has two predicted ligand-binding pockets on the surface with a high level of
drugability (drug scores are 884 and 2237) compared to monomeric form with one ligand-
binding pocket (drug score = 281). This implies the higher potential of C9orf64 protein to
pharmacological targeting its dimeric form than monomeric one in case of its valid clinical
significance. Protein C2orf76 is described as a dimeric protein [34] that is involved in the
formation of an aggressive pancreatic cancer phenotype through induction of cell invasion
and proliferation. Protein C2orf76 can be considered as a potential drug target, but there is
no crystallographic data for in silico drug design.

2.3.2. Subinteractomes of ORF Proteins

The term ‘subinteractome’ means here a set of all the known protein partners that
physically interact with a target protein. What is known about the intermolecular interac-
tions with the participation of target ORF proteins? Protein C1orf123 specifically interacts
with the heavy-metal-associated domain of a copper chaperone for superoxide dismutase
encoded by the CCS gene [31]. Participation of another protein C16orf62 in the formation
of a functionally significant heterotrimer with DSCR3 and VPS29 proteins is shown in [35].
Protein C11orf98 can be a putative interaction partner of nucleophosmin (NPM1) and
nucleolin (NCL) [36]. Analysis of structural features and the PPIs spectrum of the C11orf96
protein points to the fact that it may be phosphorylated and plays a role in endoplasmic
reticulum stress, protein ubiquitination and gene transcription [37]. Protein C1orf112 is
probably cancer-associated as it follows from the functional analysis of its 31 protein part-
ners and co-expression data [38]. Thus, uncharacterized ORF proteins can participate in

https://www.rcsb.org/
https://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver
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homo and heterodimeric protein interactions and deciphering their subinteractomes helps
to predict functional roles through analysis of the PPIs spectrum.

A number of interactomic browsers (BioPlex, HIPPIE, MINT, hu.MAP, IID, InnateDB
and HuRI), as well as interactomic datasets from the publications (see Section 4 in more
details), were used to collect information about the subinteractomes of each ORF protein.
In general, 4317 unique PPIs for 177 ORF proteins were found, of which eight PPIs are
between the ORF proteins themselves. These are eight binary interactions: C1orf94 and
C1orf109; C1orf112 and C11orf87; C1orf52 and CXorf56; C2orf74 and C20orf27; C5orf24
and C16orf71; C5orf51 and C10orf82; C1orf131 and C16orf87; C1orf131 and C20orf197.
As for the rest of the 42 ORF proteins, there is a lack of any information about their PPIs.
There are 517 protein partners forming binary interactions with two different ORF proteins
(potential heterotrimeric complexes) and 768 PPIs, in which one protein partner interacts
with three or more ORF proteins (potential multimeric complexes). It indicates a wide PPI
subnetwork with connections between ORF proteins through common protein partners and
the shortest paths. The last ones are among potential multimeric complexes, where ORF
proteins can indirectly interact with the first-, second- and higher-order protein partners
(Figure 4).
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As a rule, subinteractome of a target protein includes protein partners that form
mainly stable PPIs with it, which is due to the peculiarities of experimental approaches
used for isolation and identification of protein partners from biosamples. At the same time,
it is not completely known what proportion of protein partners form direct interactions
with a target protein. Therefore, analysis of subinteractomes was carried out on the
assumption that each protein partner has an equal probability to directly interact with a
target ORF protein. The distribution of a number of protein partners of ORF proteins within
177 subinteractomes are as follows: <7 protein partners (63 ORF proteins), from 7 to 15
(30 ORF proteins), from 15 to 30 (40 ORF proteins), from 30 to 70 (27 ORF proteins),
from 70 to 100 (6 ORF proteins) and over 100 protein partners (11 ORF proteins). So,
subinteractomes of 103 ORF proteins, each containing from 7 to 100 protein partners, are
chosen for analysis. The choice of the minimal number of protein partners is due to the



Int. J. Mol. Sci. 2023, 24, 10190 10 of 23

sufficiency of functional enrichment analysis. The maximal number is limited in order to
reduce the redundancy of output functional terms.

Protein partners included in the subinteractome of any ORF protein are analyzed for
direct or indirect associations with ‘cancer hallmarks’. The ‘cancer hallmark’ score (CH-
score), which means here the relative frequency of occurrence of CH-associated proteins per
10 protein partners in the subinteractome of an ORF protein, is calculated. For example, CH-
score equal to one means that only one CH-associated protein is present among 10 protein
partners, including itself. Next, 70 out of 103 subinteractomes are prioritized according to
CH-score value ≥ 2, which corresponds to approximately the 25th percentile at a median
CH-score value equal to 2.8. Such subinteractomes consist of CH-associated proteins (a
‘core’) and other non-CH-associated protein partners. The results of molecular pathway
enrichment analysis of ‘core’ proteins and PPIs cluster modeling as well as tissue-specific
co-expression analysis are shown in Table S3. At least 42 subinteractomes of ORF proteins
are enriched with molecular pathways in cancers, form highly connected PPIs clusters of
CH-associated proteins and have noticeable or high correlation of co-expression between
ORF genes and genes, encoding CH-associated proteins (Table S3). These facts indirectly
speak in favor of the involvement of ORF proteins in signaling cascades and regulatory
networks, which are critical for the malignant transformation of cells.

High correlation coefficients (r-values ≥ 0.85) of gene co-expression may additionally
hint at the presence of direct interactions between ORF proteins and their protein partners.
As it follows from Table S3, among such tissue- and cancer-specific PPIs, there are the
following hits: C2orf88 and PRKAR1A (brain tissue), C5orf24 and WDR45B (thymoma),
C5orf24 and GOPC (thymoma), C6orf132 and CDH1 (colon transverse), C6orf132 and EZR
(colon), CXorf56 and RPRD1B (thymoma) and C16orf87 and ANAPC10 (thymoma). In this
regard, it is interesting to find potential binary PPIs, whose gene co-expression patterns
are highly cancer dependent. These PPIs can be predicted by the change of correlation
coefficients from positive to negative values in cancers relative to normal tissue and vice
versa. Thus, a group of 30 potential tissue-specific binary PPIs, involving ORF proteins and
CH-associated protein partners, is shown in Table 3. It follows that 23% of PPIs belong to
the subgroup of cancer-dependent PPIs in cancers (positive r-values of gene co-expression).
This subgroup is represented with PPIs between ORF proteins and known oncoproteins,
for example, C1orf131/JUN (transcription factors), C5orf24/PBX1 (pre-B-cell leukemia
transcription factor 1), C2orf88/PRKACA (cAMP-dependent protein kinase catalytic sub-
unit alpha), C6orf132/CDH1 (fizzy-related protein homolog) and C6orf132/EZR (tumor
suppressor ezrin). Ezrin, being an adapter protein between the actin cytoskeleton and the
plasma membrane, is involved in cancer promotion through the modulation of signaling
pathways [39,40]. However, data on the involvement of ezrin in TGCT cancer is absent.
Thus, we demonstrated that the interaction of a number of ORF proteins with oncoproteins
are cancer-dependent PPIs.

Another subgroup of PPIs presumably perturbed by cancers is characterized by nega-
tive or near-zero r-values in cancers and positive r-values of gene co-expression in condition-
ally normal tissues, for example, C1orf131/EIF3L, C19orf53/APEX1, C1orf198/PPP2R1A
and C1orf198/ARHGEF1 (Table 3). It should be noted that a significant part of protein part-
ners of ORF proteins in this subgroup are protein-kinases and E3-ubiquitin-protein ligases
that function as universal modulators of the posttranslational activity of protein substrates
and modulators of the cellular GTPase system. Impaired interaction of C19orf44 protein
with the testis-specific multifunctional enzyme GAPDHS (glyceraldehyde-3-phosphate
dehydrogenase, 44 PPIs in the BioGRID database, ≥2 evidence) may be associated with
modulation of spermatogenesis and male fertility [41] or metabolic reprogramming in
cancers via GAPDH [42]. Thus, using the gene co-expression analysis, we demonstrate that
a number of ORF proteins may participate in cancer-dependent PPIs or PPIs perturbed
by cancers.
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Table 3. Potential cancer-associated PPIs involving ORF proteins and CH-associated protein partners.

Protein–Protein Interaction Gene Co-Expression Data * The Main Function Related to
Protein Partner ***ORF-Protein Protein Partner ** Normal Tissue Cancer Tissue

C1orf131 EIF3L Whole blood (0.68) DLBC (−0.51) Initiation of protein synthesis
C1orf131 JUN Whole blood (−0.07) DLBC (0.61) Transcriptional master regulator

C19orf53 APEX1 Whole blood (0.87) DLBC (−0.66) Cellular response to oxidative
stress

C1orf226 BCR Brain (0.53–0.59) LGG (−0.06) Regulatory activities toward
small GTP-binding proteins

C1orf226 BTRC Brain (0.60–0.76) LGG (−0.09)
Component of

E3-ubiquitin-protein ligase
complex

C1orf226 PTPRJ Brain (0.53–0.80) LGG (0.06) Dephosphorylation

C2orf88 PRKAR1A Brain (0.61–0.85) LGG (0.03)
Regulatory subunit of the
cAMP-dependent protein

kinases

C6orf132 CDH1 Kidney (0.82) KIRP (0.04) Cell adhesion

C1orf131 PPP2R1A Whole blood (0.74) THYM (−0.6) Phosphorylation
C1orf198 ARHGEF1 Whole blood (0.61) THYM (−0.61) GTPase-activating protein
C5orf24 PBX1 Whole blood (0.04) THYM (0.7) Transcription factor
C11orf98 WWP2 Whole blood (0.75) THYM (−0.55) Ubiquitination
C12orf45 SMARCAD1 Whole blood (0.73) THYM (−0.58) DNA helicase activity
C12orf45 KPNA1 Whole blood (0.57) THYM (−0.50) Nuclear protein import

C1orf115 MDM2 Testis (0.51) TGCT (−0.41) Ubiquitination of p53/TP53

C2orf16 SPAG5 Testis (0.68) TGCT (−0.24) Chromosome segregation and
progression into anaphase

C2orf88 FBXW8 Testis (−0.68) TGCT (0.54) Component of ubiquitin-protein
ligase complex

C2orf88 GPR161 Testis (−0.64) TGCT (0.58) Regulation of Shh signaling
C2orf88 PRKACA Testis (−0.10) TGCT (0.53) Phosphorylation

C6orf132 EZR Testis (−0.28) TGCT (0.71)
Connections of cytoskeletal

structures to the plasma
membrane

C8orf48 OPTN Testis (0.67) TGCT (−0.06) Maintenance of the Golgi
complex

C10orf67 BCL2L1 Testis (0.63) TGCT (−0.22) Potent inhibitor of cell death

C11orf65 CALM3 Testis (0.81) TGCT (−0.06) Calcium signal transduction
pathway

C16orf71 MEIS2 Testis (−0.41) TGCT (0.52) Transcriptional regulation
C16orf90 RNF123 Testis (0.55) TGCT (−0.23) Ubiquitination

C16orf90 NDFIP2 Testis (0.65) TGCT (0.03)
Activation of HECT
domain-containing

E3-ubiquitin-protein ligases

C17orf47 ADRM1 Testis (0.65) TGCT (−0.12) ATP-dependent degradation of
ubiquitinated proteins

C17orf47 NUP214 Testis (0.80) TGCT (−0.01) Nuclear pore formation

C19orf44 GAPDHS Testis (0.83) TGCT (−0.08)
Regulation of the switch

between different pathways for
energy production

C6orf132 CDH1 (P12830) Uterus (0.08) UCS (0.76) Calcium-dependent cell
adhesion

* Uniprot ID, URL: https://www.uniprot.org/ (accessed on 1 April 2023), ** Spearman correlation coefficient
according to the GEPIA2 server, URL: http://gepia2.cancer-pku.cn/#correlation (accessed on 1 April 2023),
*** UniprotKB, URL: https://www.uniprot.org (accessed on 1 April 2023). Uniprot IDs of protein partners of
ORF proteins: ADRM1 (Q16186), APEX1 (P27695), ARHGEF1 (Q92888), BCL2L1 (Q07817), BCR (P11274), BTRC
(Q9Y297), CALM3 (P0DP25), CDH1 (P12830), EIF3L (Q9Y262), EZR (P15311), FBXW8 (Q8N3Y1), GAPDHS
(O14556), GPR161 (Q8N6U8), JUN (P05412), KPNA1 (P52294), MDM2 (Q00987), MEIS2 (O14770), NDFIP2
(Q9NV92), NUP214 (P35658), OPTN (Q96CV9), PBX1 (P40424), PPP2R1A (P30153), PRKACA (P17612), PRKAR1A
(P10644), PTPRJ (Q12913), RNF123 (Q5XPI4), SMARCAD1 (Q9H4L7), SPAG5 (Q96R06) and WWP2 (O00308).

3. Discussion

Elucidation of cellular roles of uncharacterized chromosome-specific ORF proteins is
the focus of many scientific investigations. We found at least 27 publications (see Table 4)
devoted to the functional annotation of ORF genes mainly through gene knockdowns or
knockouts and other experimental approaches. In Table 3, it follows that there is a large

https://www.uniprot.org/
http://gepia2.cancer-pku.cn/#correlation
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biodiversity of established or proposed cellular roles of 20 ORF proteins: involvement in
signaling pathways and processes such as ciliary motility and ciliogenesis, protein folding
and degradation, lipid homeostasis, cell cycle regulation, protein trafficking, mitophagy and
apoptosis (Table 4). To explore the publication landscape on 219 target ORF genes or ORF
proteins in the cancer context, a bibliometric analysis was performed using the VosViewer
software v.1.6.18. A full-text search allows us to select 204 publications, in which 92 out
of 219 differently expressed ORF genes are mentioned in association with the malignant
transformation of cells. Thus, C9orf50, C9orf64, C5orf66, C16orf74 and C10orf55 genes are
most mentioned in the cancer context (each gene was mentioned at least in six publications),
while 42 out of 92 genes are mentioned in one publication only. A co-occurrence map of
33 terms retrieved from the abstracts and titles of 204 found publications is shown in
Figure 5, where these terms are divided into six thematic clusters, containing such terms as
‘patient survival’, ‘staging’, ‘progression’, ‘recurrence’ and ‘predictive significance’. In most
publications, ORF genes are described mainly as a part of transcriptomic or methylation
signatures correlating with disease prognosis. In a much smaller number of publications,
specific cancer-associated features of some ORF genes were studied, for example, the
capability to form gene fusions [43], participation in the PPI subnetwork as hub genes [44]
and elucidation of upstream regulators (e.g., oncogene micro-RNA miR-556 for C8orf48
gene [18]). Thus, the bibliometric analysis makes it possible to observe any associations
with cancers for half of the target ORF genes mentioned in at least one publication. The
conclusion is that the current vector of investigations of uncharacterized chromosome-
specific ORF genes is to identify their prognostic significance.
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Table 4. Relevant literature data on the known functional characterization of differentially expressed
ORF genes in cancers.

Gene Thesis Reference

C1orf54 C1orf54 gene-knockout mice exhibit impaired tubular epithelial cell proliferation and delayed recovery after
kidney ischemia-reperfusion injury, which lead to deteriorated renal function and increased mortality. [45]

C1orf109 C1orf109 gene controls the late step of human pre-60S maturation in the cytoplasm and the loss of C1orf109
global protein synthesis. [46]

C1orf115

C1orf115 protein modulates drug efflux through regulation of the major drug exporter ABCB1/MDR1 by
means of physical association with it. [47]

CRISPR-Cas9 knockout screens reveal that the loss of RDD1 (C1orf115) resulted in resistance to five
anti-cancer drugs. [48]

C1orf131 A protein, encoded by C1orf131 gene, probably takes part in regulation of rRNA turnover. [49]

C1orf194 The loss of normal C1orf194 protein altered intracellular Ca2+ homeostasis and up-regulated Ca2+ handling
regulatory proteins.

[50]

C3orf70 C3orf70 gene is involved in neural and neurobehavioral development; defects in C3orf70 may be associated
with neurodevelopmental and neuropsychiatric disorders. [51]

C5orf51
C5orf51 protein interacts with C5orf51 interacts with MON1 and CCZ1, members of the RAB7A guanine
nucleotide exchange factor (GEF) complex. C5orf51 is involved in mitophagy (selective degradation of

mitochondria by autophagy).
[52]

C6orf120
C6orf120 gene induces apoptosis of CD4+ T-cells mediated with endoplasmic reticulum stress [53]

Rats with deficiency of C6orf120 gene are susceptible to liver injury induced by tetra-chloromethane. [54]

C8orf76 C8orf76 protein binds to the promoter region of SLC7A11 gene and up-regulates SLC7A11. C8orf76
down-regulation induces G1-S arrest and inhibition of cell proliferation. [55]

C6orf203 Knockout of C6orf203 leads to a decrease in mitochondrial translation and consequent OXPHOS deficiency.
C6orf203 involves translation via RNA binding without changing the stability of mtRNAs. [56,57]

C11orf42
C11orf42 protein could potentially be related to trafficking, as it is a part of a complex with 30% similarity to
the retromer complex (SNX1, SNX2, VPS35, VPS29 and VPS26A), i.e., with 0.3 Jaccard similarity to the known

CORUM retromer complex.
[58]

C11orf53 C11orf53 protein interacts with POU2F3 and depletion of C11orf53 reduced enhancer H3K27ac levels and
chromatin accessibility, resulting in a reduction of POU2F3-dependent gene expression. [59,60]

C11orf88 C11orf88 protein is required for motile ciliogenesis and flagellar genesis in vertebrates by mediating the
maturation of glycolytic enzyme ENO4 [61]

C11orf94

Deletion of C11orf94 gene dramatically decreases male fertility in mice and plays a critical role in sperm
binding to the oolemma. [62]

Loss of C11orf94 gene results in reduces assembly of Izumo1 complexes and male infertility due to impaired
gamete fusion. [63]

C12orf4

C12orf4 protein is a cytoplasmic protein implicated in the early signaling events following FcεRI-induced cell
activation (FcεRI—the high-affinity IgE receptor). [64]

From strong in silico evidence, it follows that C12orf4 protein, as a putative ADPR “eraser,” regulates
PARP-mediated ADP-ribosylation signaling. [65]

C12orf45
C12orf45 protein acts as a bridge between NOP58 ribonucleoprotein and the particle for arrangement of

quaternary structure (PAQosome), a multi-subunit chaperone complex. C12orf45 interacts with NOP58 and
RUVBL1/2 AAA+ ATPases.

[66]

C12orf49

C12orf49 gene participates in regulation of exogenous lipid uptake through modulation of SREBF2 signaling
in response to lipid starvation. [67]

C12orf49 protein mediates site-1 protease activation, which is essential for the cleavages of protease
substrates in lipid homeostasis. [68]

C12orf73 C12orf73 protein interacts with newly synthesized cytochrome b to support initial steps of complex III
biogenesis in complex with UQCC1 and UQCC2. [69]

C16orf62 Heterotrimer (DSCR3, C16orf62 and VPS29), interacting with other protein complexes, takes part in
prevention of lysosomal degradation and promotion of cell surface recycling of α5β1 integrin. [35]

C16orf71 Complex C16orf71/Daap1 is identified as a novel axonemal dynein regulator that is critical for ciliary
motility. [19]

At the same time, cellular roles remain unknown for many ORF proteins under
both physiological and pathological conditions, so one of the ways to predict them is
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to analyze the already-known functions of protein partners that physically interact with
uncharacterized ORF proteins. Functional terms, describing subinteractomes of ORF
proteins, are shown in Table S4. For example, the protein partners of secreted C2orf88
protein are related to post-translational modifications mediated through protein kinase
A as well as important cellular functions such as ciliary motility. C4orf17 protein’s
function may be associated with chromatin modifications through histone methylation,
which follows from the high representation of ATRX, CHD3, KAT2B, KDM1A, PRMT1
and SUV39H1 proteins in the C4orf17’s subinteractome. Protein CXorf56 along with
its interacting partner C1orf52 may be involved in the formation of spliceosome com-
plex. The vast majority of interacting partners of C16orf90 protein are responsible for
post-translational modifications (neddylation-dependent protein degradation (BIRC2, ND-
FIP1, NDFIP2 and XIAP) and ubiquitin-dependent protein degradation (BIRC2, RNF123,
TRAF2 and XIAP). In this regard, the C16orf90 protein may act as a part of protein-
modifying enzymes complex. Protein C11orf98 is involved in the regulation of DNA-
binding transcription factor activity that stems from the spectrum of its protein part-
ners (ESR1, ESR2, FOXA1, JUN and WWP2). On the other hand, functional coupling of
subinteractomes of different ORF proteins may indicate identical GO terms (Table S4):
‘GO:0000151~ubiquitin ligase complex’ (C16orf87 and C6orf222), ‘GO:0016197~endosomal
transport’ (C11orf49 and C1orf210), ‘GO:0016311~dephosphorylation’ (C1orf21, C2orf74
and C20orf27), ‘GO:0016607~nuclear speck’ (C1orf226 and C19orf53), ‘WP254~apoptosis’
(C10orf67 and C16orf90), ‘PA443358~aneuploidy’ (C1orf226, C6orf222 and C16orf87). The
most common term ‘GO:1901987~regulation of cell cycle phase transition’ is typical for
subinteractomes of C16orf87, C3orf62, C16orf87, CXorf56, C11orf49 and C16orf87 proteins.

It is important to find out whether ORF proteins are associated with signaling path-
ways in normal and pathological conditions. The separate over-representation analysis is
performed for each subinteractome of ORF protein. It follows from Table S4 that there are a
variety of functional terms covering ≥25% of the total amount of protein partners in the
subinteractome. The subinteractome of C1orf21 protein is enriched with the ‘WP3932~focal
adhesion-PI3K-Akt-mTOR-signaling pathway’ term. This pathway connects the membrane
receptor and actin cytoskeleton through a cascade of protein kinases and phosphatases
and affects the cell shape and motility. In neoplastic cells, aberrant activation of this path-
way leads to the formation of a drug-resistant cancer phenotype [70,71]. An analysis of
79 candidate protein partners of C11orf52 points to its involvement in the Wnt-signaling
pathway through desmoglein 1 (DSG1) [72]. In this regard, the subinteractome of C11orf52
protein contains HRAS (‘Harvey RAt Sarcoma virus oncogene’), which is one of the most
mutated genes in solid tumors and SRSF protein kinase 1 (SRPK1), which was identified as
part of HRAS signaling [73]. Thus, both C1orf21 and C11orf52 proteins can theoretically
act as adapter proteins or modulators of these signaling pathways.

There is an opportunity for ORF proteins to interact with each other. Assumptions
on binary interactions between C2orf74 and C20orf27, C5orf24 and C16orf71 proteins
are strengthened by some interesting findings. First, the subinteractomes of these ORF
proteins contain proteins associated with ‘cancer hallmark’ and oncoproteins (e.g., the
case of C5orf24 and its protein partners XPO1, PBX1, MYC, CIC, GOPC, CREB1 and
STK11, Table S3). Second, a comparative analysis of subinteractomes indicates the exis-
tence of 29 and 14 common protein partners for potential interactions C2orf74/C20orf27
and C5orf24/C16orf71, respectively. Over-representation analysis shows the related
GO terms for both ORF proteins in each pair: ‘GO:0016311~dephosphorylation’ and
‘GO:1903293~phosphatase complex’ (C2orf74 and C20orf27) as well as ‘PA444750~leukemia’
and ‘PA444761~ leukemia, myeloid’ (C5orf24 and C16orf71) (Table S4). As for another
potential interaction C1orf131/C16orf87, only histone acetyltransferase KAT5 [74] is a
common protein partner that can post-translationally modify both ORF proteins. The
subinteractome of C16orf87 protein contains HDAC1 and HDAC2 histone deacetylases
as well as 16 different histones, thus indicating functional associations of C16orf87 pro-
tein with epigenetic modulation of chromatin. C1orf131 gene belongs to a subgroup of
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common essential genes (Table 2) and its subinteractome is over-represented by the term
‘GO:0022613~ribonucleoprotein complex biogenesis’ covering 11 out of 43 protein partners
(25%) (Table S4).

Another point is that genetic alterations (GAs) more frequently occur in cancer-
associated genes. Analysis of the cBioPortal pan-cancer cohort shows that the median GA
frequency for a sample of 159 out of 219 differentially expressed ORF genes is about 1.3%.
Gene amplifications are the prevalent type of GAs. It is interesting to note that GA frequency
is up to 6% in C3orf70, C8orf33, C8orf76 and C8orf82 genes according to the most affected
cancer types. By the way, an average proportion of GAs for known oncogenes (e.g., KIT,
MYC, CTNNB1, MDM2 and APC) in the same pan-cancer cohort ranges from four to 9%. At
least the function of genetically unstable C8orf76 is associated with cell proliferation [55], so
amplification of the C8orf76 gene in cancers may be an independent risk factor of enhanced
cell proliferation. According to the Cancer Gene Census portal, only the C15orf65 gene
contains driver somatic mutations in primary mediastinal B-cell and Hodgkin’s lymphoma.
Currently, the ClinVar database, URL: https://www.ncbi.nlm.nih.gov/clinvar/ (accessed
on 23 March 2023), aggregates records of missense mutations in these ORF genes with
‘uncertain’ or ‘likely benign’ clinical significance. A search for novel genetic variants of
C3orf70, C8orf33, C8orf76 and C8orf82 associated with systemic diseases, including cancers,
is of practical interest for medical genomics.

Identified gene expression signatures involving chromosome-specific ORF genes with
potential prognostic and/or predictive significance can be further translated into multi-
gene transcriptomic panels to predict disease dynamics or tumor responses to therapeu-
tics. There is plenty of patents disclosing such panels, e.g., WO2021164492A1 (C10orf99),
WO2018097166A1 (C17orf67) and WO2020226333A1 (C14orf45, C16orf61, C7orf63, C10orf76
and C12orf72) in the Espacenet database (https://worldwide.espacenet.com). In this study,
two highly specific gene expression signatures (C14orf119 and C5orf46) and (C16orf78,
C16orf86, C16orf96, C19orf18, C20orf144, C22orf42 and C3orf62) were found for PAAD that
are associated with the overall survival of patients and disease-free survival, respectively.
Therefore, verification of gene expression signatures in a larger cohort of patients (balanced
by subgroups with different cancer stages, grades, mutation burden, etc.) will provide the
design of a clinically relevant transcriptomic panel for molecular subtyping of one of the
highly aggressive solid tumors.

We focused on fourteen secreted ORF proteins. Peptide compositions of, at least,
seven proteins (C4orf48, C5orf46, C22orf15, C2orf16, C11orf52, C1orf198 and C2orf88) were
identified by mass spectrometry in human blood plasma or urine samples according to
the Peptide Atlas portal, URL: https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/
(accessed on 21 May 2023). So far, the diagnostic significance of these proteins in the ‘liquid
biopsy’ paradigm for cancer detection has not been studied, which also follows from the
materials of the collaborative program Early Detection Research Network (EDRN) [75],
and the above mentioned secreted ORF proteins may represent novel molecular entities in
this scientific field.

Among other biological features of some uncharacterized chromosome-specific ORF
proteins is the high representation of oncoproteins (encoded by highly mutated genes in
cancers) in their subinteractomes. This fact may indirectly indicate the involvement of ORF
proteins in cancer-associated signaling pathways in yet unknown roles. These include eight
ORF proteins: CXorf56 (BRD4, EZH2, JUN, LMNA, MYC, NSD2, RECQL4, RET); C8orf48
(CCNE1, FGFR3, HRAS and TSC1); C6orf132 (CDH1, ESR1 and EZR), C5orf24 (CIC, CREB1,
GOPC, MYC, PBX1, STK11 and XPO1); C1orf226 (BARD1, BCR, BRD3, FOXO3, HRAS
and PRCC); C16orf71 (CDKN2C, CREB1, EZH2, PBX1, PTEN); C11orf98 (FOXA1, JUN
and MYC); C1orf123 (CDKN1A, CLTC, HEY1 and RAF1); C1orf131 (CDC73, JUN, KRAS,
PPP2R1A and SMARCB1). Thus, functional annotation of these ORF proteins via the
expansion of data on the tissue-specific and cancer-specific spectrum of protein–protein
interactions will clarify their roles in signaling pathways and, possibly, allow us to select
new molecular targets for pharmacological interventions.

https://www.ncbi.nlm.nih.gov/clinvar/
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4. Materials and Methods
4.1. Gene Expression Data Analysis

PHAROS database v.3.15, a web-based interface for exploring and visualizing the
Target Central Resource Database (TCRD) data generated by the Illuminating the Druggable
Genome project (IDG) [76], was used for retrieval of ORF gene list.

Web-based server Gene Expression Profiling Interactive Analysis (GEPIA2) [77]
adapted for the analysis of The Cancer Genome Atlas (TCGA) cohorts was used for selec-
tion of differentially expressed genes (DE-genes) in cancer and normal tissues according
to the following settings: |log2FC = 2| (four-fold change), p-value cut-off < 0.05, match
TCGA normal and GTEx (Gene Tissue Expression) datasets.

Survival analysis (Kaplan-Meier plots) was carried out using the web-server
KMplotter [78].

ROCplotter server [79] was used to explore the gene expression patterns and response
to therapy of patients with glioblastoma, breast, ovarian and colorectal cancers. AUC (Area
Under the Curve) and gene expression fold change values equal to 0.7 and 2.0 were set as
cut-off values, respectively.

TIMER (Tumor IMmune Estimation Resource) server is a comprehensive resource
for systematical analysis of immune infiltrates across diverse cancer types [80,81]. “Gene”
or “Survival” modules were used to explore the correlation between gene expression
patterns and abundance of immune infiltrates as well as between immune infiltrates and
clinical outcomes.

Patterns of genetic alterations (missense and truncating mutations, and copy-number
variations (deletion or amplification)) were explored in pan-cancer MSK-IMPACT Clinical
Sequencing Cohort (10,953 patients/10,967 samples) cBioPortal server [82].

A Cancer Dependency Map or DepMap portal, URL: https://depmap.org/portal/
(accessed on 1–5 February 2023), allows for defining genes that are essential for cell viability
using data on systematic loss-of-function screens (RNA interference and CRISPR-Cas9) in
the cell lines representing the heterogeneity of tumors [83]. We used the DepMap portal
for definition of ORF genes as “common essential genes” or “strongly selective genes”,
implying the significant effects of gene depletion studies in most or several of the screened
cell lines, respectively.

Gene expression changes following kinase perturbations assays (inhibition, activation,
knockdown, knockout, over-expression and mutation) from the GEO datasets (Gene Expres-
sion Omnibus) were explored using kinase perturbations data annotated by the Ma’ayan
lab [84], which are available at EnrichR database, URL: https://maayanlab.cloud/Enrichr/
(accessed on 23–25 February 2023).

Data on the interactions of transcription factors (TFs) with the promotor regions of ORF
genes was retrieved from EnrichR database (section ‘Transcription’, subsections ‘ENCODE
and ChEA Consensus TFs from ChIP-X’, ‘TRANSFAC and JASPAR PWMs’ and ‘ENCODE
TF ChIP-seq 2015’). The resulting list contained matched TFs in all three subsections.

4.2. Protein Expression Data analysis

The Human Proteome Atlas (HPA) [85] was used for exploration of protein subcellular
localization. In case of absence of available data, predictions were made in the Compartment
web-server [86], URL: https://compartments.jensenlab.org/ (accessed on 29–31 January
2023), which also integrates the results of automat text mining.

Data on protein expression in normal tissues were obtained from the PepPSy server [87],
URL: http://peppsy.genouest.org/query (accessed on 6 February 2023). This server
enables the determining in which human tissues investigators should look for unseen
(‘missing’) proteins.

Data on the relative protein abundance in cancer and normal tissues were retrieved
from the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CP-
TAC) and the National Cancer Institute’s International Cancer Proteogenome Consortium

https://depmap.org/portal/
https://maayanlab.cloud/Enrichr/
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(ICPC) datasets using cProSite web-based tool [88], URL: https://cprosite.ccr.cancer.gov/
(accessed on 20 January 2023).

The TOPCONS web-server was used to predict transmembrane topology and mem-
brane domains (TM-helixes) of proteins [89], URL: https://topcons.cbr.su.se/ (accessed on
3 February 2023).

4.3. Protein Subinteractome Analysis

Data on human PPIs (evidence type—physical interactions) were retrieved from
several interactomic browsers: BioPlex v.3.0 [90], Human Integrated Protein–Protein In-
teraction Reference or HIPPIE v.2.3 (cut-off score value > 0.7) [91], The Molecular INTer-
action database (MINT) [92], Human Protein Complex Map (hu.MAP 2.0) [93], ‘NURSA
Human Endogenous Complexome’ and ‘PPI Hub Proteins’ in the ‘Pathways’ of Enrichr
database [94,95], Integrated Interactions Database (IID v.2021-05) [96], InnateDB [97], refer-
ence interactome map of human binary protein interactions (HuRI) [98] and interactomics
profiling data from publications [99,100].

Over-representation analysis (ORA) of a list of gene names was performed using the
WebGestalt server (WEB-based Gene SeT AnaLysis Toolkit) [101] with gene ontology terms
(biological process noRedundant, molecular function noRedundant and cellular component
noRedundant), disease terms (DisGeNet and GLAD4U databases), phenotype terms (Hu-
man Phenotype Ontology database), network terms (CORUM database) and pathway terms
(Wikipathway cancer database) with the following settings: reference gene list—‘genome
protein-coding’; minimum number of genes for a category—‘4’; multiple test adjustment—
‘Benjamini-Hochberg’; significance level—‘FDR < 0.1’; redundancy reduction—‘affinity
propagation’. A term, covering > 10% of the total number of proteins in the subinteractome
of an ORF protein, was considered a significant term.

CancerGeneNet [102], URL: https://signor.uniroma2.it/CancerGeneNet/ (accessed
on 1–20 March 2023), is a web-server aiming at linking frequently mutated genes in cancers
with cancer phenotypes and allows searching for a graph path between any gene-of-
interest and ‘hallmarks of cancer’ (i.e., sustaining proliferative signaling, evading growth
suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis,
activating invasion and metastasis) [103,104]. CancerGeneNet was used to select protein
partners of each ORF protein by associations with ‘hallmarks of cancer’.

PathwAX II, a web-server for pathway annotation based on crosstalk derived through
FunCoup’s genome wide functional association networks [105], URL: https://pathwax.
sbc.su.se/ (accessed on 15–28 February 2023), was used to explore the pathways that
involve proteins, selected by CancerGeneNet web-server, with the following settings:
database source—‘KEGG v.94.1’; filter—‘enrichment’, ‘depletion’; multiple hypothesis test
correction—‘Benjamini-Hochberg’ and cut-off = 0.01.

The Cancer Gene Census (CGC) database aims to catalogue genes containing muta-
tions that have been causally implicated in cancers (i.e., the driver genes) [106]. CGC was
used to search for driver genes, encoding protein partners of ORF proteins, selected by the
CancerGeneNet web-server.

Selection of gene co-expression hypotheses in normal and cancer tissues was per-
formed using the GEPIA2 web-server [77] with the following settings: Spearman correlation
coefficient > |0.5| at p-value < 0.05.

The FunCoup—Functional Coupling framework integrates 10 different evidence types
derived from high-throughput genomics and proteomics data in a naive Bayesian integra-
tion procedure [107]. The FunCoup v.5.0, URL: https://funcoup5.scilifelab.se/ (accessed
on 21–28 March 2023), was used for PPIs subnetwork construction with the following
settings: species—‘Homo sapiens’, confidence score—‘0.7’, expansion depth—‘0’, nodes
per expansion step—‘30’, evidence—‘Homo sapiens’, link types—‘all types’.

https://cprosite.ccr.cancer.gov/
https://topcons.cbr.su.se/
https://signor.uniroma2.it/CancerGeneNet/
https://pathwax.sbc.su.se/
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4.4. Others

The search for full-text publications indexed in the PubMed Central system was
performed using the Litsence text-mining tool [108].

Bibliometric analysis and construction of co-occurrence maps of terms in research type
publications were performed using the VOSviewer software v.1.6.18 [109].

Principal component analysis was performed using ClustVis [110].

5. Conclusions

Currently, there is no detailed understanding of the molecular mechanisms underly-
ing many systemic diseases, as well as malignant transformation of cells. Chromosome-
specific open reading frames genes, which functions are not yet fully characterized, may
be involved in carcinogenesis. In this work, we performed a systems biology analysis of
219 target ORF genes that are differentially expressed in various cancers. ORF gene ex-
pression patterns correlate with disease prognosis, tumor infiltration by immune cells
and responses to chemotherapy. Analysis of individual subinteractomes of ORF proteins
revealed interactions with a number of proteins, which are associated with ‘hallmarks
of cancer’ as well as proteins encoded by highly mutated genes and mapped in cancer-
associated signaling cascades. Some of the ORF proteins are involved in cancer-dependent
PPIs and PPIs perturbed by cancers and may have functions related to their protein part-
ners. The findings represent an analytical ‘cross-section’ of the current background on
uncharacterized ORF genes in the cancer context that is important for prioritizing further
fundamental research in this field.
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com/article/10.3390/ijms241210190/s1.

Author Contributions: Conceptualization, P.E.; methodology, P.E.; investigation, P.E., E.Y. and Y.M.;
writing—original draft preparation, P.E.; writing—review and editing, Y.M. and E.Y.; supervision,
A.I. All authors have read and agreed to the published version of the manuscript.

Funding: The work was performed within the framework of the Program for Basic Research in the
Russian Federation for a long-term period (2021–2030) (No.122030100168-2).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data on subinteractomes of uncharacterized chromosome-specific
open reading frame genes proteins is deposited in doi:10.6084/m9.figshare.22677442.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Messina, B.; Lo Sardo, F.; Scalera, S.; Memeo, L.; Colarossi, C.; Mare, M.; Blandino, G.; Ciliberto, G.; Maugeri-Saccà, M.; Bon, G.

Hippo Pathway Dysregulation in Gastric Cancer: From Helicobacter Pylori Infection to Tumor Promotion and Progression. Cell
Death Dis. 2023, 14, 21. [CrossRef]

2. He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt Signal Transduction for Cancer Therapy.
Signal. Transduct. Target. Ther. 2021, 6, 425. [CrossRef] [PubMed]

3. Ortega, M.A.; Fraile-Martínez, O.; Asúnsolo, Á.; Buján, J.; García-Honduvilla, N.; Coca, S. Signal Transduction Pathways in Breast
Cancer: The Important Role of PI3K/Akt/MTOR. J. Oncol. 2020, 2020, 9258396. [CrossRef]

4. Yang, L.; Shi, P.; Zhao, G.; Xu, J.; Peng, W.; Zhang, J.; Zhang, G.; Wang, X.; Dong, Z.; Chen, F.; et al. Targeting Cancer Stem Cell
Pathways for Cancer Therapy. Signal. Transduct. Target. Ther. 2020, 5, 8. [CrossRef]

5. Chai, H.; Pan, C.; Zhang, M.; Huo, H.; Shan, H.; Wu, J. Histone Methyltransferase SETD1A Interacts with Notch and Promotes
Notch Transactivation to Augment Ovarian Cancer Development. BMC Cancer 2023, 23, 96. [CrossRef] [PubMed]

6. Wang, W.; Lei, Y.; Zhang, G.; Li, X.; Yuan, J.; Li, T.; Zhong, W.; Zhang, Y.; Tan, X.; Song, G. USP39 Stabilizes β-Catenin by
Deubiquitination and Suppressing E3 Ligase TRIM26 Pre-MRNA Maturation to Promote HCC Progression. Cell Death Dis. 2023,
14, 63. [CrossRef]

7. Han, L.; Li, F. Origin Recognition Complex Subunit 1 (ORC1) Augments Malignant Behaviors of Lung Adenocarcinoma Cells via
Targeting Wnt Signaling. Bioengineered 2022, 13, 13520–13533. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms241210190/s1
https://www.mdpi.com/article/10.3390/ijms241210190/s1
https://doi.org/10.1038/s41419-023-05568-8
https://doi.org/10.1038/s41392-021-00828-5
https://www.ncbi.nlm.nih.gov/pubmed/34916492
https://doi.org/10.1155/2020/9258396
https://doi.org/10.1038/s41392-020-0110-5
https://doi.org/10.1186/s12885-023-10573-3
https://www.ncbi.nlm.nih.gov/pubmed/36707804
https://doi.org/10.1038/s41419-023-05593-7
https://doi.org/10.1080/21655979.2022.2078562


Int. J. Mol. Sci. 2023, 24, 10190 19 of 23

8. Shields, S.; Conroy, E.; O’Grady, T.; McGoldrick, A.; Connor, K.; Ward, M.P.; Useckaite, Z.; Dempsey, E.; Reilly, R.; Fan, Y.; et al.
BAG3 Promotes Tumour Cell Proliferation by Regulating EGFR Signal Transduction Pathways in Triple Negative Breast Cancer.
Oncotarget 2018, 9, 15673–15690. [CrossRef] [PubMed]

9. Paik, Y.-K.; Overall, C.M.; Deutsch, E.W.; Hancock, W.S.; Omenn, G.S. Progress in the Chromosome-Centric Human Proteome
Project as Highlighted in the Annual Special Issue IV. J. Proteome Res. 2016, 15, 3945–3950. [CrossRef]

10. Paik, Y.-K.; Lane, L.; Kawamura, T.; Chen, Y.-J.; Cho, J.-Y.; LaBaer, J.; Yoo, J.S.; Domont, G.; Corrales, F.; Omenn, G.S.; et al.
Launching the C-HPP neXt-CP50 Pilot Project for Functional Characterization of Identified Proteins with No Known Function. J.
Proteome Res. 2018, 17, 4042–4050. [CrossRef]

11. Duek, P.; Mary, C.; Zahn-Zabal, M.; Bairoch, A.; Lane, L. Functionathon: A Manual Data Mining Workflow to Generate Functional
Hypotheses for Uncharacterized Human Proteins and Its Application by Undergraduate Students. Database 2021, 2021, baab046.
[CrossRef]

12. Hu, F.; Lu, J.; Matheson, L.S.; Díaz-Muñoz, M.D.; Saveliev, A.; Xu, J.; Turner, M. ORFLine: A Bioinformatic Pipeline to Prioritize
Small Open Reading Frames Identifies Candidate Secreted Small Proteins from Lymphocytes. Bioinformatics 2021, 37, 3152–3159.
[CrossRef]

13. Martinez, T.F.; Chu, Q.; Donaldson, C.; Tan, D.; Shokhirev, M.N.; Saghatelian, A. Accurate Annotation of Human Protein-Coding
Small Open Reading Frames. Nat. Chem. Biol. 2020, 16, 458–468. [CrossRef]

14. Sing, C.N.; Garcia, E.J.; Lipkin, T.G.; Huckaba, T.M.; Tsang, C.A.; Coughlin, A.C.; Yang, E.J.; Boldogh, I.R.; Higuchi-Sanabria, R.;
Pon, L.A. Identification of a Modulator of the Actin Cytoskeleton, Mitochondria, Nutrient Metabolism and Lifespan in Yeast. Nat.
Commun. 2022, 13, 2706. [CrossRef] [PubMed]

15. Prensner, J.R.; Enache, O.; Ji, Z.; Krug, K.; Clauser, K.R.; Yang, X.; Piccioni, F.; Root, D.E.; Golub, T.R. Abstract 4344: Integrative
Functional Proteogenomics for Unannotated or Uncharacterized Proteins in Cancer. Cancer Res. 2019, 79, 4344. [CrossRef]

16. Gao, J.; Wang, Y.; Zhang, W.; Zhang, J.; Lu, S.; Meng, K.; Yin, X.; Sun, Z.; He, Q.-Y. C20orf27 Promotes Cell Growth and
Proliferation of Colorectal Cancer via the TGFβR-TAK1-NFκB Pathway. Cancers 2020, 12, 336. [CrossRef]

17. Tang, Y.; Liao, S.; Liu, G.; Xiong, X.; Liu, H.; Li, F.; Tan, Z.; Kong, X.; Yin, Y.; Tan, B. Advanced Single-Cell Pooled CRISPR
Screening Identifies C19orf53 Required for Cell Proliferation Based on MTORC1 Regulators. Cell Biol. Toxicol. 2022, 38, 43–68.
[CrossRef]

18. Lei, L.; An, G.; Zhu, Z.; Liu, S.; Fu, Y.; Zeng, X.; Cao, Q.; Yan, B. C8orf48 Inhibits the Tumorigenesis of Colorectal Cancer by
Regulating the MAPK Signaling Pathway. Life Sci. 2021, 266, 118872. [CrossRef]

19. Lee, C.; Cox, R.M.; Papoulas, O.; Horani, A.; Drew, K.; Devitt, C.C.; Brody, S.L.; Marcotte, E.M.; Wallingford, J.B. Functional
Partitioning of a Liquid-like Organelle during Assembly of Axonemal Dyneins. eLife 2020, 9, e58662. [CrossRef] [PubMed]

20. Joshi, P.; Greco, T.M.; Guise, A.J.; Luo, Y.; Yu, F.; Nesvizhskii, A.I.; Cristea, I.M. The Functional Interactome Landscape of the
Human Histone Deacetylase Family. Mol. Syst. Biol. 2013, 9, 672. [CrossRef] [PubMed]

21. Poluri, R.T.K.; Paquette, V.; Allain, É.P.; Lafront, C.; Joly-Beauparlant, C.; Weidmann, C.; Droit, A.; Guillemette, C.; Pelletier, M.;
Audet-Walsh, É. KLF5 and NFYA Factors as Novel Regulators of Prostate Cancer Cell Metabolism. Endocr. Relat. Cancer 2021, 28,
257–271. [CrossRef]

22. Li, Y.; Xiao, X.; Chen, H.; Chen, Z.; Hu, K.; Yin, D. Transcription Factor NFYA Promotes G1/S Cell Cycle Transition and Cell
Proliferation by Transactivating Cyclin D1 and CDK4 in Clear Cell Renal Cell Carcinoma. Am. J. Cancer Res. 2020, 10, 2446–2463.

23. Pai, S.-Y.; Truitt, M.L.; Ting, C.-N.; Leiden, J.M.; Glimcher, L.H.; Ho, I.-C. Critical Roles for Transcription Factor GATA-3 in
Thymocyte Development. Immunity 2003, 19, 863–875. [CrossRef] [PubMed]

24. Zheng, T.; Huang, J.; Xiang, X.; Li, S.; Yu, J.; Qu, K.; Xu, Z.; Han, P.; Dong, Z.; Liu, Y.; et al. Systematical Analysis Reveals a Strong
Cancer Relevance of CREB1-Regulated Genes. Cancer Cell Int. 2021, 21, 530. [CrossRef]

25. Xia, L.; Wang, Y.; Meng, Q.; Su, X.; Shen, J.; Wang, J.; He, H.; Wen, B.; Zhang, C.; Xu, M. Integrated Bioinformatic Analysis
of a Competing Endogenous RNA Network Reveals a Prognostic Signature in Endometrial Cancer. Front. Oncol. 2019, 9, 448.
[CrossRef] [PubMed]

26. Zhou, H.; Zhang, C.; Li, H.; Chen, L.; Cheng, X. A Novel Risk Score System of Immune Genes Associated with Prognosis in
Endometrial Cancer. Cancer Cell Int. 2020, 20, 240. [CrossRef]

27. Zhong, K.; Wang, Y.; Wang, Z.; Zhang, Z.; Zhao, S.; Li, H.; Huang, J.; Guo, W.; Zheng, X.; Guo, G.; et al. AP-64, Encoded by
C5orf46, Exhibits Antimicrobial Activity against Gram-Negative Bacteria. Biomolecules 2021, 11, 485. [CrossRef] [PubMed]

28. Tykodi, S.S.; Fujii, N.; Vigneron, N.; Lu, S.M.; Mito, J.K.; Miranda, M.X.; Chou, J.; Voong, L.N.; Thompson, J.A.; Sandmaier, B.M.;
et al. C19orf48 Encodes a Minor Histocompatibility Antigen Recognized by CD8+ Cytotoxic T Cells from Renal Cell Carcinoma
Patients. Clin. Cancer Res. 2008, 14, 5260–5269. [CrossRef] [PubMed]

29. Keerthikumar, S.; Chisanga, D.; Ariyaratne, D.; Al Saffar, H.; Anand, S.; Zhao, K.; Samuel, M.; Pathan, M.; Jois, M.; Chilamkurti,
N.; et al. ExoCarta: A Web-Based Compendium of Exosomal Cargo. J. Mol. Biol. 2016, 428, 688–692. [CrossRef]

30. Simpson, R.J.; Kalra, H.; Mathivanan, S. ExoCarta as a Resource for Exosomal Research. J. Extracell. Vesicles 2012, 1, 18374.
[CrossRef] [PubMed]

31. Furukawa, Y.; Lim, C.; Tosha, T.; Yoshida, K.; Hagai, T.; Akiyama, S.; Watanabe, S.; Nakagome, K.; Shiro, Y. Identification of a
Novel Zinc-Binding Protein, C1orf123, as an Interactor with a Heavy Metal-Associated Domain. PLoS ONE 2018, 13, e0204355.
[CrossRef] [PubMed]

https://doi.org/10.18632/oncotarget.24590
https://www.ncbi.nlm.nih.gov/pubmed/29644001
https://doi.org/10.1021/acs.jproteome.6b00803
https://doi.org/10.1021/acs.jproteome.8b00383
https://doi.org/10.1093/database/baab046
https://doi.org/10.1093/bioinformatics/btab339
https://doi.org/10.1038/s41589-019-0425-0
https://doi.org/10.1038/s41467-022-30045-9
https://www.ncbi.nlm.nih.gov/pubmed/35577788
https://doi.org/10.1158/1538-7445.AM2019-4344
https://doi.org/10.3390/cancers12020336
https://doi.org/10.1007/s10565-021-09586-0
https://doi.org/10.1016/j.lfs.2020.118872
https://doi.org/10.7554/eLife.58662
https://www.ncbi.nlm.nih.gov/pubmed/33263282
https://doi.org/10.1038/msb.2013.26
https://www.ncbi.nlm.nih.gov/pubmed/23752268
https://doi.org/10.1530/ERC-20-0504
https://doi.org/10.1016/S1074-7613(03)00328-5
https://www.ncbi.nlm.nih.gov/pubmed/14670303
https://doi.org/10.1186/s12935-021-02224-z
https://doi.org/10.3389/fonc.2019.00448
https://www.ncbi.nlm.nih.gov/pubmed/31192139
https://doi.org/10.1186/s12935-020-01317-5
https://doi.org/10.3390/biom11040485
https://www.ncbi.nlm.nih.gov/pubmed/33804835
https://doi.org/10.1158/1078-0432.CCR-08-0028
https://www.ncbi.nlm.nih.gov/pubmed/18698046
https://doi.org/10.1016/j.jmb.2015.09.019
https://doi.org/10.3402/jev.v1i0.18374
https://www.ncbi.nlm.nih.gov/pubmed/24009883
https://doi.org/10.1371/journal.pone.0204355
https://www.ncbi.nlm.nih.gov/pubmed/30260988


Int. J. Mol. Sci. 2023, 24, 10190 20 of 23

32. Hung, S.-H.; Elliott, G.I.; Ramkumar, T.R.; Burtnyak, L.; McGrenaghan, C.J.; Alkuzweny, S.; Quaiyum, S.; Iwata-Reuyl, D.; Pan, X.;
Green, B.D.; et al. Structural Basis of Qng1-Mediated Salvage of the Micronutrient Queuine from Queuosine-5’-Monophosphate
as the Biological Substrate. Nucleic Acids Res. 2023, 51, 935–951. [CrossRef] [PubMed]

33. Xu, Y.; Wang, S.; Hu, Q.; Gao, S.; Ma, X.; Zhang, W.; Shen, Y.; Chen, F.; Lai, L.; Pei, J. CavityPlus: A Web Server for Protein Cavity
Detection with Pharmacophore Modelling, Allosteric Site Identification and Covalent Ligand Binding Ability Prediction. Nucleic
Acids Res. 2018, 46, W374–W379. [CrossRef]

34. Kushibiki, T.; Nakamura, T.; Tsuda, M.; Tsuchikawa, T.; Hontani, K.; Inoko, K.; Takahashi, M.; Asano, T.; Okamura, K.; Murakami,
S.; et al. Role of Dimerized C16orf74 in Aggressive Pancreatic Cancer: A Novel Therapeutic Target. Mol. Cancer 2020, 19, 187–198.
[CrossRef]

35. McNally, K.E.; Faulkner, R.; Steinberg, F.; Gallon, M.; Ghai, R.; Pim, D.; Langton, P.; Pearson, N.; Danson, C.M.; Nägele, H.; et al.
Retriever Is a Multiprotein Complex for Retromer-Independent Endosomal Cargo Recycling. Nat. Cell Biol. 2017, 19, 1214–1225.
[CrossRef]

36. Chu, Q.; Rathore, A.; Diedrich, J.K.; Donaldson, C.J.; Yates, J.R.; Saghatelian, A. Identification of Microprotein-Protein Interactions
via APEX Tagging. Biochemistry 2017, 56, 3299–3306. [CrossRef]

37. Yang, H.; Zhu, J.; Guo, H.; Tang, A.; Chen, S.; Zhang, D.; Yuan, L.; Liu, G. Molecular Cloning, Characterization, and Functional
Analysis of the Uncharacterized C11orf96 Gene. BMC Vet. Res. 2022, 18, 170. [CrossRef] [PubMed]

38. Edogbanya, J.; Tejada-Martinez, D.; Jones, N.J.; Jaiswal, A.; Bell, S.; Cordeiro, R.; van Dam, S.; Rigden, D.J.; de Magalhães, J.P.
Evolution, Structure and Emerging Roles of C1ORF112 in DNA Replication, DNA Damage Responses, and Cancer. Cell. Mol. Life
Sci. 2021, 78, 4365–4376. [CrossRef]

39. Li, M.J.; Xiong, D.; Huang, H.; Wen, Z.Y. Ezrin Promotes the Proliferation, Migration, and Invasion of Ovarian Cancer Cells.
Biomed. Environ. Sci. 2021, 34, 139–151. [CrossRef]

40. Tanaka, C.; Kobori, T.; Tameishi, M.; Urashima, Y.; Ito, T.; Obata, T. Ezrin Modulates the Cell Surface Expression of Programmed
Cell Death Ligand-1 in Human Cervical Adenocarcinoma Cells. Molecules 2021, 26, 5648. [CrossRef]

41. Margaryan, H.; Dorosh, A.; Capkova, J.; Manaskova-Postlerova, P.; Philimonenko, A.; Hozak, P.; Peknicova, J. Characterization
and Possible Function of Glyceraldehyde-3-Phosphate Dehydrogenase-Spermatogenic Protein GAPDHS in Mammalian Sperm.
Reprod. Biol. Endocrinol. 2015, 13, 15. [CrossRef]

42. Fukushi, A.; Kim, H.-D.; Chang, Y.-C.; Kim, C.-H. Revisited Metabolic Control and Reprogramming Cancers by Means of the
Warburg Effect in Tumor Cells. Int. J. Mol. Sci. 2022, 23, 10037. [CrossRef] [PubMed]

43. Olsen, T.K.; Panagopoulos, I.; Gorunova, L.; Micci, F.; Andersen, K.; Kilen Andersen, H.; Meling, T.R.; Due-Tønnessen, B.; Scheie,
D.; Heim, S.; et al. Novel Fusion Genes and Chimeric Transcripts in Ependymal Tumors. Genes. Chromosom. Cancer 2016, 55,
944–953. [CrossRef]

44. Lian, W.; Jin, H.; Cao, J.; Zhang, X.; Zhu, T.; Zhao, S.; Wu, S.; Zou, K.; Zhang, X.; Zhang, M.; et al. Identification of Novel
Biomarkers Affecting the Metastasis of Colorectal Cancer through Bioinformatics Analysis and Validation through QRT-PCR.
Cancer Cell Int. 2020, 20, 105. [CrossRef] [PubMed]

45. Xie, H.; Wang, Y.; Zhang, H.; Fan, Q.; Dai, D.; Zhuang, L.; Tao, R.; Chen, Q.; Shen, W.; Lu, L.; et al. Tubular Epithelial C1orf54
Mediates Protection and Recovery from Acute Kidney Injury. J. Cell. Mol. Med. 2018, 22, 4985–4996. [CrossRef]

46. Ni, C.; Schmitz, D.A.; Lee, J.; Pawłowski, K.; Wu, J.; Buszczak, M. Labeling of Heterochronic Ribosomes Reveals C1ORF109 and
SPATA5 Control a Late Step in Human Ribosome Assembly. Cell Rep. 2022, 38, 110597. [CrossRef] [PubMed]

47. Masud, S.N.; Chandrashekhar, M.; Aregger, M.; Tan, G.; Zhang, X.; Mero, P.; Pirman, D.A.; Zaslaver, O.; Smolen, G.A.; Lin, Z.-Y.;
et al. Chemical Genomics with Pyrvinium Identifies C1orf115 as a Regulator of Drug Efflux. Nat. Chem. Biol. 2022, 18, 1370–1379.
[CrossRef] [PubMed]

48. Lau, M.-T.; Ghazanfar, S.; Parkin, A.; Chou, A.; Rouaen, J.R.; Littleboy, J.B.; Nessem, D.; Khuong, T.M.; Nevoltris, D.; Schofield, P.;
et al. Systematic Functional Identification of Cancer Multi-Drug Resistance Genes. Genome Biol. 2020, 21, 27. [CrossRef]

49. Singh, S.; Vanden Broeck, A.; Miller, L.; Chaker-Margot, M.; Klinge, S. Nucleolar Maturation of the Human Small Subunit
Processome. Science 2021, 373, eabj5338. [CrossRef]

50. Sun, S.-C.; Ma, D.; Li, M.-Y.; Zhang, R.-X.; Huang, C.; Huang, H.-J.; Xie, Y.-Z.; Wang, Z.-J.; Liu, J.; Cai, D.-C.; et al. Mutations in
C1orf194, Encoding a Calcium Regulator, Cause Dominant Charcot-Marie-Tooth Disease. Brain 2019, 142, 2215–2229. [CrossRef]

51. Ashikawa, Y.; Shiromizu, T.; Miura, K.; Adachi, Y.; Matsui, T.; Bessho, Y.; Tanaka, T.; Nishimura, Y. C3orf70 Is Involved in Neural
and Neurobehavioral Development. Pharmaceuticals 2019, 12, 156. [CrossRef]

52. Yan, B.-R.; Li, T.; Coyaud, E.; Laurent, E.M.N.; St-Germain, J.; Zhou, Y.; Kim, P.K.; Raught, B.; Brumell, J.H. C5orf51 Is a Component
of the MON1-CCZ1 Complex and Controls RAB7A Localization and Stability during Mitophagy. Autophagy 2022, 18, 829–840.
[CrossRef] [PubMed]

53. Li, X.; Qiao, Y.; Chang, L.-S.; Xiao, F.; Lu, L.-H.; Hao, X.-H.; Zhang, R.-W.; Wu, H.; Wei, H.-S. Role of C6ORF120, an N-Glycosylated
Protein, Is Implicated in Apoptosis of CD4+ T Lymphocytes. Chin. Med. J. 2011, 124, 3560–3567. [PubMed]

54. Zhang, J.; Zhang, M.-K.; Ma, H.-M.; Song, X.-C.; Wu, Y.-N.; Zhang, R.; He, L.-L.; Ye, X.-H.; Gao, M.-X.; Li, X. C6orf120 Gene
Deficiency May Be Vulnerable to Carbon Tetrachloride Induced Acute Hepatic Injury in Rats. Arch. Med. Sci. 2022, 18, 1626–1637.
[CrossRef] [PubMed]

55. Li, D.; Pan, J.; Zhang, Y.; Li, Y.; Jin, S.; Zhong, C.; Chen, P.; Ma, J.; Hu, W.; Fan, X.; et al. C8orf76 Modulates Ferroptosis in Liver
Cancer via Transcriptionally Up-Regulating SLC7A11. Cancers 2022, 14, 3410. [CrossRef]

https://doi.org/10.1093/nar/gkac1231
https://www.ncbi.nlm.nih.gov/pubmed/36610787
https://doi.org/10.1093/nar/gky380
https://doi.org/10.1158/1535-7163.MCT-19-0491
https://doi.org/10.1038/ncb3610
https://doi.org/10.1021/acs.biochem.7b00265
https://doi.org/10.1186/s12917-022-03224-5
https://www.ncbi.nlm.nih.gov/pubmed/35538492
https://doi.org/10.1007/s00018-021-03789-8
https://doi.org/10.3967/bes2021.020
https://doi.org/10.3390/molecules26185648
https://doi.org/10.1186/s12958-015-0008-1
https://doi.org/10.3390/ijms231710037
https://www.ncbi.nlm.nih.gov/pubmed/36077431
https://doi.org/10.1002/gcc.22392
https://doi.org/10.1186/s12935-020-01180-4
https://www.ncbi.nlm.nih.gov/pubmed/32256214
https://doi.org/10.1111/jcmm.13765
https://doi.org/10.1016/j.celrep.2022.110597
https://www.ncbi.nlm.nih.gov/pubmed/35354024
https://doi.org/10.1038/s41589-022-01109-0
https://www.ncbi.nlm.nih.gov/pubmed/35970996
https://doi.org/10.1186/s13059-020-1940-8
https://doi.org/10.1126/science.abj5338
https://doi.org/10.1093/brain/awz151
https://doi.org/10.3390/ph12040156
https://doi.org/10.1080/15548627.2021.1960116
https://www.ncbi.nlm.nih.gov/pubmed/34432599
https://www.ncbi.nlm.nih.gov/pubmed/22340178
https://doi.org/10.5114/aoms.2020.93214
https://www.ncbi.nlm.nih.gov/pubmed/36457959
https://doi.org/10.3390/cancers14143410


Int. J. Mol. Sci. 2023, 24, 10190 21 of 23

56. Gopalakrishna, S.; Pearce, S.F.; Dinan, A.M.; Schober, F.A.; Cipullo, M.; Spåhr, H.; Khawaja, A.; Maffezzini, C.; Freyer, C.;
Wredenberg, A.; et al. C6orf203 Is an RNA-Binding Protein Involved in Mitochondrial Protein Synthesis. Nucleic Acids Res. 2019,
47, 9386–9399. [CrossRef]

57. Kotrys, A.V.; Cysewski, D.; Czarnomska, S.D.; Pietras, Z.; Borowski, L.S.; Dziembowski, A.; Szczesny, R.J. Quantitative Proteomics
Revealed C6orf203/MTRES1 as a Factor Preventing Stress-Induced Transcription Deficiency in Human Mitochondria. Nucleic
Acids Res. 2019, 47, 7502–7517. [CrossRef]

58. Palukuri, M.V.; Marcotte, E.M. Super.Complex: A Supervised Machine Learning Pipeline for Molecular Complex Detection in
Protein-Interaction Networks. PLoS ONE 2021, 16, e0262056. [CrossRef] [PubMed]

59. Szczepanski, A.P.; Tsuboyama, N.; Watanabe, J.; Hashizume, R.; Zhao, Z.; Wang, L. POU2AF2/C11orf53 Functions as a Coactivator
of POU2F3 by Maintaining Chromatin Accessibility and Enhancer Activity. Sci. Adv. 2022, 8, eabq2403. [CrossRef] [PubMed]

60. Zhou, C.; Huang, H.; Wang, Y.; Sendinc, E.; Shi, Y. Selective Regulation of Tuft Cell-like Small Cell Lung Cancer by Novel
Transcriptional Co-Activators C11orf53 and COLCA2. Cell Discov. 2022, 8, 112. [CrossRef]

61. Narita, K.; Nagatomo, H.; Kozuka-Hata, H.; Oyama, M.; Takeda, S. Discovery of a Vertebrate-Specific Factor That Processes
Flagellar Glycolytic Enolase during Motile Ciliogenesis. iScience 2020, 23, 100992. [CrossRef] [PubMed]

62. Hao, H.; Shi, B.; Zhang, J.; Dai, A.; Li, W.; Chen, H.; Ji, W.; Gong, C.; Zhang, C.; Li, J.; et al. The Vertebrate- and Testis- Specific
Transmembrane Protein C11ORF94 Plays a Critical Role in Sperm-Oocyte Membrane Binding. Mol. Biomed. 2022, 3, 27. [CrossRef]
[PubMed]

63. Contreras, W.; Wiesehöfer, C.; Schreier, D.; Leinung, N.; Peche, P.; Wennemuth, G.; Gentzel, M.; Schröder, B.; Mentrup, T.
C11orf94/Frey Is a Key Regulator for Male Fertility by Controlling Izumo1 Complex Assembly. Sci. Adv. 2022, 8, eabo6049.
[CrossRef] [PubMed]

64. Mazuc, E.; Guglielmi, L.; Bec, N.; Parez, V.; Hahn, C.S.; Mollevi, C.; Parrinello, H.; Desvignes, J.-P.; Larroque, C.; Jupp, R.; et al.
In-Cell Intrabody Selection from a Diverse Human Library Identifies C12orf4 Protein as a New Player in Rodent Mast Cell
Degranulation. PLoS ONE 2014, 9, e104998. [CrossRef]

65. Dudkiewicz, M.; Pawłowski, K. A Novel Conserved Family of Macro-like Domains-Putative New Players in ADP-Ribosylation
Signaling. PeerJ 2019, 7, e6863. [CrossRef]

66. Abel, Y.; Paiva, A.C.F.; Bizarro, J.; Chagot, M.-E.; Santo, P.E.; Robert, M.-C.; Quinternet, M.; Vandermoere, F.; Sousa, P.M.F.; Fort, P.;
et al. NOPCHAP1 Is a PAQosome Cofactor That Helps Loading NOP58 on RUVBL1/2 during Box C/D SnoRNP Biogenesis.
Nucleic Acids Res. 2021, 49, 1094–1113. [CrossRef]

67. Aregger, M.; Lawson, K.A.; Billmann, M.; Costanzo, M.; Tong, A.H.Y.; Chan, K.; Rahman, M.; Brown, K.R.; Ross, C.; Usaj, M.;
et al. Systematic Mapping of Genetic Interactions for de Novo Fatty Acid Synthesis Identifies C12orf49 as a Regulator of Lipid
Metabolism. Nat. Metab. 2020, 2, 499–513. [CrossRef]

68. Xiao, J.; Xiong, Y.; Yang, L.-T.; Wang, J.-Q.; Zhou, Z.-M.; Dong, L.-W.; Shi, X.-J.; Zhao, X.; Luo, J.; Song, B.-L. POST1/C12ORF49
Regulates the SREBP Pathway by Promoting Site-1 Protease Maturation. Protein Cell 2021, 12, 279–296. [CrossRef]

69. Dennerlein, S.; Poerschke, S.; Oeljeklaus, S.; Wang, C.; Richter-Dennerlein, R.; Sattmann, J.; Bauermeister, D.; Hanitsch, E.;
Stoldt, S.; Langer, T.; et al. Defining the Interactome of the Human Mitochondrial Ribosome Identifies SMIM4 and TMEM223 as
Respiratory Chain Assembly Factors. Elife 2021, 10, e68213. [CrossRef]

70. Paplomata, E.; O’Regan, R. The PI3K/AKT/MTOR Pathway in Breast Cancer: Targets, Trials and Biomarkers. Adv. Med. Oncol.
2014, 6, 154–166. [CrossRef]

71. Dong, C.; Wu, J.; Chen, Y.; Nie, J.; Chen, C. Activation of PI3K/AKT/MTOR Pathway Causes Drug Resistance in Breast Cancer.
Front. Pharm. 2021, 12, 628690. [CrossRef]

72. Yang, Y.; Hwang, H.; Im, J.E.; Lee, K.; Bhoo, S.H.; Yoo, J.S.; Kim, Y.-H.; Kim, J.Y. Flashlight into the Function of Unannotated
C11orf52 Using Affinity Purification Mass Spectrometry. J. Proteome Res. 2021, 20, 5340–5346. [CrossRef] [PubMed]

73. Santra, T.; Herrero, A.; Rodriguez, J.; von Kriegsheim, A.; Iglesias-Martinez, L.F.; Schwarzl, T.; Higgins, D.; Aye, T.-T.; Heck,
A.J.R.; Calvo, F.; et al. An Integrated Global Analysis of Compartmentalized HRAS Signaling. Cell Rep. 2019, 26, 3100–3115.e7.
[CrossRef] [PubMed]

74. Wei, X.; Cai, S.; Boohaker, R.J.; Fried, J.; Li, Y.; Hu, L.; Pan, Y.; Cheng, R.; Zhang, S.; Tian, Y.; et al. KAT5 Promotes Invasion and
Metastasis through C-MYC Stabilization in ATC. Endocr. Relat. Cancer 2019, 26, 141–151. [CrossRef] [PubMed]

75. Srivastava, S.; Wagner, P.D. The Early Detection Research Network: A National Infrastructure to Support the Discovery,
Development, and Validation of Cancer Biomarkers. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2401–2410. [CrossRef]

76. Kelleher, K.J.; Sheils, T.K.; Mathias, S.L.; Yang, J.J.; Metzger, V.T.; Siramshetty, V.B.; Nguyen, D.-T.; Jensen, L.J.; Vidović, D.; Schürer,
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