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Abstract: Type-2 diabetes mellitus (DM) represents one of the most important risk factors for cardio-
vascular diseases (CVD). Hyperglycemia and glycemic variability are not the only determinant of the
increased cardiovascular (CV) risk in diabetic patients, as a frequent metabolic disorder associated
with DM is dyslipidemia, characterized by hypertriglyceridemia, decreased high-density lipoprotein
(HDL) cholesterol levels and a shift towards small dense low-density lipoprotein (LDL) cholesterol.
This pathological alteration, also called diabetic dyslipidemia, represents a relevant factor which
could promotes atherosclerosis and subsequently an increased CV morbidity and mortality. Re-
cently, the introduction of novel antidiabetic agents, such as sodium glucose transporter-2 inhibitors
(SGLT2i), dipeptidyl peptidase-4 inhibitors (DPP4i) and glucagon-like peptide-1 (GLP-1) receptor
agonists (GLP-1 RAs), has been associated with a significant improvement in CV outcomes. Beyond
their known action on glycemia, their positive effects on the CV system also seems to be related to an
ameliorated lipidic profile. In this context, this narrative review summarizes the current knowledge
regarding these novel anti-diabetic drugs and their effects on diabetic dyslipidemia, which could
explain the provided global benefit to the cardiovascular system.

Keywords: cardiovascular diseases; diabetes; dyslipidemia; sodium glucose transporter-2 inhibitors
(SGLT2i); dipeptidyl peptidase-4 inhibitors (DPP4i); glucagon-like peptide-1 (GLP-1) receptor agonists
(GLP-1 RAs)

1. Introduction

Type-2 diabetes mellitus (DM) represents a well-known risk factor for cardiovascular
diseases (CVD) [1]. Diabetic patients show a two to four times higher risk for CVD death
than non-diabetic subjects [1], often showing a more aggressive atherosclerotic disease [2].
As stated in the latest ADA/EASD guidelines, type-2 DM is a chronic complex disease, and
a multi-factorial management is needed to prevent or delay complications [3]. Interestingly,
hyperglycemia and glycemic variability are not the only determinants of the increased
cardiovascular risk in diabetic patients, as aggressive glycemic control did not significantly
reduce major cardiovascular (CV) events [4–6]. Actually, a common metabolic alteration
related to diabetes is dyslipidemia, characterized by a large range of lipid abnormalities
which define so-called diabetic dyslipidemia, including hypertriglyceridemia, decreased
high-density lipoprotein (HDL) cholesterol levels and a shift towards small dense low-
density lipoprotein (LDL) cholesterol [7]. This pathological triad, frequently observed in
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patients with DM, albeit with optimal statin treatment, represents a relevant factor that
promotes atherosclerosis and increases CV risk [8].

In recent years, novel anti-diabetic agents, including sodium-glucose cotransporter
2 inhibitors (SGLT2-i), glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs), and
dipeptidyl peptidase-4 inhibitors (DPP4i), have been developed [9]. Beyond the glucose-
lowering effect, achieved without significant hypoglycemia, these new molecules have
represented a turning point in managing diabetic patients, since several studies highlighted
their beneficial actions on CV morbidity and mortality [10]. Specifically, their benefit to the
CV system seems partly related to an ameliorated lipid profile [11].

On these bases, this narrative review aims to summarize the current literature regard-
ing novel anti-diabetic drugs and their effects on lipid profile, which could be responsible
for the provided global benefit to the CV system.

Details regarding research methods are described in Appendix A.

2. Diabetic Dyslipidemia

Diabetic dyslipidemia is characterized by elevated levels of lipoproteins related to
the development of atherosclerosis, involving very low-density lipoprotein (VLDL), small
dense low-density lipoprotein (sdLDL), and chylomicrons [12]. In addition, raised levels
of triglycerides (TG) and low HDL cholesterol levels are typically observed in diabetic
patients [12]. Figure 1 schematically summarizes all lipid abnormalities observed in dia-
betic dyslipidemia.
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Figure 1. Quantitative and qualitative changes of lipid particles in diabetic dyslipidemia. HDL = high-
density lipoprotein. LDL = low-density lipoprotein. VLDL = very low-density lipoprotein. ↑ = raised.
↓ = reduced.

Notably, diabetic dyslipidemia is associated with insulin resistance and often occurs
before the onset of overt diabetes [13]. Despite that in subjects with preserved insulin sensi-
tivity, insulin inhibits VLDL hepatic production, in chronic insulin-resistance conditions the
liver becomes resistant to the inhibitory insulin effects, thus maintaining a raised secretion
of VLDL [14]. Furthermore, the activity of several tissue lipases involved in the regulation of
lipoprotein levels is reduced in insulin-resistance states [15]. In addition, insulin resistance
also causes reduced absorption of free fatty acids and enhanced lipolysis by adipocytes,
inducing higher levels of serum free fatty acids and, subsequently, an overproduction of
derived triglyceride-rich lipoproteins in the liver and bowels [15]. Diabetic dyslipidemia is
also associated with an excess of carbohydrates, which are stored as glycogen in the liver
and as triglycerides in adipose tissue [16]. When VLDL levels are increased, the plasma
cholesteryl ester transfer protein (CETP) promotes the exchange of triglycerides in VLDL
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for cholesterol in HDL, inducing the formation of cholesterol-enriched VLDL particles
and triglyceride-rich cholesterol-depleted HDL particles [17]. Indeed, this modification
induces the production of highly atherogenic VLDL and less protective HDL particles,
which are also quantitatively reduced [13]. Moreover, CETP could promote the transfer of
triglycerides into LDL in exchange for LDL cholesteryl esters, thus inducing the formation
of smaller and dense lipid-depleted LDL particles [13].

Finally, the net result of all these abnormalities is raised levels of VLDL, triglycerides
and LDL associated with reduced HDL levels, which characterize the diabetic dyslipi-
demia, translating into an increased atherosclerotic risk in patients with DM. This scenario
highlights the need for optimal treatment of these patients to target both glycemic and
lipidic control.

3. Novel Anti-Diabetic Drugs
3.1. Sodium-Glucose Cotransporter 2 Inhibitors
3.1.1. Mechanisms of Action and Pre-Clinical Evidence

Sodium-Glucose Cotransporter 2 inhibitors (SGLT2i), also called gliflozins, are a group
of antidiabetic agents which act by inactivating the sodium-glucose cotransporter 2 (SGLT2)
located in the brush border of the proximal renal tubules, thus inducing sodium and glu-
cose excretion to increase glycemic control [18,19]. In order to avoid significant glucosuria
and, thus, energy loss, SLGT1 cotransporters work by improving glucose reabsorption
by up to 40%. The reabsorption limit is reached when the filtered glucose amounts to
300 mg/min/1.73 m2 (about 180–200 mg/dL) [20]. In a diabetic setting, blood glucose
concentration, and therefore the amount filtered by kidneys, is higher, thus inducing an
increased expression of sodium-glucose cotransporters in the renal tubule to improve reab-
sorption capacity [21]. In this regard, De Fronzo et al. showed that SGLT2i dapagliflozin
ameliorates glycemic control by reducing the excretion threshold of glucose [22]. In addi-
tion, a better glycemic control induced by SGLT2i is reflected in a reduction in glycated
hemoglobin (HbA1c) of about 0.5–1%, which leads to improved insulin sensitivity and
raises pancreatic beta-cell function [23].

Beyond the known effects on glycemia, several studies showed how SGLT2i also
induces substantial lipidic profile changes. These modifications are related to several
chemical mechanisms (Figure 2), many of which are not yet fully understood [24].
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Firstly, the produced glucosuria leads to a relative lack of glucose lacking and a fasting
state, shifting energetic use to lipids through beta-oxidation [19]. This metabolic shift
reduces cellular lipo-toxicity and oxidative stress, favoring ketone production and pre-
venting myocardial damage and fibrosis [25]. In this regard, Briand et al. showed that
empagliflozin induces an increased synthesis of ketones and fats by switching energetic
metabolism from carbohydrate to lipid utilization and causes reduced intestinal cholesterol
absorption [26]. Moreover, SGLT2i shows relevant effects on lipolysis and lipogenesis [27].
Empagliflozin administration inhibits fatty liver production, reduces hepatic lipogenesis,
and induces lipolysis in a diabetic setting [28,29]. Additionally, Osatapahn et al. suggested
that canagliflozin may trigger the same metabolic switch through increased production of fi-
broblast growth factor 21 (FGF21), which acts as a coordinator of fasting-induced metabolic
pathways promoting lipolysis, and a decreased expression of genes involved in de novo
lipogenesis [30]. Concordantly, canagliflozin has been demonstrated to stimulate activated
adenosine monophosphate-activated protein kinase (AMPK), which in turn phosphorylates
and activates acetyl-CoA carboxylase and reduces lipogenesis [31]. Several studies showed
that SGLT2i could reduce lipid peroxidation due to its antioxidative effects [27]. Lipid
peroxidation is a pathological event characterized by the oxidative degradation of lipids,
which induces toxic metabolites and oxidative stress production. Therefore, in diabetic
rats, canagliflozin and dapagliflozin were demonstrated to downregulate Nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species
(ROS) production and malondialdehyde (MDA) levels in myocardial and renal cells [32,33].
Similarly, empagliflozin increased myocardial levels of sirtuin3 and superoxide dismutase
in cardiac cells of diabetic mice, preventing oxidative stress and lipid peroxidation [34].

In addition, SGLT2i, by reducing glucose reabsorption, decreases systemic glucotox-
icity and consequently improves insulin sensitivity, secretion, and effectiveness [35,36].
Therefore, the ameliorated insulin resistance leads to reduced liver synthesis and increased
catabolism of triglyceride-rich lipoproteins [24]. Several studies suggested that SGLT2i
could prevent the accumulation of free fatty acids in adipose tissue, favoring the oxidation
and consequently utilization to provide energetic substrates [28]. Empagliflozin admin-
istration lowers glucose transporter type 4 (GLUT4) expression in abdominal adipose
tissue, increasing lipid mobilization and reducing lipid accumulation to decrease glycerol
formation in adipose tissue [28]. Similarly, in a study by Wallenius et al., dapagliflozin was
demonstrated to increase fatty free acids’ mobilization and transport, rather than accumula-
tion in the liver [37]. Specifically, these effects were reached with an increased clearance and
flux of free fatty acids through raised oxidation [37]. Moreover, Herring et al. demonstrated
how dapagliflozin could increase the oxidation of free fatty acids to produce ketones, thus
inducing a metabolic switch, which increases hepatic ketogenesis [38]. The use of SGLT2
inhibitors is associated with reduction in visceral adipose tissue mass [39]. Specifically,
treatment with empagliflozin for six weeks induced a decrease in fat mass, with the most
evident reduction in perirenal adipose tissue, considered as a part of visceral adipose tis-
sue [40]. In addition, the high urinary glucose loss induced by SGLT2i leads to a metabolic
shift and increased fatty acids oxidation, thus preventing fat accumulation in adipose tissue
and liver [41]. Moreover, the use of empagliflozin provides higher expression of genes
involved in gluconeogenesis and reduced expression of genes involved in lipogenesis in
liver, kidney and adipose tissue [40]. Furthermore, empagliflozin could also reduce hepatic
fat content, decreasing insulin resistance and systemic inflammation [42]. Similarly, therapy
with dapagliflozin in high-fat-fed mice could suppress lipid accumulation, especially in
mesenteric adipose tissue, and may decrease the content of fatty acids in adipose tissue,
but not in the liver [43]. Finally, empagliflozin administration attenuated weight gain by
increasing metabolism and adipose tissue browning [44].

The effects of SGLT2i on cholesterol metabolism are debated, and different studies
showed contrasting results [27]. The modifications in lipidic serum levels secondary to
SGLT2i administration are firstly related to hemoconcentration induced by natriuresis [24].
In addition, LDL levels increase because of a decreased LDL receptor expression on the
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hepatocytes’ surface [24]. As is well known, the reduction in LDL receptors and the follow-
ing diminution in liver lipid count induce a raised activity of hydroxy-methyl-glutaryl CoA
(HMG-CoA) reductase, the main enzyme involved in cholesterol synthesis [45]. Briand
et al. proved that HMG-CoA reductase activity was increased by 31% in empagliflozin-
treated hamsters [26]. At the same time, an approximately 20% reduction in LDL receptor
expression was observed [26]. These remarks suggest increased serum LDL levels via
decreased hepatic catabolism after empagliflozin administration. Similarly, Basu et al.
demonstrated that canagliflozin increases lipoprotein lipase activity and decreases post-
prandial lipemia, raising serum LDL cholesterol levels in diabetic rats [46]. Specifically,
the increased LDL cholesterol levels result from a reduced clearance of circulating LDL
and a higher triglyceride-rich lipoproteins’ lipolysis [46]. Hence, Cha et al. observed
that SGLT2i administration in diabetic patients induces an increase in HDL and LDL lev-
els [47]. Finally, a recent systematic review and meta-analysis of randomized clinical trials
showed that SGLT2i induces a significant increase in total cholesterol, LDL-cholesterol, and
HDL-cholesterol serum levels, associated with decreased plasmatic triglycerides levels [45].
Otherwise, several studies demonstrated how SGLT2i administration could reduce circulat-
ing levels of cholesterol [27]. In this regard, in a study conducted by Osataphan et al. in
diabetic mice, the use of canagliflozin was associated with a reduction in circulating choles-
terol due to an inhibition of genes involved in its uptake and synthesis [30]. Concordantly,
dapagliflozin was able to induce decreased serum levels of HDL cholesterol and triglyc-
erides in diabetic patients [48]. In addition, other evidence did not show significant changes
in the cholesterol profile after dapagliflozin and empagliflozin administration [49,50]. The
effects on LDL cholesterol metabolism induced by SGLT2i are schematized in Figure 3.
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3.1.2. Clinical Evidence

The beneficial effects of SGLT-2i on cardiovascular morbidity and mortality in patients
with a high cardiovascular risk are well established [51,52]. However, apart from the
well-known benefits in treating diabetes and heart failure [53], new clinical effects of these
drugs are emerging over time. Indeed, several studies suggested that SGLT2i could also
modulate lipid metabolism, preventing or improving dyslipidemia independently from
lowering-glucose effects [27]. Table 1 reports the main findings of studies investigating
lipid effects of SGLT2 inhibitors.
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Table 1. Main results of studies investigating the effects of SGLT2i on lipid profile.

Type of Study Molecule N◦ of Patients Time of
Follow-Up Main Results

Calapkulu et al.,
2019 [54]

Retrospective
study Dapaglifozin 10 mg 31 patients 3 and 6 months

At three months:
- non-significant changes
At six months:
- ↓ LDL
- (13.4 mg/dL)
- ↓ total cholesterol (17.6 mg/dL)
- ↓ triglyceride
- (25.9 mg/dL)

Bays et al.,
2017 [55] Post-hoc analysis Dapaglifozin 10 mg 4401 patients 6 months

↑ LDL
↑ HDL
↑ total cholesterol
↓ triglycerides

Matthaei et al.,
2015 [56] Phase 3b study Dapaglifozin 10 mg 219 patients 6 months

↑ LDL
↑ HDL
↑ total cholesterol

Hayashi et al.,
2017 [57] Prospective study Dapaglifozin 10 mg 80 patients 3 months

↑ LDL (0.5%)
↑ HDL (10.5%)
↑ total cholesterol (2.5%)
↓ triglycerides (12.4%)

Yanai et al.,
2017 [58]

Retrospective
study Dapaglifozin 10 mg

249 patients
(69 treated with
dapaglifozin)

3 and 6 months

At three months:
non-significant changes
At six months:
- non-significant changes in LDL,

total cholesterol, and
triglycerides

- ↑ HDL

Zinman et al.,
2015 [59]

Randomized
controlled trial

Empaglifozin 10 or
25 mg 7028 patients 3 years ↑ LDL

↓ HDL

Tikkanen et al.,
2015 [60] Phase 3 study Empaglifozin 10 or

25 mg 825 patients 14 weeks

With 10 mg:
- non-significant changes
With 25 mg:
- ↑ LDL
- ↓ total cholesterol
- non-significant changes in HDL

and triglycerides

Sánchez-García
et al., 2020 [45]

Meta-analysis of
48 randomized
controlled trials

Empaglifozin 10 or
25 mg
AND
Canagliflozin 100 or
300 mg

24,782 patients Variable

↑ LDL
↑ HDL
↑ total cholesterol
↓ triglycerides

Liakos et al.,
2014 [61]

Meta-analysis of
10 randomized
controlled trials

Empaglifozin 10 or
25 mg 6203 patients Variable ↑ LDL (4.5–6.5%)

Neal et al.,
2014 [62]

Randomized
controlled trial

Canaglifozin 100 or
300 mg 10,142 patients Up to 78 weeks ↑ LDL

↑ HDL

Bode et al.,
2015 [63] Phase 3 study Canaglifozin 100 or

300 mg 714 patients 104 weeks
↑ LDL
↑ HDL
↓ triglycerides

Abbreviations: HDL = high-density lipoprotein; LDL = low-density lipoprotein. ↑ = raised. ↓ = reduced.

In this regard, Calapkulu et al. evaluated the changes in the lipid profile after three and
six months of dapagliflozin treatment and whether this was influenced by some variables
(age, gender, diabetes duration, hypertension and concomitant use of insulin) [54]. The
results showed a non-significant reduction in blood lipid levels after three months of
treatment and a statistically significant reduction after six months, with no relevant effects
of the investigated variables [54]. In a study by Bays et al., dapagliflozin administration
caused a minor increase in LDL and HDL cholesterol levels compared to placebo, regardless
of the presence or absence of baseline dyslipidemia. In contrast, the decrease in triglyceride
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levels was observed only in patients with a previous diagnosis of hyperlipidemia [55].
Other studies gave similar results, with an increase in total and LDL cholesterol levels
and a reduction in triglycerides following the administration of dapagliflozin [56–58]. In
addition, the EMPA-REG OUTCOME trial already showed the effects of empagliflozin in
reducing HDL and increasing LDL cholesterol [59]. Furthermore, in patients with diabetes
and hypertension, empagliflozin was associated with a significant reduction in blood
pressure and glycated hemoglobin and a slight increase in total and LDL cholesterol. At the
same time, no main changes in HDL or triglycerides were noted [60]. These results were
confirmed by other studies, which showed increased serum levels of LDL in empagliflozin-
treated patients [45,61]. Additionally, the CANVA(S) trial demonstrated a slight increase in
HDL and LDL cholesterol in patients treated with canagliflozin compared with placebo [62].
In a randomized, double-blind, phase III study conducted by Bode et al., canagliflozin
caused a spread in HDL cholesterol and LDL cholesterol and decreased triglycerides after
104 weeks of treatment [63]. Notably, canagliflozin showed the highest LDL cholesterol-
raising potency compared to other SGLT2is, while empagliflozin was the one with the
highest power to increase total cholesterol [45].

In conclusion, most studies conducted up to now showed increased LDL and HDL
cholesterol levels (and, consequently, in total cholesterol) and decreased triglycerides
following SGLT2i administration. The shady effects of SGLT2i on lipid metabolism could
be responsible for their relative lower benefits regarding cardiovascular events compared
to GLP1-RA. However, these findings were not statistically significant in any case. Further
studies are needed to investigate the effect of these drugs on the lipid profile as an integral
part of cardiovascular health.

3.2. Glucagon-like Peptide-1 Receptor Agonists
3.2.1. Mechanisms of Action and Pre-Clinical Evidence

Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted in the gut in response
to food intake that increases insulin secretion, inhibits glucagon production, and acts on
pancreatic B cells [64]. GLP-1 receptor agonists (GLP-1 RAs), existing in short and long-term
formulations, improve hyperglycemia and delay gastric emptying. Long-acting GLP-1
RAs increase insulin production and suppress glucagon production, reducing postprandial
glucose and fasting plasma glucose, while short-acting agonists reduce postprandial glucose
mainly by slowing gastric emptying [65]. Beyond the well-known benefit on glycemic
control, several studies showed the pleiotropic effects of GLP-1 RAs (Figure 4), consisting
of anti-inflammatory effects and improvement in lipid profile and endothelial dysfunction,
which protect against the development of atherosclerosis and cardiovascular disease [10,66].

Specifically, semaglutide and liraglutide inhibit atherosclerosis by modulating in-
flammatory pathways in low-density lipoprotein and apolipoprotein E receptor-deficient
mice [67]. In apolipoprotein E–deficient mice (apoE−/−), Arakawa et al. showed that
exendin-4 reduced the accumulation of monocytes/macrophages in the vascular wall at
least in part by suppressing the inflammatory response in macrophages through the activa-
tion of the cAMP/PKA pathway [68]. Moreover, GLP-1 RAs prevent the progression of
atherosclerotic lesions by inhibiting the formation of macrophage foam cell clusters and sup-
pressing the expression of inflammatory cytokines (i.e., IL-1, IL-6, and TNF-α) [67,69]. GLP-
1 RAs could also suppress foam cell formation by activating autophagy in oxidized-LDL
monocytes [70] and reducing acyl-CoA:cholesterol acyltransferase 1 (ACAT1) expression
and activity [71]. Interestingly, despite no significant change in absolute HDL choles-
terol levels, liraglutide improved HDL properties on endothelium in mice [72], resulting
in a raised nitric oxide (NO) bioavailability and anti-inflammatory effects [73]. In over-
weight/obese subjects with prediabetes, the addition of liraglutide to a calorie-restricted
diet was also associated with a decrease in the higher density LDL cholesterol subclasses
and a shift away from small LDL lipoproteins (phenotype B, associated with increased risk
of coronary artery disease) towards larger, more buoyant LDL lipoproteins (phenotype A
and AB, associated with reduced risk). Liraglutide administration also decreased total apo
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B concentration and the apo B/apo A-1 ratio [74]. Therefore, Osto et al. reported that, after
roux-en-Y gastric bypass, elevated GLP-1 levels, through the activation of the GLP-1 recep-
tor by liraglutide, activate an enzymatic cascade that leads to improved HDL-mediated NO
production and endothelial antiapoptotic, antioxidant, and anti-inflammatory effects [72].
In addition, liraglutide favorably modulates lipid metabolism in enterocytes and hepato-
cytes, allowing a shift of HDL cholesterol toward smaller HDL particles, which showed a
raised cardiovascular protective effect [17]. Furthermore, in high-fat-fed mice, the adminis-
tration of GLP-1 RAs reduced VLDL cholesterol production and hepatic steatosis, other
than better glycemic control [75]. Moreover, GLP-1 signaling reduces VLDL and triglyc-
erides production by the liver, decreases hepatic triglycerides content by modulating key
enzymes of lipid metabolism in the liver, and impairs hepatocyte de novo lipogenesis and
β-oxidation [76]. GLP-1 RAs could also activate hepatic cyclic adenosine monophosphate
(cAMP), resulting in the phosphorylation of cAMP-activated protein kinase (AMPK), which
acts as a suppressor of lipogenesis [77]. A study conducted in diabetic rats showed how
liraglutide could significantly decrease total cholesterol, triglycerides and LDL cholesterol
by promoting the reversal of cholesterol transport in hepatocytes [78]. Finally, Feng Xu et al.
showed that 4 weeks of exenatide treatment reduced body weight, improved lipid pro-
file, and decreased serum levels of total cholesterol, triglycerides, and free fatty acids in
diet-induced obese mice [79]. Previous studies gave controversial results regarding the
effects of GLP-1 RAs treatment on lipolysis. Armstrong et al. demonstrated how the use of
liraglutide was associated with a decrease in circulating free fatty acids levels in the fasting
state and a raised insulin-mediated suppression of lipolysis [80]. Similarly, exenatide was
able to reduce plasma free fatty acids during an oral glucose tolerance test [81]. Other
studies conducted on diabetic rats confirmed these results, proving reduced levels of serum
free fatty acids after GLP1-RAs administration [82,83]. Conversely, other findings showed
minor or no significant impact on the levels of free fatty acids and glycerol after liraglutide
treatment [84,85].
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3.2.2. Clinical Evidence

Increasing evidence confirmed the effects of GLP-1 RAs in decreasing plasmatic levels
of total cholesterol, triglycerides and low-dense lipoprotein cholesterol in diabetic pa-
tients [86–88]. Liraglutide administration for over one year was associated with reduced
body weight and improved metabolic control in patients with dyslipidemia or hyperten-
sion [89]. The amelioration in fasting lipid profile mainly resulted in a significant decrease
in total cholesterol and plasma triglycerides and a rise in HDL cholesterol [89]. The use
of GLP-1 RAs has also been related to improved basal and postprandial lipidic levels
in several studies [74,90]. A large meta-analysis of 35 trials confirmed that GLP-1 RAs
could induce reductions in LDL and total cholesterol, albeit that no significant increase
in HDL cholesterol was observed [90]. Specifically, exenatide, liraglutide, and taspoglu-
tide reduced total cholesterol with a range of −0.16 mmol/L (95% CI, −0.26 to −0.06) to
−0.27 mmol/L (95% confidence interval [CI], −0.41 to −0.12) versus placebo and thia-
zolidinediones (range, −0.26 to −0.37 mmol/L) [90]. Moreover, a significant decrease in
LDL cholesterol levels was detected for all GLP-1 RAs versus placebo (range, −0.08 to
−0.16 mmol/L), thiazolidinediones (range, −0.16 to −0.24 mmol/L), and insulin (range,
−0.10 to −0.19 mmol/L) [90]. Finally, exenatide, liraglutide, and taspoglutide decreased
HDL cholesterol with a range of −0.06 mmol/L (95% CI, −0.11 to −0.01) to −0.13 mmol/L
(95% CI, −0.17 to −0.10) compared with thiazolidinediones [90]. Concordantly, in the
DURATION-6 open-label study conducted on 911 patients, treatment with liraglutide
once daily or exenatide once weekly in diabetic patients induced a significant decrease
in total, LDL, and non-HDL cholesterol and an increased HDL cholesterol at 26 weeks
follow-up [91]. The LEAD-6 trial, conducted on 464 patients, showed that liraglutide
reduced total cholesterol (0.20 mmol/L), LDL cholesterol (0.44 mmol/L), triglycerides
(0.41 mmol/L), and HDL cholesterol (0.04 mmol/L) after 26 weeks, albeit a slight increase
in very low-density lipoprotein cholesterol (0.2 mmol/L) [92]. Similar results were observed
in patients treated with exenatide, allowing a decrease in total cholesterol (0.09 mmol/L),
LDL cholesterol (0.40 mmol/L), triglycerides (0.23 mmol/L), and HDL cholesterol levels
(0.05 mmol/L), associated with a rise in VLDL cholesterol (0.27 mmol/L) [92]. Finally, as
shown in a meta-analysis by Liu et al. [93], liraglutide induced a greater reduction in blood
lipid levels and body mass index than traditional therapies.

Furthermore, administering high-dose semaglutide once a week was associated with
improved lipid parameters [94,95]. Specifically, the use of semaglutide for 30 weeks
significantly reduced total cholesterol, free fatty acids and LDL cholesterol levels compared
with the placebo in the SUSTAIN-1 trial [94]. Moreover, treatment with semaglutide
resulted in a higher decrease in triglycerides, LDL and total cholesterol values compared
with insulin glargine at a 30-weeks follow-up, along with a positive effect on HbA1c and
weight [95]. In addition, compared with exenatide, semaglutide induced a greater reduction
in free fatty acids and triglycerides after 56 weeks of treatment [96]. Lastly, exenatide also
shows an ameliorated lipid profile. Chiquette et al. showed that exenatide once a week
had a positive effect on lipoprotein levels, apolipoprotein B (apo B) levels, and the apo
B/apo A ratio [97]. In addition, triglycerides and VLDL cholesterol levels were significantly
reduced with both once-weekly and twice-daily exenatide regimens [97]. Interestingly,
Song et al. in a meta-analysis published in 2015 provided preliminary evidence in favor of
GLP-1-based therapies in overcoming atherosclerosis development/progression, which
is also substantiated by the significant decreases in the total cholesterol, LDL cholesterol
and triglycerides [98]. Similar results were reported in a recent review of 57 trials, which
demonstrated the beneficial effects of GLP-1 RAs on total and HDL cholesterol levels [99].
Interestingly, the combination treatment with GLP-1 RAs and SGLT2i significantly reduced
LDL cholesterol levels in diabetic patients compared to monotherapy [100]. Moreover, in
the PIONEER clinical trial program, patients treated with oral semaglutide experienced a
reduction in LDL cholesterol levels compared to those receiving placebo, associated with
improvements in HDL cholesterol and triglycerides levels [101]. The lipid-lowering effects
of oral semaglutide include enhanced insulin secretion, reduced glucagon secretion, and
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decelerated gastric emptying [102]. Interestingly, the dual GLP-1 agonist and glucose-
dependent insulinotropic peptide (GIP) agonist tirzepatide showed beneficial effects on
lipid metabolism, improving insulin sensitivity and reducing lipoprotein biomarkers such
as apolipoprotein C-III, apolipoprotein B, and large triglyceride-rich lipoprotein particles,
as well as small low-density lipoprotein particles [103,104]. Furthermore, treatment with
tirzepatide induced a reduction in metabolites associated with obesity [103]. Finally, as
showed by Wilson and al., tirzepatide significantly reduced LDL cholesterol and non-HDL
cholesterol levels compared with placebo [103].

Table 2 summarizes studies investigating lipid effects of GLP-1 RAs.

Table 2. Main results of studies investigating the effects of GLP-1 RAs on lipid profile.

Type of Study Molecule N◦ of Patients Time of
Follow-Up Main Results

Ariel et al., 2014 [74] Prospective study Liraglutide 50 patients 14 weeks

↓ LDL
↓ non-HDL
↓ total cholesterol
↓ triglycerides
↓ apo-B
↓ apo-B/apo-A1 ratio shift of small
LDL lipoproteins towards larger

Viswanathan et al.,
2007 [86] Retrospective study Exenatide 5 mcg 52 patients 26 weeks ↓ total cholesterol

↓ triglycerides

Schwartz et al.,
2010 [87]

Double-blinded,
randomized,
placebo-controlled
study

Exenatide 10 mcg 35 patients Up to 3 weeks

↓ RLP-cholesterol
↓ RLP triglycerides
↓ triglycerides
↓ apo-B48
↓ apo-CIII

Hasegawa et al.,
2018 [88] Retrospective study Various 317 patients 119 days ↓ LDL

Pi-Sunyer et al.,
2015 [89]

Randomized
controlled trial Liraglutide 3.0 mg 3731 patients 56 weeks

↑ HDL
↓ total cholesterol
↓ triglycerides

Sun et al., 2015 [90] Meta-analysis of
35 trials

Exenatide, Liraglutide,
and Taspoglutide 14,340 patients Al least 8 weeks ↓ LDL

↓ total cholesterol

Buse et al., 2009 [92]
(LEAD-6)

Randomized
controlled trial

Liraglutide and
Exenatide 464 patients 26 weeks

↓ LDL
↓ HDL
↓ total cholesterol
↓ triglycerides
↑ VLDL

Buse et al., 2013 [91]
(DURATION-6)

Randomized
controlled trial

Liraglutide and
Exenatide

911 patients (450
liraglutide, 461
exenatide)

26 weeks
↓ LDL
↑ HDL
↓ non-HDL
↓ total cholesterol

Liu et al., 2019 [93] Meta-analysis of
13 trials Liraglutide 1187 patients At least 8 weeks ↓ triglycerides

Sorli et al., 2017 [94]
(SUSTAIN 1)

Double-blind
randomized trial

Semaglutide 0.5 mg
Semaglutide 1.0 mg 388 patients 30 weeks

↓ LDL
↓ total cholesterol
↓ free fatty acids

Aroda et al.,
2017 [95]
(SUSTAIN 4)

Double-blind
randomized trial

Semaglutide 0.5 mg
Semaglutide 1.0 mg 1089 patients 30 weeks

↓ LDL
↓ total cholesterol
↓ triglycerides

Ahmann et al.,
2018 [96]
(SUSTAIN 3)

Double-blind
randomized trial

Semaglutide 1.0 mg
Exenatide 813 patients 56 weeks

(semaglutide > exenatide)
↓ triglycerides
↓ VLDL cholesterol
↓ free fatty acids

Chiquette et al.,
2012 [97]
(DURATION-1)

Post hoc analysis Exenatide 211 patients 30 weeks

↓ triglycerides
↓ VLDL cholesterol
↓ apolipoprotein B (apoB)
↓ apo B/apo A ratio

Song et al., 2015 [98] Meta-analysis of
31 trials Various Variable Up to 52 weeks

↓ LDL
↓ total cholesterol
↓ triglycerides

Dar et al., 2022 [99] Meta-analysis of
57 trials Various Variable Between 12 weeks

and 312 weeks
↑ HDL
↓ total cholesterol

Li et al., 2022 [100] Meta-analysis of
8 trials Various 1895 patients At least 12 weeks ↓ LDL

Abbreviations: Apo = apolipoprotein; HDL = high-density lipoprotein; LDL = low-density lipoprotein;
RLP = remnant-like particle; VLDL = very low-density lipoprotein. ↑ = raised. ↓ = reduced.
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3.3. Dipeptidyl Peptidase-4 Inhibitors
3.3.1. Mechanisms of Action and Pre-Clinical Evidence

Dipeptidyl peptidase-4 inhibitors (DPP4i) inhibit the catalytic activity of dipeptidyl
peptidase-4 (DPP4), thus preventing the degradation of the incretin hormones (i.e., GLP-1
and glucose-dependent insulinotropic peptide, GIP), and therefore stimulating postprandial
insulin secretion and reducing hepatic glucose production through lowered glucagon
secretion [105]. Indeed, DPP4i are approved as glucose-lowering drugs for diabetes mellitus
treatment, with minimal risk of hypoglycemia, being well-tolerated in short- and long-term
studies [10]. However, besides their action on glycemia, DPP4i could also induce benefits
in lipid metabolism and reduce atherogenic development (Figure 5).
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Hence, in hyperlipidemic mice, the administration of anagliptin significantly reduced
the levels of total cholesterol and triglycerides, suppressing sterol regulatory element-
binding protein activity in hepatocytes [106]. In addition, hepatic DPP4 leads to reduced
glycogen storage, higher glucose output and raised lipid accumulation in the liver through
an enhanced insulin resistance involving phosphorylation of insulin-receptor substrate 1
(IRS-1), mitogen-activated protein kinases (MAPK)/ERK, and protein kinase B/Akt [107].
Thus, all these pathways might be attenuated by the administration of DPP4i. In an in vitro
study conducted by Mostafa et al., the incubation of adipocytes with vildagliptin induced
an increased cholesterol efflux through the raised expression of the gene encoding for
the adenosine triphosphate (ATP) binding cassette transporters family [108]. Moreover,
several animal studies showed how DPP4i could reduce the accumulation of lipids and
triglycerides in the liver [106,109] and kidneys [110]. Specifically, DDP4i could suppress the
accumulation of triacylglycerol and diacylglycerol in hepatocytes by raising mitochondrial
carbohydrate use and hepatic triacylglycerol secretion [109]. Similarly, the administration
of teneligliptin reduced the lipid accumulation in the kidneys of apolipoprotein E knockout
mice through the inhibition of renal lectin-like oxidized LDL receptor-1 [110]. Moreover,
DPP4i could reduce fatty acids synthesis in the liver by upregulating the expression of carni-
tine palmitoyl-transferase-1 and increasing the activity of peroxisome proliferator-activated
receptor-α and cyclic adenosine monophosphate (cAMP) reactive element binding ho-
molog [111]. Interestingly, significant reduced levels of free fatty acids were observed
after sitagliptin administration [112]. Similarly, treatment with DPP4i trelagliptin in rats
induced decreased levels of free fatty acids secreted by fat cells, thus improving insulin resis-
tance [113]. Kim and al. reported similar results in high-fat-fed animals, including reduction
in plasma non-esterified fatty acids, after 14 weeks of treatment with evo-gliptin [114].
Moreover, a study conducted in cows showed how the use of DPP4i was related to reduced
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non-esterified fatty acids and triglycerides levels [115]. In addition, sitagliptin reduced
intestinal cholesterol absorption in obese insulin-resistant mice, suggesting another poten-
tial mechanism translating into improved cholesterol metabolism [116]. Finally, Choi et al.
showed how DPP4i could promote 5′ AMP-activated protein kinase activity, reducing fatty
acid oxidation and suppressing oxidative stress and lipogenesis [117].

3.3.2. Clinical Evidence

Several studies, summarized in Table 3, investigated the effects of DPP4i on the lipid
profile in diabetic patients [118].

Table 3. Main results of studies investigating the effects of DPP4i on lipid profile.

Type of Study Molecule N◦ of Patients Time of
Follow-Up Main Results

Monami et al.,
2012 [119]

Meta-analysis of
17 trials

Alogliptin, Dutogliptin,
Linagliptin, Saxagliptin,
Sitagliptin, Vildagliptin

Variable Variable ↓ total cholesterol
↓ triglycerides

Ikegami et al.,
2021 [120] Single-arm trial Anagliptin 14 patients 6 months ↓ LDL

↓ lathosterol

Nishida et al.,
2020 [121]

Retrospective
study

Sitagliptin, Vildagliptin,
Teneligliptin, Alogliptin
and Linagliptin

1809 patients 3 and 12 months

↓ HDL (in sitagliptin and
vildagliptin users)
↓ total cholesterol and
triglycerides (in sitagliptin,
vildagliptin, and alogliptin users)

Kusunoki et al.,
2016 [122]

Prospective
study

Alogliptin 25 mg
Sitagliptin 100 mg

129 patients
6 patients

6 months
12 months

↓ LDL
↓ total cholesterol
↓ triglycerides
non-significant changes in LDL,
HDL, and total cholesterol

Monami et al.,
2012 [123]

Meta-analysis of
18 trials

Alogliptin, Dutogliptin,
Linagliptin, Saxagliptin,
Sitagliptin, Vildagliptin

Variable Variable

↓ total cholesterol
↓ triglycerides
vildagliptin > sitagliptin and
alogliptin

Homma et al.,
2017 [124]

Prospective
study Teneligliptin 20 mg 25 patients 12 months ↓ RLP cholesterol

↓ FPG

Tremblay et al.,
2014 [125]

Randomized
controlled trial Sitagliptin 100 mg 22 patients 6 weeks

↓ triglycerides
↓ apoB-48
↓ free fatty acids

Kakuda et al.,
2015 [126]

Prospective
study Anagliptin 200 mg - 12 weeks

↓ LDL
↓ non-HDL cholesterol
↓ RLP cholesterol
↓ total cholesterol
↓ triglycerides
↓ apoB-48

Dar et al.,
2022 [99]

Meta-analysis of
57 trials Variable Variable Variable

↑ HDL
Non-significant changes in LDL,
total cholesterol, and triglycerides

Abbreviations: apo = apolipoprotein; FPG = fasting plasma glucose; HDL = high-density lipoprotein; LDL = low-
density lipoprotein; RLP = remnant like particle. ↑ = raised. ↓ = reduced.

Specifically, this family of drugs has provided beneficial effects on total cholesterol
and triglyceride levels [119]. Interestingly, most studies demonstrated that the positive
effect on lipid metabolism in patients treated with DDP4i was mainly induced by the
inhibition of cholesterol synthesis in hepatocytes, rather than the reduction of intestinal
lipid transport [120–122]. Furthermore, available data suggest minor differences in lipid
effects among the specific drugs, with vildagliptin appearing to be modestly superior to
alogliptin and sitagliptin [123]. Remnant-like particle cholesterol (RLP-C) is an important
coronary risk marker, and its levels are usually high in patients with chronic kidney disease
(CKD) [124]. In these regards, the administration of DPP4i teneglipitin in diabetic patients
with chronic kidney disease was significantly associated with reduced fasting glucose
and RLP-C levels [124], suggesting a beneficial effect for the prevention and treatment of
atherosclerosis in diabetic patients with CKD. In addition, DPP4 inhibition with sitagliptin
could reduce the postprandial release of intestinal apoB-48-containing lipoproteins, prevent-
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ing the accumulation of postprandial triglyceride-rich lipoprotein remnants, which play a
key role in the development of atherosclerosis [125]. Moreover, treatment with anagliptin
in diabetic patients leads to improved hyperlipidemia in both fasting and postprandial
conditions, besides better glycemic control, favoring the prevention of cardiovascular dis-
ease [126]. Finally, a recent meta-analysis of 57 clinical trials investigated the effects on
lipid parameters of novel antidiabetic agents [99]. Interestingly, DPP4i showed a significant
impact in increasing HDL levels (weighted mean difference, WMD =−6.00 mg/dL, 95% CI:
−8.43 to −3.57 mg/dL, p < 0.00001), while no significant changes were observed in total
cholesterol, LDL and triglycerides levels [99].

4. Effects of Combination Therapy

Despite therapies’ development, glycemic control targets are not immediately reached,
thus the combination therapy involving traditional hypoglycemic drugs such as metformin
is widely spread. On these bases, Cheng and al. demonstrated that therapy with da-
paglifozin plus metformin greater reduced the components of metabolic syndrome (body
weight, BMI, waist circumference, fasting plasma glucose, triglycerides) in comparison to
dapaglifozin or metformin monotherapies [127]. Moreover, dapaglifozin and metformin
monotherapies were associated with similar modifications in HDL cholesterol and LDL
cholesterol, while combination therapy provided greater increase in HDL cholesterol [127].
Similarly, dapagliflozin added to metformin induced a reduction in total body weight,
mainly through reduction of fat mass and visceral adipose tissue [128]. In addition, triple
therapy involving metformin, linaglipitin and dapagliflozin more effectively reduced LDL
cholesterol rather than metformin monotherapy [129]. Moreover, treatment with met-
formin, SGLT2i and DPP4i improved total cholesterol and HDL cholesterol more than
metformin monotherapy [129]. Furthermore, the addition of saxagliptin to metformin plus
dapagliflozin produced a more effective decrease in total cholesterol and LDL cholesterol
levels compared to therapy with metformin plus dapagliflozin [129]. Equally, dual therapy
with exenatide plus dapagliflozin provided a greater reduction in triglycerides levels com-
pared with dapagliflozin alone [130,131]. A recent review conducted by Li and al. showed
how GLP-1 RAs and SGLT2i combination therapy led to higher reduction in body weight,
body mass index and LDL cholesterol compared with monotherapy [100].

5. Novel Cholesterol-Lowering Drugs

Despite current recommendations, only 30% of patients with type-2 diabetes reach
the LDL cholesterol targets [1,132]. Particularly, the primary reason of the failure to reach
therapeutic goals with statin is poor adherence to therapy, mainly induced by the develop-
ment of myalgia [133]. In recent years, the importance of reducing cardiovascular risk by
controlling dyslipidemia has led to the development of novel cholesterol-lowering drugs,
more effective than statins and ezetibime. Specifically, the use of proprotein convertase
subtilisin/kexin type inhibitors (PCSK9i) provides about 50–60% reduction in LDL choles-
terol [134]. Nevertheless, subcutaneous self-injection of these drugs is not acceptable for
some patients. Inclisiran is a new PCSK9i that contemplates a biannual subcutaneous
administration performed by healthcare professionals. A recent metanalysis of nine ran-
domized clinical trials, showed how therapy with inclisiran was not associated with an
increased incidence of new-onset diabetes [135]. Moreover, changes in LDL cholesterol
induced by inclisiran did not result in significant impact on new-onset diabetes [135].
Similarly, Leiter and al. showed how treatment with inclisiran did not induce significant
changes in glycated hemoglobin at 180 days follow-up [136]. Furthermore, the benefi-
cial effects in lowering LDL cholesterol levels were reached regardless of the presence of
diabetes [136].

Bempedoic acid is a novel drug, administered orally, which significantly reduces
LDL cholesterol, triglycerides and apolipoprotein B and could induce positive effects on
glucose metabolism and insulin sensitivity [137]. Specifically, through the activation of
adenosine mono-phosphate-activated protein kinase (AMPK), it induces an inhibition
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of the hepatic production of glucose [138]. Gutierrez and al. showed how treatment
with bempedoic acid in patients with type-2 DM did not result in worsening of glycemic
parameters, including fasting plasma glucose concentration, postprandial measures and
morning postprandial plasma glucose [139]. Furthermore, as showed by a recent trial,
bempedoic acid significantly reduced glycated hemoglobin in patients with diabetes and
pre-diabetes by −0.12% and −0.06%, respectively, and did not worsen fasting glucose
compared to placebo [140]. In addition, bempedoic acid is associated with lower incidence
of new-onset diabetes compared to placebo [140].

6. Conclusions

Cardiovascular diseases remain the leading cause of morbidity and mortality world-
wide. One of the most important independent factors for the development of CVD is type-2
diabetes mellitus, commonly associated with lipid abnormalities which define “diabetic
dyslipidemia”, a condition characterized by hypertriglyceridemia, low HDL-cholesterol,
and high small dense LDL levels. Thus, it appears clear that effective management of
diabetic dyslipidemia is relevant in reducing the risk of CVD in diabetic subjects. In this
setting, novel anti-diabetic agents could represent remarkable game-changers for the global
reduction of CV morbidity and mortality in diabetic patients because of their benefit on
lipid metabolism beyond the glucose-lowering effects.
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Appendix A

This review was conducted using a literature search of PubMed, EBSCO Embase, and
Cochrane database of systematic reviews, up to March 2023, using the following MESH
terms and keywords in various combinations: “anti-diabetic drugs”, “cardiovascular
disease”, “type-2 diabetes”, “dyslipidemia”, “diabetic dyslipidemia”, “sodium glucose
transporter-2 inhibitors (SGLT2i)”, “dipeptidyl peptidase-4 inhibitors (DPP4i)”, “glucagon-
like peptide-1 (GLP-1) receptor agonists”, “inclisiran”, “bempedoic acid”. We did not
include as keywords “insulin resistance”, “prediabetes” and “impaired glucose tolerance”,
as diabetic dyslipidemia is usually present in diabetes mellitus and not in pre-diabetes
condition. Similarly, the use of novel anti-diabetic drugs analyzed in our review is generally
limited to overt diabetes. The aim was to provide a narrative review rather than a systematic
one. We limited the search to articles published in high-impact journals between January
2010 and January 2023, including review articles, pre-clinical and clinical studies. High-
impact journals were included in case of an impact factor superior to 3.0. We included only
articles published in English.
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