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Abstract: Despite the known influence of DNA methylation from lipopolysaccharide (LPS) activation,
data on the O6-methylguanine-DNA methyltransferase (MGMT, a DNA suicide repair enzyme)
in macrophages is still lacking. The transcriptomic profiling of epigenetic enzymes from wild-
type macrophages after single and double LPS stimulation, representing acute inflammation and
LPS tolerance, respectively, was performed. Small interfering RNA (siRNA) silencing of mgmt in
the macrophage cell line (RAW264.7) and mgmt null (mgmtflox/flox; LysM-Crecre/−) macrophages
demonstrated lower secretion of TNF-α and IL-6 and lower expression of pro-inflammatory genes
(iNOS and IL-1β) compared with the control. Macrophage injury after a single LPS dose and LPS
tolerance was demonstrated by reduced cell viability and increased oxidative stress (dihydroethidium)
compared with the activated macrophages from littermate control mice (mgmtflox/flox; LysM-Cre−/−).
Additionally, a single LPS dose and LPS tolerance also caused mitochondrial toxicity, as indicated by
reduced maximal respiratory capacity (extracellular flux analysis) in the macrophages of both mgmt
null and control mice. However, LPS upregulated mgmt only in LPS-tolerant macrophages but not
after the single LPS stimulation. In mice, the mgmt null group demonstrated lower serum TNF-α,
IL-6, and IL-10 than control mice after either single or double LPS stimulation. Suppressed cytokine
production resulting from an absence of mgmt in macrophages caused less severe LPS-induced
inflammation but might worsen LPS tolerance.

Keywords: sepsis; lipopolysaccharide; macrophages; epigenetics; mgmt

1. Introduction

Sepsis is a potentially life-threatening condition arising in response to severe infection,
regardless of the organismal causes (bacteria, viruses, fungi, and parasites) [1–3], partly due
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to the simultaneous immunological imbalance between hyperinflammation and immune
exhaustion (immune paralysis) [4,5] in the same patient [6]. Sepsis-induced hyperinflamma-
tion results in severe sepsis, while immune exhaustion leads to inadequate inflammation
for microbial control, causing secondary infection [7]. The blockage and enhancement
of inflammation during sepsis hyperinflammation and immune exhaustion, respectively,
may be helpful [8–15], despite the improvement of supportive care in sepsis [16]. Among
several sepsis mechanisms, the responses against lipopolysaccharide (LPS) during sepsis
are extensively studied [17–20]. The presence of LPS, a major cell wall component of
Gram-negative bacteria in the blood (endotoxemia) during sepsis, may be due to Gram-
negative bacteremia or the translocation of LPS from the gut because of the high abundance
of Gram-negative bacteria in the gut [21–23]. Because monocytes and macrophages are
important for controlling microbial molecules, both acute responses to LPS and the reduced
cytokine production after the first LPS stimulation (LPS tolerance), are possible during
prolonged endotoxemia [24,25]. The causes of LPS tolerance in macrophages might be
due to epigenetic modifications, chromatin remodeling, and interferences on cell energy
status [26–28]. Following LPS stimulation, epigenetics (phenotypic alterations without
changes in the DNA sequence [29,30]) are responsible for the switch-on and switch-off of
DNA transcription through DNA methylation (methyl group added onto the DNA), histone
modifications, and noncoding RNA (microRNA) [2]. Of these, the DNA methylation and
histone modification are mediated by three groups of enzymes, including (i) the writers
(methylation, acetylation, phosphorylation, and ubiquitination), (ii) the erasers (removal of
the modifications), and (iii) the readers (binding to different covalent modifications by the
writers to mediate physiological outcomes) [3]. Within DNA methylation, the epigenetic
regulation of DNA repair is profoundly interesting.

Any forms of electrophilic species (oxidative stress) from several cellular processes,
including regular cell activities (stress, cell adaptation, tissue integrity, and remodeling to
adapt to the microenvironment), metabolic activation (such as LPS stimulation), and expo-
sure to alkylating agents, induce DNA methylation, especially the purine N -methylation
and O6-methylguanine (O6MeG) [31]. Some of these methylation events, particularly
O6MeG, are common processes of DNA damage that can trigger point mutations with
high mutagenicity and carcinogenicity [32]. Because polymerase enzymes frequently mis
insert thymine instead of cytosine (O6MeG:T mismatch) due to the roughly equal strength
of the hydrogen bonds to cytosine and thymine; O6MeG, which is commonly activated
by the alkylating agent, is mutagenic [33]. However, O6MeG is produced not only by
alkylating agents and environmental compounds but also by several endogenous factors
during regular cell activities, especially oxidative stress [34]. Indeed, normal metabolic
processes, such as hydrolysis, deamination, alkylation, and oxidation, result in several
forms of DNA damage, including base damage, single-strand breaks (SSB), double-strand
breaks (DSB), and inter-strand cross-links with roughly more than 50,000 lesions per cell
daily (approximately 30,000 nucleoside sites in DNA per cell [35]). Although modifications
at the O6 position of guanine (O6MeG) might be not high compared with the total number
of DNA lesions [36], an abundance of O6MeG might originate from high oxidative stress
during sepsis or LPS response. Indeed, chronic inflammation can induce both cancer muta-
tion and DNA methylation [37]. Because of the easy point mutation of O6MeG, O6MeG
might cause more severe DNA damage and cell death compared to other types of DNA
methylation [38].

To maintain genome stability, DNA repair is necessary, partly through the removal
of methyl groups on the DNA by base excision repair initiated by the alkyladenine-DNA
glycosylase, the family of alkylation B (AlkB) homolog proteins, and the suicidal enzyme
O6-methylguanine-DNA methyltransferase (MGMT) [32,39]. The alkylated and methylated
forms of these enzymes are rapidly degraded after DNA repair. Indeed, the intact MGMT
in several tissues prevents malignant transformation, and MGMT blockage is used for
adjuvant chemotherapy [32] through the blockage of DNA repair in cancers that depend
on the rate of MGMT re-synthesis of the malignant cells [39]. Due to several macrophage
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activator molecules and immune activation-induced oxidative stress in macrophages [40],
DNA methylation and DNA damage in the activated cell are possible, especially after
stimulation with LPS. Indeed, LPS causes DNA methylation/damage in macrophages
directly [41] and indirectly through Toll-like receptor activation and reactive oxygen species
(ROS), respectively [42]. Additionally, the higher levels of genomic DNA methylation
patterns and hypermethylated genes associated with the pro-inflammatory pathways are
demonstrated in patients with sepsis [43]. Despite a solid body of data on the role of O6MeG
in malignant cells, the impact of O6MeG and MGMT on macrophages which are the cells
with possibly high stress-induced DNA methylation [44] are still unclear. Because (i) sepsis
and LPS induce DNA methylation, including Q6MeG [43], (ii) MGMT reduces O6MeG
during the DNA repair, and (iii) an MGMT inhibitor (Lomeguatrib) enhances the death
of cancer cells (DNA repair interference) [45] that might be beneficial in sepsis [46], the
blockage of MGMT in macrophages might reduce macrophage activity and attenuate sepsis-
related hyper-inflammation. Furthermore, epigenetic inhibitor screening has also shown
that MGMT inhibitors alter the expression of inflammatory cytokine in the LPS-activated
macrophages [47] and the MGMT inhibitors not only neutralize O6MeG in DNA but also
link to the repair of other pathways [48]. Despite several ongoing research topics, the
control of macrophage responses through their manipulations on epigenetics is interesting
for controlling immune responses during sepsis [13,49].

Here, we explored the impact of mgmt on the responses to LPS, both for a single
LPS activation (hyper-inflammatory responses) and double stimulation (LPS tolerance),
in vitro and in vivo, using the conditional mgmt deletion mice with LysM-Cre system that
selectively affects mgmt only in macrophages.

2. Results
2.1. Transcriptomic Analysis of the Influence of Epigenetic Alteration in Macrophages after
Activation by Single or Double LPS Stimulation

The difference between control cells versus activated macrophages from wild-type
(WT) mice using a single LPS stimulation (N/LPS) and LPS tolerance (LPS/LPS) was
evaluated by RNA sequencing analysis (Figure 1A). There were 2775 and 3934 up- and
down-regulated genes in the LPS-activated macrophages compared with the media con-
trol, as indicated by a Volcano plot analysis (Figure 1B). Meanwhile, there were 2115 and
2729 up- and down-regulated genes in the macrophages with LPS tolerance compared
to the control (Figure 1C). The differences among the control, single LPS dose, and LPS
tolerance conditions were clearly demonstrated by the heat map graphic pattern for DNA
and histone modification (Figure 1D,E). Notably, only the genes with significant differences
or a tendency of difference among these groups were included. For DNA modification, the
genes between control and LPS stimulation, dnmt1 (DNA methyltransferases) and mgmt
(O6-methylguanine-DNA methyltransferase), were lower, while mbd2 (methyl-cytosine
binding domain2), sap30 (Shrimp alkaline phosphatase30), mecp2 (methyl-CpG binding pro-
tein2), and hdac1 (histone deacetylase) were higher compared with the control (Figure 1D).
Additionally, hdac1 was categorized in both DNA and histone modification due to the col-
laboration of hdac1 with dnmt1 to form a complex [50]. Interestingly, the expression of these
DNA modification genes in macrophages between single LPS and LPS tolerance was oppo-
site, as indicated by the heat map analysis pattern (Figure 1D). For the histone modification
genes between control and LPS stimulation, ezh1 (histone-lysine N-methyltransferase1)
and aurkb (aurora kinase B) were lower than control (Figure 1E), while sirt6 (sirtuin6),
kmt5a (lysine methyltransferase 5a), rnf2 (ring finger protein 2), hdac1, and kdm6b (lysine
demethylase 6b) were higher than the control (Figure 1E). In addition, the expression
of these histone modification genes in macrophages between single LPS and LPS toler-
ance was also the opposite, as indicated by the heat map analysis, except for sirt6 and
kmt5a (Figure 1E). Hence, these data supported the idea of an epigenetic alteration in the
macrophage responses against LPS, which might be different between single and double
LPS stimulations.
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 Figure 1. The transcriptome profiles and the log2 of the transcript count per million (TPM) of genes
in bone marrow-derived macrophages from wild-type mice activated by lipopolysaccharide (LPS)
in a single protocol (N/LPS), which started with the culture media followed by LPS 24 h later or
LPS tolerance (LPS/LPS) by the two sequential LPS stimulations, or control (N/N; control) using the
culture media incubation only (A), as indicated by the Volcano plot analysis (B,C), the heatmap of
the genes of epigenetic changes in DNA methylation or acetylation (D), and the histone modification
(E) with difference (or tendency of difference) to the control. Macrophages were isolated from three
different mice. List of abbreviations: Dnmt (DNA methyltransferases), Mgmt (O6-methylguanine-
DNA methyltransferase), Hdac (histone deacetylase), RbBP (Retinoblastoma-Binding Protein), Mbd
(methyl-cytosine binding domain), Sap (Shrimp alkaline phosphatase), Mecp (methyl-CpG binding
protein), Ezh (histone-lysine N-methyltransferase), Aurkb (aurora kinase B), Kdm (lysine demethylase),
Sirt (sirtuin), Kmt (lysine methyltransferase), and Rnf2 (ring finger protein).
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2.2. Reduction in Macrophage Pro-Inflammation with mgmt Interferences after Either a Single LPS
or Two Sequential LPS Stimulations: The Beneficial Effect in Hyper-Inflammatory Sepsis, but Not
LPS Tolerance

The relationship between mgmt and the LPS responses was initially explored through
silencing of the mgmt gene by siRNA (mgmt siRNA) in the macrophage cell line (RAW264.7)
(Figure 2A). The mgmt silencing in either LPS-stimulated macrophages (N/LPS) or LPS
tolerance (LPS/LPS) reduced the secretion of pro-inflammatory cytokines (TNF-α and
IL-6, but not IL-10) and M1 pro-inflammatory polarization, as indicated by inducible nitric
oxide synthase (iNOS) and interleukin-1β (IL-1β) (Figure 2B–F), the upregulated M2 anti-
inflammatory polarization marker arginase-1 (Arg-1), and the transforming growth factor-β
(TGF-β), but not resistin-like molecule-1 (Fizz-1), compared with the littermate control cells
(mgmt control) (Figure 2G–I). Additionally, there was a reduction in secreted cytokines
(TNF-α and IL-6) in the LPS/LPS macrophages with both mgmt non-siRNA control and
mgmt siRNA when compared to a single LPS stimulation (N/LPS), supporting the main
characteristics of LPS tolerance as previously described [24,51,52], with the higher level
of these cytokines in mgmt non-siRNA over the mgmt siRNA cells (Figure 2B,C). These
data imply reduced macrophage cytokine production, perhaps due to the methylation of
the DNA that is responsible for these cytokines, or due to a lack of MGMT to repair the
DNA [44]. Moreover, mgmt silencing also reduced the pro-inflammatory M1 polarization
(iNOS and IL-1β) and enhanced the M2 anti-inflammatory polarization (Arg-1 and TGF-β)
of macrophages compared with the non-silencing cells (Figure 2E–H). Notably, prominent
M1 polarization (iNOS and IL-1β) with lower M2 polarization (Arg-1 and TGF-β) in sin-
gle LPS stimulation over LPS tolerance, and profound M2 polarization (Arg-1) with low
M1 polarization (iNOS and IL-1β) in LPS tolerance over single LPS activation, in either
non-siRNA or mgmt siRNA groups, were also demonstrated (Figure 2E–H). To further
investigate the mgmt impacts on LPS stimulation, macrophages from the mice with the
conditional mgmt deletion (the LysM-Cre system) were then used (Figure 3A). Similar to the
mgmt-silencing siRNA, the mgmt null macrophages (mgmtfl/fl; LysM-Crecre/−) displayed
lower supernatant cytokines (TNF-α, IL-6, and IL-10), down-regulated cytokine genes, and
up-regulated M1 polarization (iNOS and IL-1β), without the alteration of M2 polarization
genes, when compared with the littermate cells (mgmtfl/fl; LysM-Cre−/−) (mgmt control)
(Figure 3B–G). Additionally, lower cytokine production in LPS/LPS compared with N/LPS
(the characteristics of LPS tolerance) was evident in macrophages from both mouse strains
(mgmt control and mgmt null) (Figure 3B–G). However, most of the cytokines (supernatant
and gene expression) in LPS/LPS mgmt null macrophages were lower than the LPS/LPS
in cells from littermate mice (mgmt control) (Figure 3B–G). In addition, there were less
prominent M1 pro-inflammatory polarization genes (iNOS and IL-1β) with higher M2 polar-
ization (Arg-1 but not TGF-β and Fizz) (Figure 3H–L), implying a possible more severe LPS
tolerance (low cytokine production and high M2 anti-inflammatory direction that might be
inadequate for the microbial control) in mgmt null macrophages than in the control. These
data suggest that MGMT blockage might be beneficial for the anti-inflammation but can
worsen LPS tolerance through the overwhelming anti-inflammatory response direction of
the macrophages.

Despite the down-regulation of mgmt in 24 h LPS-stimulated macrophages in the
RNA sequencing analysis (Figure 1D), macrophages from mgmt null mice were further
tested (Figure 4A) and the mgmt expression in single LPS (N/LPS) was similar to the
control (Figure 4B). Meanwhile, mgmt was upregulated in LPS/LPS, compared with the
control groups, in both the RNA sequencing (Figure 1D) and PCR analyses (Figure 4B).
These data imply the obvious need for MGMT enzyme as a DNA repair factor in LPS
tolerance, and possibly less need for it in single LPS activation. Because reactive oxygen
species (ROS) are natural products during regular processes of the cells, especially by
mitochondrial activation, and ROS-induced DNA methylation is known, the non-difference
mgmt expression in macrophages between control and 24 h LPS might have been due to the
similar MGMT levels in both conditions, and the reduced MGMT might have affected the



Int. J. Mol. Sci. 2023, 24, 10139 6 of 23

macrophages. Indeed, the mgmt null macrophages were more vulnerable to LPS-induced
injury, as demonstrated by the reduction of cell viability (MTT assay) and the increased
ROS of mgmt null cells in either single or double LPS stimulation compared with the
mgmt control cells (Figure 4C,D), despite the neutral mgmt expression of LPS-stimulated
cells versus control. Interestingly, the ROS in the mgmt null cells with N/LPS was higher
than in the LPS/LPS cells (Figure 4D), perhaps due to the inadequate MGMT in N/LPS
compared with the LPS/LPS group. In parallel, there was an increase in cell proliferation
after LPS stimulation with either the single or double LPS protocols (more prominent
in LPS tolerance) in mgmt control cells but not in mgmt null macrophages (Figure 4B).
Meanwhile, the ROS level after single LPS stimulation was not different from the LPS
tolerance in both strains of macrophages (Figure 4D), implying a lack of difference in ROS
production between the single versus twice LPS stimulations. Additionally, the possible
cell damage after LPS activation and LPS tolerance was demonstrated by an elevation of
supernatant cell-free DNA compared with the control group, which was similar between
N/LPS and LPS/LPS (Figure 4E). Additionally, there was a DNA break, as was indicated
by the immunofluorescent staining of phosphohistone H2A.X after the single and twice
LPS activations in both mgmt control and mgmt null macrophages with a similar intensity
between groups (Figure 4F,G). However, the highest intensity of phosphohistone H2A.X in
the nuclei of the mgmt null cells after LPS/LPS activation highlighted the positive DNA
damage in the mgmt null macrophages with LPS tolerance (Figure 4G). Meanwhile, the
positive green color in the other groups was not in the nuclei, which, for at least some of
them, might have been a false positive result (Figure 4G). Due to the association between
the cell energy status versus cell activities [23,53–56], the extracellular flux analysis between
mgmt null and the control was examined (Figure 4H–K). There was a reduction in maximal
respiratory capacity (mitochondrial activity), without glycolysis alteration, similarly in both
strains of macrophages after activation by either one or two doses of LPS (Figure 4H–K).
Thus, the mgmt gene seemed to have less impact on the cell energy status, despite the
evident impact on cytokine production.
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pool siRNA; non-siRNA) after activation by lipopolysaccharide (LPS) in a single protocol (N/LPS),
which started with the culture media followed by LPS 24 h later or LPS tolerance (LPS/LPS) by the
two sequential LPS stimulations, or control (N/N), using the culture media incubation only (A). The
characteristics of macrophages under these protocols as indicated by secreted cytokines (TNF-α, IL-6,
and IL-10) (B–D), the expression of pro-inflammatory genes of M1 polarization (iNOS and IL-1β)
(E,F), and the anti-inflammatory genes of M2 polarization (Arg-1, TGF-β, and Fizz-1) (G–I). Triplicate
independent experiments were performed. Mean ± SEM with one-way ANOVA followed by Tukey’s
analysis was used. #, p < 0.05 mgmt vs. control DMEM; *, p < 0.05 between the indicated groups.
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Figure 3. The schema of the experiments in bone marrow-derived macrophages from mgmt con-
trol (mgmtfl/fl; LysM-Cre−/−) and mgmt null (mgmtfl/fl; LysM-Crecre/−) mice after activation by
lipopolysaccharide (LPS) in a single protocol (N/LPS), which started with the culture media followed
by LPS 24 h later or LPS tolerance (LPS/LPS) by the two sequential LPS stimulations, or control
(N/N), using the culture media incubation only (A). The characteristics of macrophages under these
protocols, as indicated by supernatant cytokines (TNF-α, IL-6, and IL-10) (B–D), the gene expression
of cytokines (TNF-α, IL-6, and IL-10) (E–G), M1 macrophage polarization (iNOS and IL-1β) (H,I), and
the M2 macrophage polarization (Arg-1, TGF-β, and Fizz-1) (J–L), are also demonstrated. Triplicate
independent experiments were performed. Mean ± SEM with one-way ANOVA followed by Tukey’s
analysis was used. #, p < 0.05 mgmt vs. control DMEM; *, p < 0.05 between the indicated groups.
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Figure 4. The schema of the experiments in bone marrow-derived macrophages from mgmt con-
trol (mgmtfl/fl; LysM-Cre−/− and mgmt null (mgmtfl/fl; LysM-Crecre/−) mice after activation by
lipopolysaccharide (LPS) in a single protocol (N/LPS), which started with the culture media followed
by LPS 24 h later or LPS tolerance (LPS/LPS) by the two sequential LPS stimulations, or control
(N/N), using the culture media incubation only (A). The characteristics of macrophages under these
protocols, as indicated by the expression of mgmt (B), cell viability using 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyl tetrazolium bromide (MTT) (C), reactive oxygen species with dihydroethidium
stain (DHE) (D), supernatant cell-free DNA (E), the DNA damage score with the representative
immunofluorescent pictures of phosphohistone H2A.X (a DNA break biomarker) (F,G), and the
energy status of cells (extracellular flux analysis) (H–K). Independent triplicated experiments were
performed. Mean ± SEM with one-way ANOVA followed by Tukey’s analysis was used. #, p < 0.05
mgmt vs. control DMEM; *, p < 0.05 between the indicated groups.
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2.3. The mgmt Null Mice Demonstrated Less Pro-Inflammatory Cytokine Production in Both
Single LPS Injection and LPS Tolerance

Because of the characteristics of mgmt-manipulated macrophages (Figures 3 and 4),
further experiments with mgmt littermate control (mgmtfl/fl; LysM-Cre−/−) and mgmt null
mice (mgmtfl/fl; LysM-Crecre/−) were performed using a single LPS injection (N/LPS) and
LPS tolerance (LPS/LPS) (Figure 5A). After a single LPS injection, serum cytokines (TNF-
α, IL-6, but not IL-10) in the mgmt null mice were lower than in the LPS-administered
mgmt control (Figure 5B–D), similar to the lower secreted cytokines in LPS-activated
mgmt null macrophages compared to the control cells (Figure 3B–G). In LPS tolerance,
the characteristics of lower serum cytokines in double LPS stimulation compared with
only one LPS injection were demonstrated by all of these cytokines in the mgmt littermate
control mice (open circles versus open square in Figure 5B–D). Meanwhile, this feature
was demonstrated only by serum TNF-α (1 h of the protocol) and IL-10 (1 and 3 h of the
protocol) in the mgmt null mice (blue circle versus red square in Figure 5B–D). Within the
LPS/LPS stimulation (LPS tolerance), only serum IL-10 was lower in the mgmt null mice,
with similar levels of other cytokines (TNF-α and IL-6) compared with the LPS/LPS mgmt
control mice (open square versus red square in Figure 5B–D), suggesting a similar feature
of LPS tolerance between these mouse strains.
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Figure 5. Schematic workflow (A) demonstrates the experimental groups, including lipopolysac-
charide (LPS) tolerance, started with LPS intraperitoneal (ip) injection (0.8 mg/kg) followed by
LPS (4 mg/kg) (LPS/LPS); a single LPS stimulation, started with phosphate buffer solution (PBS)
followed by LPS (4 mg/kg) (N/LPS), in mgmt control (mgmtfl/fl; LysM-Cre−/−) and Mgmt null
(mgmtfl/fl; LysM-Crecre/−) mice as indicated by serum cytokines (TNF-α, IL-6, and IL-10) (B–D), are
demonstrated (n = 5–7/group and time-point). Mean ± SEM with one-way ANOVA followed by
Tukey’s analysis was used. *, p < 0.05 between mgmt control versus others; #, p < 0.05 between the
indicated groups.
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3. Discussion
3.1. Epigenetic Regulation of Macrophage Responses to LPS Is an Interesting Strategy in Immune
Response Manipulation for Sepsis

Endotoxemia, the presence of lipopolysaccharide (LPS) in blood, can be found in sev-
eral conditions, including sepsis, uremia, and obesity [57–59], mainly because of gut barrier
damage [1,22,24,60] and Gram-negative bacteremia [1,61,62]. As one of the pathogen-
associated molecular patterns (PAMPs), LPS stimulates all cells in the body, including
macrophages, which are the major innate immune cells responsible for the recognition
of foreign molecules [53,63]. In the macrophages, the responses to LPS with both a sin-
gle LPS stimulation and LPS tolerance induced both DNA and histone modifications,
as indicated by the RNA sequencing analysis (Figure 1D,E). Indeed, DNA methylation
and acetylation at either the cytosine-phosphate-guanine (CpG) or non-CpG sites, and
the histone alteration at the N-terminal tails, were critical regulators of gene expression
through the chromatin structures [64]. Several key enzymes of epigenetic-induced DNA
modification (methylation and acetylation) at the DNA promoter regions controlled the
chromatin accessibility, which is well-known in cancer [65]; however, fewer data exist
for sepsis [66]. Generally, DNA methylation is mostly the transfer of a methyl group to
the C-5 position of the cytosine ring of DNA by DNA methyltransferase (DNMT) onto
any cytosines of the genome, especially at the CpG regions [67]. Indeed, DNMT1 induces
DNA methylation in macrophages, enhancing pro-inflammatory direction as the deletion
of dnmt1 enhances anti-inflammatory macrophages [44]. Hence, the depletion of dnmt1
and methyl-binding domain3 (mbd3; the linkage of histone methylation to the regions of
DNA methylation) [68] in the LPS-stimulated macrophages compared with the control
might have been an adaptation to reduce the LPS-induced hyper-inflammation. In contrast,
the enhanced dnmt1 in the LPS/LPS macrophages compared with the LPS macrophages
(Figure 1D) might have served to increase the pro-inflammatory direction during the
too-low cytokine production of LPS tolerance. Although methylation at the cytosine of
CpG regions is common [69], methylation of guanine at the N-7 and O-6 positions of
guanine, referred to as N7MeG (or 7-MG) and O6MeG, respectively, that are controlled by
mettl1 (Methyltransferase 1, tRNA methyl-guanosine) and mgmt (O6-methylguanine-DNA
methyltransferase), respectively, have also been described, especially for cancers and cell
viability [70,71]. While mettl1 was not in the significant genes list from macrophages in
this study, alteration of mgmt was observed in both the single and double LPS stimula-
tions (Figure 1D). Despite very scarce data on MGMT in macrophages, MGMT in cancer
cells has been characterized as an enzyme that removes the methyl group from O6MeG,
which enhances the cell viability, and too little MGMT might cause cell injury from the
blockage of DNA translation by O6MeG on the DNA [72]. Similar to dnmt1, the low mgmt
at 24 h compared with the control (Figure 1D) might have been a self-adaptation of the
LPS-activated macrophages to reduce pro-inflammatory cytokines through sustained DNA
damage. However, DNA damage after LPS stimulation is possibly insufficient to reduce
cytokine production. Meanwhile, increased mgmt in LPS/LPS macrophages compared
with the LPS alone (Figure 1D) might have been aimed at neutralizing DNA damage to
increase cytokine production, thus counteracting LPS tolerance. Similarly, increased mgmt
in LPS tolerance seemed to be inadequate as cytokine production was still low, despite
the possible reduction of DNA damage. Notably, mgmt was the only enzyme that was
responsible for guanine methylation from the list of RNA sequencing analyses here. For
histone modification in LPS-activated macrophages [73], some of the enzymes were differ-
ent among the single LPS, LPS tolerance, and control groups. For example, ezh1 (Enhancer
of zeste homolog1), an enzyme for the methylation of lysine on histones (H3K27Me) that
inhibits the DNA reading [74], was down-regulated only in the single LPS stimulations,
perhaps causing the hyper-responsiveness against LPS. In addition, rnf2 (Ring finger 2;
the core subunit of polycomb repressor complex 1) was up-regulated only in LPS alone,
perhaps to control hyper-inflammation [75], and the hdac1 (histone deacetylases1) [76] and
kdm6b (lysine demethylase 6B) [77] enzymes responsible for the removal of acetyl and
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methyl groups from lysine, respectively, were up-regulated both in LPS alone and LPS
tolerance (Figure 1E).

These data support the effect of DNA and histone modification in macrophages during
LPS activation [78]. Because of (i) previous reports of DNA methylation (dnmt) and histone
modification (ezh) on sepsis [43,73,79,80], (ii) possible enhanced cell injury from the presence
of O6MeG due to the loss of mgmt for DNA repair [72], (iii) the availability of the MGMT
inhibitor for oncotherapy [81] and its possible use in some chemotherapeutic strategies as a
sepsis immune modulator [82], and (iv) epigenetic changes in LPS-activated macrophages
and the reversal of LPS tolerance by the mgmt inhibitors [47,83], further tests on mgmt will
be interesting. Theoretically, MGMT can cause less DNA methylation, leading to better
cytokine production, which might correlate with more severe inflammation in single LPS
and be beneficial in LPS tolerance. In contrast, MGMT blockage might reduce cytokines
through enhanced DNA damage, which might be beneficial in hyper-inflammatory sepsis
but harmful to LPS tolerance. Indeed, too few cytokines might be inadequate for proper
inflammation for the microbial control process, thus leading to secondary infection [84–86].

3.2. Influence of mgmt Enzyme on Sepsis-Related Hyper-Inflammation and Immune Exhaustion

To test the effects of mgmt in sepsis, mgmt silencing by siRNA in RAW264.7 cells
(a macrophage cell line) and bone marrow-derived macrophages from mgmt null mice
(mgmtfl/fl; LysM-Crecre/−) were used. Both siRNA-deleted mgmt and mgmt null macrophages
displayed anti-inflammatory effects as supernatant cytokines (TNF-α and IL-6), and genes
of M1 pro-inflammatory macrophages (iNOS and IL-1β) in both mgmt-deleted cells with
either a single LPS or LPS tolerance were similarly lower than the control (Figures 2 and 3).
There was a prominent anti-inflammatory state of LPS tolerance over the LPS alone in
the control macrophages, as indicated by the lower cytokine responses (TNF-α and IL-6)
and higher Arg-1 (an M2 macrophage polarization gene). However, mgmt deletion further
directed LPS tolerance macrophages into a more prominent anti-inflammatory state as
there were even lower inflammatory cytokines (TNF-α) (Figures 2B and 3B) and higher
Arg-1 (Figures 2G and 3J) compared with LPS tolerance in control cells. These data suggest
a possible anti-inflammatory effect of mgmt blockage; however, this might be harmful in
LPS tolerance or sepsis-induced immune exhaustion. In mice, the characteristics of LPS
tolerance, as indicated by lower serum cytokines in the double LPS injection compared
with a single LPS administration, were observed in both littermate control (mgmtfl/fl; LysM-
Cre−/−) and mgmt null (mgmtfl/fl; LysM-Crecre/−) mice.

Due to the influence of mgmt on DNA repair through the removal of O6MeG (methyl
group at the sixth oxygen molecule on guanine) of DNA, the effects of mgmt deletion in
both macrophages and mice, together with the altered mgmt in RNA sequencing analysis,
indicate the possible DNA methylation in activated macrophages (Figure 1). Additionally,
macrophage injury, including increased reactive oxygen species (ROS) and cell death after
LPS-induced activation, might be partly due to DNA damage [87,88]. Mice with acute
endotoxemia [21,89] or with chronic LPS elevation (a possible LPS tolerance) displayed
increased spleen apoptosis [56] similar to the in vitro apoptosis of immune cells after LPS
stimulation [90]. Although dihydroethidium (DHE; a representative ROS) and mitochon-
drial injury (reduced maximal respiratory capacity) was worse in the mgmt null and control
macrophages after both types of activation (single and double LPS), DHE was more pro-
found in the mgmt null groups, especially with LPS tolerance (Figure 4). Additionally, the
possible higher cell injury in the mgmt null macrophages over the control also manifested
through lower cell viability (MTT assay) in the mgmt null macrophages after both the
single and double LPS stimulations. From the MTT assay, both LPS and LPS tolerance
stimulated macrophages and increased cell proliferation in the control macrophages (more
prominent in LPS tolerance) but not in the mgmt null macrophages, possibly due to the
higher cell injury. Additionally, the higher supernatant cell-free DNA in activated mgmt
null macrophages than the control, in either single or twice LPS stimulation, supported
a possible susceptibility to LPS-induced cell injury in macrophages without MGMT en-
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zyme. Because phosphorylation of the histone variant H2A.X is a key factor for DNA
damage response to assembly of the DNA repair proteins at the chromatin damaged sites,
immunofluorescence staining of phosphohistone H2A.X is frequently used to detect DNA
damage [91]. Despite the detectable phosphohistone H2A.X in all groups of macrophages
(control, N/LPS, and LPS/LPS), the intensity of the damage in N/LPS and LPS/LPS was
higher than the control, indicating possible LPS-induced DNA damages that were similar
in the mgmt null and control cells (Figure 4F,G). Although the loss of MGMT enzyme did
not induce higher DNA damage, as determined by the intensity of the fluorescent color
per cell, the high color intensity that was clearly located in the nuclei (the actual site of
DNA repair) was demonstrated only in LPS/LPS mgmt null macrophages (Figure 4G).
Because the positive phosphohistone H2A.X staining outside the nuclei might have been
false positive fluorescence, other methods for DNA damage detection are needed for a
solid conclusion.

Nevertheless, the maintenance of cell viability through DNA methylation at guanine
seems to be important in the activated macrophages, despite more common methylation at
the cytosine residues [67]. Although direct evaluation of O6MeG in macrophages after LPS
or LPS tolerance was not performed here, the differences between mgmt null macrophages
versus control after activation indirectly support the presence of O6MeG in macrophages.
It is interesting to note that the standard method for the direct detection of O6MeG is
still unclear [92,93], and the detection of a DNA break in immune cells might be different
from the well-known protocol for DNA break detection of the parenchymal cells that is
mostly studied in cancer topics [94]. In comparison with the control, the difference in
cell viability, increased ROS, and elevated cell-free DNA, together with similar reduced
cytokine production in stimulated macrophages with a lack of MGMT using mgmt null
cells, indirectly support an influence of MGMT in LPS-activated macrophages. Although
more experiments are required for an in-depth understanding of the mechanisms involved,
our initial results support a possible extended use of an MGMT inhibitor (Lomeguatrib), a
chemotherapeutic agent [95], on the attenuation of sepsis hyper-inflammation.

Furthermore, our data also support the idea that serum cytokines, in response to LPS injec-
tion (both a single or a double injection), are mainly produced from macrophages (Figure 5B–D),
as previously reported [96], and that the signaling blockage only in macrophages, but not in
other cells, might be an effective treatment with limited side effects. Due to lower levels
of pro-inflammatory cytokines after the first dose of LPS injection, the severity of LPS
tolerance, as indicated by the difference between the first and second dose of LPS in mgmt
null mice, was lower than in the control mice. While the lower serum TNF-α was very
obvious in the control mice with LPS/LPS compared with N/LPS, as expected from LPS
tolerance, serum TNF-α in LPS/LPS mgmt null mice were not different from mgmt null
mice with LPS alone. Although the mgmt depletion in the macrophages protected the
mice from too high pro-inflammatory septic shock, the loss of mgmt induced too little
pro-inflammatory cytokines with more prominent LPS tolerance, which could correlate
with the enhanced susceptibility to secondary infection [97].

3.3. Clinical Aspects and Future Experiments

We hypothesized that activation by a single LPS dose or LPS tolerance would induce
injury in macrophages, partly through DNA methylation and acetylation, which need
enzymes, such as MGMT, to remove the methyl or acetyl groups in order to revitalize
macrophages and maintain the regular cell functions (Figure 6). To continuously produce
cytokines, the DNA methylation needed to be repaired and the failure of DNA repair
caused a reduction in macrophage function, especially cytokine production (Figure 6). Thus,
MGMT inhibition might be useful to attenuate sepsis-related hyperinflammation. Currently,
the treatment of some cancers starts with an alkylating agent to induce DNA methylation
at guanine (O6MeG), especially Temozolomide, and the combination with Lomeguatrib
(an MGMT inhibitor) results in more cancer cell death, taking advantage of the high
mutagenicity of O6MeG [95]. In sepsis, MGMT inhibitors might induce injury in the regular
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cells and short-term administration, and/or the MGMT blockage specifically focused on
macrophages might be theoretically better. Notably, good microbial control, especially by
effective antibiotics, is necessary for all of the immune-mediated adjunctive therapies in
sepsis, and determination of the immune directions is possibly needed. Theoretically, sepsis
immune responses are crudely divided into hyper-inflammation and immune exhaustion by
several biomarkers. For example, high serum IL-6 and IL-1 might be biomarkers for sepsis-
related hyper-inflammation [98,99], while down-regulated HLA-DR and viral reactivation
(cytomegalovirus; the common dormant virus in the human host) possibly indicate sepsis-
related immune exhaustion [100,101]. Thus, immune monitoring in sepsis is needed for the
use of MGMT inhibitors, and down-regulated HLA-DR and lower inflammatory cytokines
might be a contraindication because the overwhelming inhibition might escalate infection
susceptibility. Because LPS response and LPS tolerance are only a subset of sepsis-related
immune responses [20], further evaluations of the effect of MGMT in sepsis are warranted.
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Figure 6. The proposed working hypothesis demonstrated the impact of O6-methylguanine-DNA
methyltransferase (MGMT) in responses against lipopolysaccharide (LPS) of macrophages. LPS
activates inflammatory responses through Toll-like receptor 4 (TLR-4), which causes methylation
in several areas of DNA, including O6-methylguanine (O6MeG). DNA methylation impairs DNA
transcription and induces programmed cell death, especially apoptosis [100]. The MGMT enzyme,
referred to as “a DNA suicide repair enzyme”, transfers the methyl group at the O6 site of guanine to
the cysteine residues of MGMT, allowing macrophages to maintain their functions (yellow-colored
box). Without MGMT or using an MGMT inhibitor, there might be an impairment of macrophage
cytokine production (red-colored box) that is beneficial in hyper-inflammatory sepsis. This figure
was created by BioRender.com.
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Finally, there are several limitations in our study that should be mentioned. First, sup-
portive information on the transcriptome results, especially from the Western blot analysis,
was not performed. Second, the impacts of the MGMT overexpression in macrophages with
LPS stimulation were not examined. Third, the direct detection of Q6MeG on macrophages
was not conducted here, partly due to the unclear standard proper methods of O6MeG
detection [92,93]. Fourth, additional DNA damage detection methods are necessary for the
determination of DNA damage. Nevertheless, an initial proof of concept on the impacts of
MGMT enzyme in LPS-stimulated macrophages is presented here, which indicates several
more interesting experiments on the topic. Overall, we conclude that MGMT inhibitors,
an available adjunctive therapy for malignancy, might be beneficial in some situations of
sepsis. More studies are warranted.

4. Materials and Methods
4.1. Small Interfering RNA (siRNA) in the Macrophage Cell Line

Murine macrophage-like cells (RAW264.7; TIB-71) (American Type Culture Collection;
ATCC, Manassas, VA, USA) were maintained in Dulbecco’s Modified Eagle’s Medium
(DMEM) supplemented with 10% Fetal Bovine Serum (FBS) in a humidified incubator
at 37 ◦C with 5% CO2. The small interfering RNA (siRNA) silencing of mgmt was then
performed using RAW264.7 at 106 cells/mL seeded into 6-well plates with the siRNA for
mgmt (DharmaconTM AccellTM, Horizon Discovery, Watwebeach, UK) in siRNA buffer,
following a previous publication [73]. Briefly, the siRNA at 1 µM per well was incubated
at 37 ◦C with 5% CO2 for 48 h. The non-targeting pool siRNA (DharmaconTM) was
used as a control. Macrophages with mgmt-siRNA and non-siRNA (non-targeting pool
siRNA) were activated by three different protocols for a proper comparison. First, the
single lipopolysaccharide (LPS) stimulation protocol began with DMEM, followed by
LPS (Escherichia coli 026: B6; Sigma-Aldrich, Waltham, MA, USA) (100 ng/mL) 24 h later
(N/LPS). Second, the LPS tolerance protocol used two sequential stimulations of 100 ng/mL
LPS at 24 h and 48 h (LPS/LPS) in the experiments. Third, the control protocol (N/N)
was performed by the incubation in twice-changed DMEM only. After another 24 h of
each protocol, the sample collection (supernatant and cells) was then performed and
supernatant cytokines (TNF-α, IL-6, and IL-10) were evaluated by ELISA (Invitrogen,
Carlsbad, CA, USA). Meanwhile, the gene expression was evaluated by quantitative real-
time polymerase chain reaction (PCR), as previously described [102–106]. In brief, the
PCR started with RNA extraction from the cells with TRIzol Reagent (Invitrogen), together
with RNeasy Mini Kit (Qiagen, Hilden, Germany); then 1 mg of total RNA was used
for cDNA synthesis with iScript reverse transcription super-mix (Bio-Rad, Hercules, CA,
USA). Quantitative real-time PCR was performed on a QuantStudio 6 real-time PCR
system (Thermo Fisher Scientific, San Jose, CA, USA) using SsoAdvance Universal SYBR
Green Super-mix (Bio-Rad). The gene expression was normalized to beta-actin (β-actin; an
endogenous housekeeping gene) and the fold change was calculated by the ∆∆Ct method.
The primers used in this study are listed in Table 1.

Table 1. Lists of primers used in the study.

Name Forward Reverse

Tumor necrosis factor α (TNF-α) 5′-CCTCACACTCAGATCATCTTCTC-3′ 5′-AGATCCATGCCGTTGGCCAG-3′

Interleukin-6 (IL-6) 5′-TACCACTTCACAAGTCGGAGGC-3′ 5′-CTGCAAGTGCATCATCGTTGTTC-3′

Interleukin-10 (IL-10) 5′-GCTCTTACTGACTGGCATGAG-3′ 5′-CGCAGCTCTAGGAGCATGTG-3′

Inducible nitric oxide synthase (iNOS) 5′-ACCCACATCTGGCAGAATGAG-3′ 5′-AGCCATGACCTTTCGCATTAG-3′

Interleukin-1β (IL-1β) 5′-GAAATGCCACCTTTTGACAGTG-3′ 5′-TGGATGCTCTCATCAGGACAG-3′

Arginase-1 (Arg-1) 5′-CTTGGCTTGCTTCGGAACTC-3′ 5′-GGAGAAGGCGTTTGCTTAGTT-3′

Resistin-like molecule-α1 (Fizz-1) 5′-GCCAGGTCCTGGAACCTTTC-3′ 5′-GGAGCAGGGAGATGCAGATGA-3′

Transforming growth factor-β (TGF-β) 5′-CAGAGCTGCGCTTGCAGAG-3′ 5′-GTCAGCAGCCGGTTACCAAG-3′

O6-methylguanine-DNA
methyltransferase (mgmt) 5′-CTATTTCCGTGAACCCGCAG-3′ 5′-ACCGGATTGCTTCTCATTGC-3′

β-actin 5′-CGGTTCCGATGCCCTGAGGCTCTT-3′ 5′-CGTCACACTTCATGATGGAATTGA-3′
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4.2. The Transcriptome Analysis

The RNA sequencing analysis in WT macrophages was performed to determine epige-
netic alterations in macrophages with LPS stimulations (a single LPS stimulation and LPS
tolerance). Bone marrow-derived macrophages (BMDM) were prepared from the femurs
of mice using supplemented Dulbecco’s Modified Eagle’s Medium (DMEM) with a 20%
conditioned medium of the L929 cells (ATCC CCL-1), as previously described [53,54,56,106].
Macrophages at 5× 104 cells/well in supplemented DMEM (Thermo Fisher Scientific) were
incubated in 5% carbon dioxide (CO2) at 37 ◦C for 24 h before being treated by 3 experi-
mental protocols, as mentioned above. The RNA from macrophages extracted by a RNeasy
mini kit (Qiagen) was then processed with the RNA sequencing (BGISEQ-50) platform,
as previously published [107]. The mRNA analysis was conducted based on triplicate
macrophage samples. The FastQC was used to determine the sequencing quality. The
raw sequencing reads were mapped and aligned against Mus musculus reference genome
GRCm39 using STAR [108], followed by gene quantification against the reference mouse
transcriptome by Kallisto [109]. Read counts were normalized and analyzed (differentially
expressed genes; DEGs) using the edgeR [110] and limma-voom packages [111,112]. Genes
were considered significant differences (p-value < 0.05) when the log2 value of fold change
level was less than −2 or greater than 2, indicating down- or up-regulation, respectively.
The DEGs clustering was performed based on Euclidean distance and the Ward.D2 method
with the ComplexHeatmap package [113], and the log2 expression (TPM; transcript count
per million) of selected epigenetic-related genes [114] was compared to determine statistical
significance using the Wilcoxon test in the ggpubr package [115]. A p-value less than 0.05
indicated statistical significance.

4.3. The Intro Experiments

Bone marrow-derived macrophage from mgmt control (mgmtfl/fl; LysM-Cre−/−) or
mgmt null (mgmtfl/fl; LysM-Crecre/−) mice were extracted from mouse femurs before activa-
tion by several protocols (N/LPS, LPS/LPS, or N/N). The supernatant cytokines (TNF-α,
IL-6, and IL-10) and gene expression were measured by ELISA and PCR, as mentioned
above. Because of the influence of cell viability and reactive oxygen species (ROS) in cell
injury, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay and
dihydroethidium (DHE) were measured according to the published protocols [51,58,116].
For MTT, the activated cells were incubated with 0.5 mg/mL of MTT solution (Thermo
Fisher Scientific) for 2 h at 37 ◦C in the dark, before MTT removal with the dilution with
dimethyl sulfoxide (DMSO), and measured with a Varioskan Flash microplate reader at an
absorbance of optical density at 570 nm. Additionally, DHE (Sigma-Aldrich) at 20 µM was
incubated in the activated macrophages for 20 min at 37 ◦C before DHE measurement, and
the fluorescence readings were analyzed at 520 nm by a Varioskan Flash microplate reader
and presented by the fluorescence arbitrary unit. Supernatant cell-free DNA was detected
by Quanti PicoGreen assay (Sigma-Aldrich). For DNA break determination, macrophages
at 3 × 106 cells were seeded on glass-bottomed 6-well plates before activation (N/LPS,
LPS/LPS, or N/N). The cells were then fixed with 4% paraformaldehyde in Tris Buffered
Saline (TBS) for 15 min, permeabilized with 0.1% triton X-100, and subsequently washed
three times in 1X TBS with 0.05% Tween-20. The fixed samples were blocked with 2%
bovine serum albumin in 1X TBS for 1 h at room temperature and then incubated overnight
at 4 ◦C with phospho-histone H2A.X (Ser139) (20E3) rabbit mAb (Cell signaling). Proteins
were visualized using goat anti-mouse IgG H&L tagged Alexa Flour 488 (Abcam; ab150113)
(green) and actin filaments were labeled with DY-554 phalloidin (red); the fluorescent
intensity per cell was evaluated by confocal laser scanning microscope with the ZEN 3.0
software (CLSM, Zeiss, Germany) at 630× magnification in 10 randomly selected fields
per slide.
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4.4. Extracellular Flux Analysis

For the cell energy status (extracellular flux analysis), Seahorse XFp Analyzers (Agilent,
Santa Clara, CA, USA) were used. As such, the oxygen consumption rate (OCR) and extracel-
lular acidification rate (ECAR) were used to represent mitochondrial function (respiration)
and glycolysis activity, respectively, following previous publications [23,55,107,117,118]. In
brief, the activated macrophages (1 × 105 cells/well) were incubated in the Seahorse media
(DMEM complemented with glucose, pyruvate, and L-glutamine) (Agilent, 103575–100)
before activation by different metabolic interference compounds of the protocol, includ-
ing oligomycin, carbonyl cyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP), and
rotenone/antimycin A for OCR evaluation, or glucose, oligomycin, and 2-Deoxy-d-glucose
(2-DG) for ECAR measurement. The maximal respiration and maximal glycolysis capacity
were calculated by Seahorse Wave 2.6 software.

4.5. Animal and Animal Model

Protocol No. 017/2562 was approved by the Institutional Animal Care and Use
Committee of the Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,
according to National Institutes of Health (NIH) criteria. For the transcriptomic analysis,
macrophages were prepared from the long bone (femurs and tibias) of 8-week-old male
wild-type (WT) C57BL/6 mice purchased from Nomura Siam (Pathumwan, Bangkok,
Thailand). In parallel, mgmtflox/flox and LyM-CreCre/Cre mice were purchased from RIKEN
BRC Experimental Animal Division (Ibaraki, Japan) and cross-bred to produce mgmt
littermate control (mgmtfl/fl; LysM-Cre−/−) or mgmt null (mgmtfl/fl; LysM-Crecre/−) mice
in F3 of the breeding protocol. As such, the mgmtflox/flox mice with the loxP sites were
bred with LysM-CreCre/Cre mice. The mice with a Cre recombinase under the control
of lysozyme M were used to target mgmt for mgmt deletion only in the myeloid cells,
including macrophages and neutrophils. The offspring were either mgmtflox/flox with no
LysM-Cre (mgmtfl/fl; LysM-Cre−/−), which were categorized as the littermate controls or
mgmt control. Meanwhile, the mice that were positive for the Cre driver were mgmt null
(mgmtfl/fl; LysM-Crecre/−) mice with a lack of MGMT enzyme. The conditional targeted Cre
positive mice (mgmt null) were age- and gender-matched with the floxed/floxed littermate
controls (mgmt control) using the male mice aged 8–10 weeks old. To genotype these mice
on the loxP sites insertion, the following primers were used: (i) LysM-cre primer; F: 5′-
GAACGCACTGATTTCGACCA-3′, R: 5′-GCTAACCAGCGTTTTCGTTC-3′, (ii) mgmt-loxP
primer F; 5′-TGGGCTTCAAATCAAGGAACAGAA-3′, R: 5′-AACTATCCTGCTCACTCTC
TGTAG-3′, and (iii) Cre recombination (for Cre activity); F: 5′-GGTGTGGATCCCAAGAAA
TTGAAG-3′, R: 5′-TGTTCAAGAGTGACACACAGTCA-3′ [73]. The mice homozygous for
the flox were selected and genotyped for the expression of LysM-Cre using the primers:
F: 5′-CTTGGGCTGCCAGAATTCTC-3′, R: 5′-CCCAGAAATGCCAGATTACG-3′. The mice
were divided into 3 protocols similar to the in vitro experiments. As such, the LPS tolerance
(LPS/LPS) was performed by an intraperitoneal injection of 0.8 mg/kg LPS (Escherichia coli
026:B6) (Sigma-Aldrich, St. Louis, MO, USA), with an additional dose of 4 mg/kg LPS 24 h
later. In parallel, the single LPS stimulation was conducted by an intraperitoneal injection
of phosphate buffer solution (PBS), followed by LPS (4 mg/kg) 24 h later. For the control
(N/N) protocol, twice intraperitoneal PBS injection with a 24 h duration between the doses
was performed. Following these protocols, blood was collected through tail vein nicking
at 1 and 3 h afterward and mice were sacrificed with cardiac puncture under isoflurane
anesthesia with blood collection at 6 h after the last injection. Serum cytokines were
evaluated by ELISA (Invitrogen). The mouse genotype data are demonstrated in Figure 7.
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Figure 7. The diagram demonstrates the necessary of Cre to activate LoxP for the deletion of mgmt
gene (exon 3) only in the myeloid cells of mgmt null mice (A), and the representative genotype to
identify mgmt null mice (mgmtflox/flox; LysM-Crecre/−) with the identified bands of Cre and MGMT-
LoxP for the flox/flox (fl/fl) group (B,C) are demonstrated.

4.6. Statistical Analysis

All the data were analyzed with GraphPad Prism6 and shown as mean ± S.E.M
(standard error). One-way analysis of variance (ANOVA) with Tukey’s comparison test
was used and a p-value less than 0.05 was considered significant.

5. Conclusions

The alteration of several enzymes of epigenetic processes for DNA and histone mod-
ifications after single LPS activation and LPS tolerance was demonstrated in wild-type
macrophages. Reduced pro-inflammatory cytokines with a single LPS stimulation and
more severe LPS tolerance (lower supernatant cytokines with a second dose of LPS) in
mgmt null (mgmtfl/fl; LysM-Crecre/−) macrophages and mice compared with the control
groups (mgmtfl/fl; LysM-Cre−/−) supported the conclusion regarding the possible benefits
and limitations of MGMT blockage in hyper-inflammation and LPS tolerance, respectively.
Hence, the use of MGMT blockage which is an available drug in cancer therapy is proposed
to attenuate severe inflammation in sepsis. More studies are warranted.
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ysis, W.S., P.P. and P.V.; investigation, J.I.-A., J.M., A.B., K.S.-k. and S.B.; resources, A.L., T.P. and
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writing—review and editing T.P. and A.L.; supervision, A.L.; funding acquisition, A.L. All authors
have read and agreed to the published version of the manuscript.
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