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Abstract: Wharton's jelly-derived mesenchymal stem cells (W]J-MSCs) exhibit multilineage differ-
entiation potential, adhere to plastic, and express a specific set of surface markers—CD105, CD73,
CD90. Although there are relatively well-established differentiation protocols for WJ-MSCs, the exact
molecular mechanisms involved in their in vitro long-term culture and differentiation remain to be
elucidated. In this study, the cells were isolated from Wharton’s jelly of umbilical cords obtained
from healthy full-term deliveries, cultivated in vitro, and differentiated towards osteogenic, chon-
drogenic, adipogenic and neurogenic lineages. RNA samples were isolated after the differentiation
regimen and analyzed using an RNA sequencing (RNAseq) assay, which led to the identification
of differentially expressed genes belonging to apoptosis-related ontological groups. ZBTB16 and
FOXO1 were upregulated in all differentiated groups as compared to controls, while TGFA was
downregulated in all groups. In addition, several possible novel marker genes associated with the
differentiation of WJ-MSCs were identified (e.g., SEPTIN4, ITPR1, CNR1, BEX2, CD14, EDNRB). The
results of this study provide an insight into the molecular mechanisms involved in the long-term
culture in vitro and four-lineage differentiation of WJ-MSCs, which is crucial to utilize W]-MSCs in
regenerative medicine.
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demand for the development of new therapies rather than depending on traditional ones.
Stem cell research is rapidly evolving and might offer a new perspective in regenerative
and reconstructive medicine [1]. The choice of tissues containing stem cells is vast; however,
each has its limitations. Embryonic stem cells (ESCs), although pluripotent and possessing
unlimited self-renewal ability, pose a risk of teratoma formation after transplantation.
Furthermore, the acquisition of cells from embryos is ethically controversial [2]. Similarly,
induced pluripotent stem cells (iPSCs) that are engineered from adult somatic cells may
transform into neoplasms [3]. Adult stem cells, however, are considered the safer choice
for transplantation due to their limited differentiation capability [4]. Adult stem cells have
been isolated from various adult tissues, as well as from extraembryonic tissues, such as
the Wharton’s jelly located in the umbilical cord [5].

The umbilical cord starts to develop at day 26 of gestation from the extraembryonic
mesoderm or embryonic mesoderm and is responsible for bidirectional blood flow between
the mother and the fetus [6,7]. The umbilical cord is covered with a simple epithelium of
amniotic origin and contains three umbilical vessels, namely two arteries and one vein. The
distinct compartments of the umbilical cord include the umbilical cord lining, subamniotic
stroma, intervascular stroma, perivascular stroma and vessel, each containing stem cell
populations with varied stemness properties [8,9].

The stromal tissue in the umbilical cord was called Wharton's jelly after Tomas Whar-
ton, who was the first to describe it in 1656. Wharton’s jelly is a mucoid connective tissue
protecting the umbilical vessels from compression [10]. This tissue is abundant in the
extracellular matrix (ECM) and is composed of glycosaminoglycans, mostly hyaluronic
acid, and collagen fibers, while the elastic fibers are absent [11,12]. The stromal cells located
in Wharton’s jelly resemble fibroblasts; however, Takechi et al. [13] revealed that these cells
were expressing actin, non-muscle myosin and desmin typical for muscle cells; therefore,
were considered as myofibroblasts. Nanaev et al. [14] demonstrated that the differentiation
of stromal cells towards myofibroblasts occurs in a timely manner during pregnancy, and
the most differentiated cells are in the proximity of umbilical vessels. The majority of the
cells in Wharton'’s jelly constitute myofibroblasts; however, mast cells are also present [15].

Myofibroblasts located in Wharton's jelly exhibit the properties of mesenchymal
stem cells (MSCs), which makes this tissue particularly relevant in terms of regenerative
medicine. According to Wang et al. [16], the migration of hematopoietic stem cells and fetal
MSCs occurs through the umbilical cord from the yolk sac and aorta-gonadal mesonephros
to the placenta, and then to the fetal liver and bone marrow. As a result, some of these cells
are trapped in Wharton’s jelly and change their properties due to the new environment.
Another hypothesis is that the myofibroblasts in Wharton's jelly are derived from mes-
enchyme, which is already in the matrix of the umbilical cord. The assumed role of these
cells is to secrete the components of ECM for the protection of the umbilical vessels [9].

As stated by the International Society for Cellular Therapy (ISCT), the MSCs must
adhere to plastic in standard culture conditions, differentiate towards chondroblasts,
adipocytes and osteoblasts, and express CD105, CD73, CD90, while not expressing CD45,
CD34, CD14 or CD11b, CD79« or CD19 and HLA-DR surface molecules [17]. In addition,
the differentiation of MSCs towards the aforementioned lineages should be confirmed via
histochemical staining, namely Alizarin Red or von Kossa staining for osteogenic differ-
entiation, Oil Red O staining for adipogenic differentiation, and Alcian Blue staining for
chondrogenic differentiation [17].

Wharton's jelly-derived MSCs (W]J-MSCs), besides the aforementioned antigens, have
demonstrated the expression of high levels of CD29, CD44, CD146, as well as markers of
pluripotency, such as OCT-4, SOX-2, NANOG, SSEA-3 and SSEA-4 [18]. The differentiation
of WJ-MSCs towards osteogenic, chondrogenic and adipogenic lineages has been con-
ducted multiple times [19-24]. However, W]-MSCs exhibit broader differentiation capacity,
and they are able to transform into the cells of all three primary germ layers. Several
authors have reported the differentiation of WJ-MSCs towards neurons and glia [25-28],
cardiomyocytes [29], skeletal muscle [30], hepatocyte-like cells [31-33], retinal progenitor
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cells [34], germ-like cells [35], insulin-producing cells [36,37], endothelial cells [38], and
endometrial cells [39].

Although there are relatively well-established differentiation protocols for WJ-MSCs,
the exact molecular mechanisms involved in in vitro long-term culture and differentiation
remain to be elucidated. A deeper understanding of these processes is of critical importance
in order to utilize W]-MSCs in regenerative medicine on a more regular basis. An important
consideration is the fact that MSCs applied in vivo are exposed to an ischemic environment
and nutrient deprivation, which may increase the risk of apoptosis, although it seems that
the appropriate preconditioning of MSCs may alleviate that effect [40]. Next generation
sequencing (RNA-seq) provides an opportunity to analyze the cellular transcriptome and
discover its changes during the differentiation of WJ-MSCs. Hence, this study aims to
identify apoptosis-related genes involved in the process of the in vitro differentiation of
W]J-MSCs towards osteogenic, chondrogenic, adipogenic and neurogenic lineages.

2. Results
2.1. Morphological Analysis

The WJ-MSCs, after 72 h of primary culture, adhered to plastic and had accumulated
in colonies where the cells exhibited a spindle shape, as it is presented in Figure 1. Subse-
quently, after 7 days of culture, the cells became more evenly distributed on the surface
of the culture flask. Their shape was elongated as compared to cells after 72 h of culture.
Their increase in size was also visible. After 15 days of culture, the W]-MSCs became
more flattened and densely packed, and this remained until day 25 of the culture and the
subsequent subculture.

72h

15d 25d

Figure 1. The results of the morphological analysis of the WJ-MSCs primary culture at 72 h, 7, 15 and
25 days. The pictures were taken at a 10x magnification. Scale bar: 100 um.
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2.2. Flow Cytometry Analysis

Flow cytometry analysis was performed to confirm the MSC-like characteristics of
the cells selected for further experiments. According to the analysis, the cells isolated
from Wharton’s jelly exhibited the expression of markers typical for MSCs, namely CD105
(endoglin), CD73 (5'-nucleotidase) and CD44. In addition, the WJ-derived cells did not
express CD31 (platelet endothelial cell adhesion molecule), CD34 and CD45 (protein
tyrosine phosphatase receptor type C), which is consistent with the criteria that MSCs
must fulfill. Therefore, the obtained results confirm that the cells isolated from Wharton’s
jelly are the MSCs.

2.3. Evaluation of W]-MSCs Differentiation

WJ-MSCs after the third passage were differentiated into adipogenic, neurogenic,
osteogenic and chondrogenic lineages. After a differentiation period, the cells were stained
with Oil Red O for adipogenic differentiation, Cresyl violet for neurogenic differentiation,
Alizarin Red for osteogenic differentiation, and Alcian Blue for chondrogenic differentiation.
The results of the staining are presented in Figure 2. In the differentiated adipogenic
samples, an intense red color could be observed, indicating the presence of lipid droplets;
whereas, in the control sample, there was no presence of stain. Cresyl violet staining
revealed the presence of Nissl bodies in the sample subjected to neurogenic differentiation
and the lack of them in the control sample. After Alizarin Red staining, the differentiated
sample exhibited an intense red coloring, indicating the presence of calcium deposits,
which were not present in the control sample. Alcian Blue staining revealed an intense
blue color in chondro-induced spheroids, indicative of a cartilage extracellular matrix,
while the staining of the control spheroids was visibly less intense. Overall, the staining
confirms the differentiation of the WJ-MSCs into adipocytes, neural-like cells, osteoblasts,
and chondrocytes.

Qil Red O Cresyl violet Alizarin Red Alcian Blue

Figure 2. The results of Oil Red O, Cresyl violet, Alizarin Red, and Alcian Blue staining of the control
and differentiated WJ-MSCs. The pictures of adipo- and neuro-induced WJ-MSCs were taken at a
20x magnification; scale bar: 50 pum, while the pictures of osteo- and chondro-induced WJ-MSCs
were taken at a 10x magnification; scale bar: 100 um.

2.4. RNA-Seq Analysis

After the differentiation, we compared the whole transcriptome changes by using Bio-
conductor’s online packages. In the beginning, we analyzed the general expression profile
of the transcriptome changes and presented it as volcano plots (Figure 3). With respect
to the assumed cut-off criteria for the differentially expressed genes (|fold change! =2,
and p value < 0.05), we demonstrated 1018 upregulated (which was the highest number of
overexpressed genes), and 1592 downregulated genes in the adipocytes vs. control.
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Figure 3. General expression profiles visualized as volcano plots, where each dot represents the mean
expression of an individual gene. The orange dotted lines (cut-off values) were established according
to the following parameters: |fold change| =2 and p-value = 0.05. Genes above the cut-off lines were
considered to be differentially expressed genes and are shown as red (downregulated) and green
(upregulated) dots. The total numbers of up- and downregulated genes are provided in the top right
and top left corners, respectively. The symbols of the five most differentially expressed genes from
each composition are marked on the plots.

The comparison of the chondrocytes to the control revealed that 772 genes were
upregulated and 943 genes were downregulated, while the neural-like cells vs. control
indicated 352 upregulated and 713 downregulated genes. The comparison of the osteoblasts
to the control indicated 460 upregulated genes and 315 downregulated genes, which was
the lowest number across the whole analysis.
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The top five genes mostly expressed in adipocytes compared to the control were CNR1,
ZBTB16, FRZB, FOXO1 and ITPR1. In the comparison of chondrocytes to the control, the
list of genes with the highest expression profiles includes ZBTB16, IGF1, WNT11, FOXO1
and SEPTIN4. Meanwhile, when we compared the neural-like cells to the controls, the most
expressed genes were ZBTB16, IGF1, BEX2, SEPTIN4 and ITPR1. In addition, a comparison
of osteoblasts to the control revealed that ZBTB16, SFRP2, CD14, EDNRB and TNF were
upregulated. In summary, we observed some similarities in the gene expression profile
between the analyzed groups. The expression of ZBTB16 and FOXO1 genes was enhanced
in osteo-, chondro-, adipo- and neuro-induced cells compared to the control, while IGF1
was expressed highly in chondro-, neuro- and osteo-induced WJ-MSCs.

A list of the top 20 genes with the highest (10 genes) and lowest (10 genes) expression
fold change in adipocytes, chondrocytes, neural-like cells and osteoblasts in contrast to the
controls as well as a comparison between the groups is presented in Figures 4 and 5.

A adipo vs. control B chondro vs. control
Gene symbol Gene name Fold change adj.p val. Gene symbol Gene name Fold change adj.p val.
BIRC5 baculoviral IAP repeat containing 5 -504.3 2.5x1071° TCIM transcriptional and immune response regulator -493.4 7.6x10°
TGFA transforming growth factor alpha -415.8 8.8x10° TGFA transforming growth factor alpha -476.2 1.8x102
GREM1 gremlin 1, DAN family BMP antagonist -277.8 1.9x103! SERPINB2 serpin family B member 2 -439.8 7.2x1071®
TCIM transcriptional and immune response regulator -163.4 2.1x10°® IL6 interleukin 6 -390.6 1.3x1071%
PPP2R2B protein phosphatase 2 regulatory subunit Bbeta -138.3 4.2x102 IL1B interleukin 1 beta -251.7 3.0x10%
IL24 interleukin 24 -101.5 4.3x107 BIRC5 baculoviral IAP repeat containing 5 -148.5 5.8x10°
BUB1B BUB1 mitotic checkpoint serine/threonine kinase B -91.9 1.7x107 CDK1 cyclin dependent kinase 1 -54.7 9.7x10®
IL6 interleukin 6 -79.1 1.2x107 BUB1B BUB1 mitotic checkpoint serine/threonine kinase B -47.7 7.6x10°
KIF14 kinesin family member 14 -64.5 2.4x10° TOP2A DNA topoisomerase Il alpha -46.9 1.5x10°1°
ANKRD1 ankyrin repeat domain 1 -63.7 1.2x10™ 124 interleukin 24 455 2.8x10°
PNMA3 PNMA family member 3 12.7 2.4x10%2 CRYAB crystallin alpha B 9.3 3.4x10
PPARG peroxisome proliferator activated receptor gamma 13.5 4.2x101° PCSK9 proprotein convertase subtilisin/kexin type 9 9.7 9.2x10°°
UNC5C unc-5 netrin receptor C 17.3 6.3x10° cLu clusterin 9.8 3.3x107
DUSP9 dual specificity phosphatase 9 222 3.0x102 SFRP2 secreted frizzled related protein 2 18.0 47x102
SFRP2 secreted frizzled related protein 2 243 1.5x102 AQP1 aquaporin 1 (Colton blood group) 19.9 3.4x108
ITPR1 inositol 1,4,5-trisphosphate receptor type 1 24.8 5.2x10'% SEPTING septin 4 21.3 6.0x10°
FOXO1 forkhead box O1 324 3.3x10%° FOXO1 forkhead box O1 21.6 1.8x10°22
FRZB frizzled related protein 325 3.0x10°® WNT11 ‘Wnt family member 11 30.2 1.5x10*
ZBTB16 zinc finger and BTB domain containing 16 1090.4 1.2x1078 IGF1 insulin like growth factor 1 100.2 5.8x10®
CNR1 cannabinoid receptor 1 2263.5 7.0x10* ZBTB16 zinc finger and BTB domain containing 16 632.5 3.0x10%2
c neuro vs. control D osteo vs. control
‘Gene symbol Gene name Fold change adj.p val. Gene symbol Gene name Fold change adj.p val.
BUB1B BUB1 mitotic checkpoint serine/threonine kinase B -93.2 5.9x107 TGFA transforming growth factor alpha -527.5 1.2x102
TGFA transforming growth factor alpha -91.1 1.5x10°° SH3RF2 SH3 domain containing ring finger 2 -16.3 4.4x1071%
BIRC5 baculoviral IAP repeat containing 5 -81.4 4.3x107 PTPRH protein tyrosine phosphatase receptor type H -7.8 1.7x102
ANKRD1 ankyrin repeat domain 1 -52.0 1.4x101° BIRC3 baculoviral IAP repeat containing 3 -6.4 2.0x102
CDK1 cyclin dependent kinase 1 -44.9 3.5x10°° GREM1 gremlin 1, DAN family BMP antagonist -6.0 4.8x10°®
THBS1 thrombospondin 1 -37.7 4.0x10"7 CHAC1 ChaC glutathione specific gamma-glutamylcyclotransferase 1 -5.6 1.0x102
TOP2A DNA topoisomerase Il alpha -30.1 6.9x10°® IL1A interleukin 1 alpha 5.2 2.2x102
TCIM transcriptional and immune response regulator -29.6 2.1x10°%° ASNS asparagine synthetase (glutamine-hydrolyzing) -4.9 9.1x10*
TXNIP thioredoxin interacting protein -26.7 1.1x1071° SEMA3A semaphorin 3A 45 1.2x102
BUB1 BUB1 mitotic checkpoint serine/threonine kinase -26.6 1.8x10°° ATP2A3 ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 3 -4.4 3.7x102
CYFIP2 cytoplasmic FMR1 interacting protein 2 35 3.4x10° SLC40A1 solute carrier family 40 member 1 9.0 1.4x10°
BCL2L11 BCL2 like 11 4.1 4.4x10% FOXO1 forkhead box O1 11.7 5.5x1071*
CLuU clusterin 5.0 1.7x10° FRZB frizzled related protein 175 3.9x10°
HMOX1 heme oxygenase 1 5.4 1.8x10° IGF1 insulin like growth factor 1 19.5 3.6x10°
FOXO1 forkhead box O1 55 1.7x10°¢ EGR3 early growth response 3 21.9 3.4x10*
ITPR1 inositol 1,4,5-trisphosphate receptor type 1 6.8 2.9x107 TNF tumor necrosis factor 31.0 3.2x107
SEPTIN4 septin 4 8.4 3.8x10* EDNRB endothelin receptor type B 37.8 6.9x10°
BEX2 brain expressed X-linked 2 19.8 5.1x10°° CD14 CD14 molecule 76.6 4.0x10™7
IGF1 insulin like growth factor 1 26.7 6.8x10* SFRP2 secreted frizzled related protein 2 84.0 7.2x107%
ZBTB16 zinc finger and BTB domain containing 16 83.7 6.6x1028 ZBTB16 zinc finger and BTB domain containing 16 384.1 1.3x10°%2

Figure 4. List of the top 20 genes with the highest (10 genes) and lowest (10) expression fold change
between (A) adipocytes vs. control; (B) chondrocytes vs. control; (C) neural-like cells vs. control; and
(D) osteoblasts vs. control. Abbreviations: adj. p val.—adjusted p-value.
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A
Gene symbol
CNR1
EGR3
IL1B
ID1
SERPINB2
ITPR1
IRF1
SLC40A1
VEGFA
ALDH1A3
EDNRB
SULF1
TNFRSF11B
PCSK9
THBS1
TEK
GREM1
ANKRD1
AQP1
IGF1

C
Gene symbol
DUSP9
PNMA3
WNT11
ASNS
KCNMA1
ITPR1
SIAH1
FOXO03
ADAMTSL4
TRIB3
TEK
NR4A1
EDNRB
GREM1
IL24
TNFRSF11B
BIRC5
TCIM
IGF1
TNFSF10

E
Gene symbol
AQP1
WNT11
NR4A1
BIRC5
ID1
CNR1
TNF
IL1B
SERPINB2
IL6
EGR3
TCIM

chondro vs. adipo
Gene name
cannabinoid receptor 1
early growth response 3
interleukin 1 beta
inhibitor of DNA binding 1
serpin family B member 2
inositol 1,4,50trisphosphate receptor type 1
interferon regulatory factor 1
solute carrier family 40 member 1
vascular endothelial growth factor A
aldehyde dehydrogenase 1 family member A3
endothelin receptor type B
sulfatase 1
TNF receptor superfamily member 11b
proprotein convertase subtilisin/kexin type 9
thrombospondin 1
TEK receptor tyrosine kinase
gremlin 1, DAN family BMP antagonist
ankyrin repeat domain 1
aquaporin 1 (Colton blood group)
insulin like growth factor 1

osteo vs. adipo
Gene name
dual specificity phosphatase 9
PNMA family member 3
Wnt family member 11
asparagine synthetase (glutamine Ohydrolyzing)

potassium calciumOactivated channel subfamily M alpha 1

inositol 1,4,50trisphosphate receptor type 1
siah E3 ubiquitin protein ligase 1
forkhead box O3
ADAMTS like 4
tribbles pseudokinase 3
TEK receptor tyrosine kinase
nuclear receptor subfamily 4 group A member 1
endothelin receptor type B
gremlin 1, DAN family BMP antagonist
interleukin 24
TNF receptor superfamily member 11b
baculoviral IAP repeat containing 5
transcriptional and immune response regulator
insulin like growth factor 1
TNF superfamily member 10

osteo vs. chondro
Gene name
aquaporin 1 (Colton blood group)
Wnt family member 11
nuclear receptor subfamily 4 group A member 1
baculoviral IAP repeat containing 5
inhibitor of DNA binding 1
cannabinoid receptor 1
tumor necrosis factor
interleukin 1 beta
serpin family B member 2
interleukin 6
early growth response 3
transcriptional and immune response regulator

Fold change adj.p val.

0581.4
020.4
0121

09.5
09.5
09.3
07.2
07.2
0e.7
06.2
8.1
9.6
10.0
10.2
10.4
14.5
41.9
61.3
279.8
1850.4

6.7x10°
1.1x10°3
1.2x10*
5.9x10°
1.5x102
4.0x107°
2.1x10"
4.5x10°
2.6x107
3.3x10
3.3x102
1.9x10°8
7.9x10°
1.1x102
2.5x107
2.2x10°°
4.3x107
1.0x10™"
7.7x10%
6.1x10

Fold change adj.p val.

054.7
017.8
014.2
08.0
06.2
05.9
04.4
03.4
03.3
03.3
34.7
34.8
35.1
46.6
51.7
138.9
149.3
210.1
360.7
398.2

Fold change
074.7
051.2

36.0
440
62.5
70.7
71
73.7
128.0
134.3
326.7
634.4

2.0x102
1.6x102
1.6x102
1.7x10®
8.5x10°°
2.4x10°
1.6x10°°
4.4x10*
1.3x102
1.6x103
4.9x10™"
5.0x10°
1.0x10°8
1.5x10°"3
8.1x10°
6.6x10712
2.9x10°°
2.0x10°°
1.4x102
1.4x102

adj.p val.
9.9x10716
5.4x10°
3.1x10°°
8.5x10°
2.5x10°
1.1x102
1.9x102
2.7x1013
9.9x10°""
8.6x10°°
5.2x10""%
7.2x10°¢

F

Gene symbol
CNR1
FRZB

ADAMTSL4
ZBTB16
TXNIP
CRYAB
PCSK9
BCL2A1
CD14
ID1
SEMA3A
IL6
IL24
CYFIP2
BEX2
SULF1
ERBB4
GREM1

TNFRSF11B
IGF1

Gene symbol
AQP1
PCSK9
ANKRD1
CRYAB
WNT11
TXNIP
ucP2
LIMS2
THBS1
ADAMTSL4
EGR3
BIRC3
PEG10
ATP2A3
TNFSF15
CYFIP2
IL1B
SERPINB2
IL6
BEX2

Gene symbol
ATP2A3
BEX2
CYFIP2
ASNS
TRIB3
SH3RF2
EGR3
SFRP2
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Figure 5. List of the genes with the highest and lowest expression fold change between all analyzed
groups: (A) chondrocytes vs. adipocytes; (B) neural-like cells vs. chondrocytes; (C) osteoblasts vs.
adipocytes; (D) neural-like cells vs. chondrocytes; (E) osteoblasts vs. chondrocytes; (F) osteoblasts vs.
neural-like cells. Abbreviations: adj. p val.—adjusted p-value.
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The fold change values of the top ten downregulated genes in adipocytes vs. controls
ranged from —504.3 to —63.7, while the expression of the top ten overexpressed genes
ranged from 12.7 to 2263.5. The fold change values of the top ten downregulated genes
in chondrocytes vs. controls ranged from —493.4 to —45.5, while the expression of the
top ten overexpressed genes ranged from 9.3 to 632.5. Moreover, the fold change values
for genes mostly downregulated in neural-like cells vs. controls ranged from —93.2 to
—26.6, while the upregulated genes ranged from 3.5 to 83.7. For the osteoblasts to control
comparison, the fold change for inhibited genes ranged from —527.5 to —4.4, and those of
overexpressed genes ranged from 9.0 to 384.1. In conclusion, the commonly overexpressed
genes in differentiated groups are ZBTB16 and FOXO1, while TGFA was a downregulated
gene in all differentiated cells. All genes are presented in Figure 4.

We also compared the differentially expressed genes between all differentiated cell
groups (Figure 5. We revealed that in the adipocytes, enhanced expression was noticed
for the TNFRSF11B (Fold changes vs. chondrocytes—10; vs. neural-like cells—31.9; vs.
osteoblasts—138.9), SULF1 (Fold changes vs. chondrocytes—9.6; vs. neural-like cells—25),
IL24 (Fold changes vs. neural-like cells—21.3; vs. osteoblasts—51.7), and GREM1 (Fold
changes vs. neural-like cells—30.5; vs. osteoblasts—46.6), genes. Moreover, in the group of
chondrocytes, there appeared to be an upregulation of IL6 (Fold changes vs. neural-like
cells—101.1; vs. osteoblasts—134.3), IL1B (Fold changes vs. adipocytes—12.1; vs. neural-
like cells—36.9; vs. osteoblasts—73.7), and SERPINB2 (Fold changes vs. adipocytes—9.5;
vs. neural-like cells—47.8; vs. osteoblasts—128) genes. Furthermore, the expression
of the TXNIP gene (Fold changes vs. chondrocytes—19.9; vs. adipocytes—12.2; vs.
osteoblasts—43) was upregulated in neural-like cells.

As the next step, we performed a hierarchical clustering of differentially expressed
genes in all analyzed groups and presented the results as heatmaps, which are presented in
Figures 6-9. The figure shows the mean expression values, normalized expression values,
and fold changes between the compared groups. Genes that belong to the most significantly
enriched ontological groups (with the lowest adjusted p-value) are represented as dark
squares. The expression values were scaled by rows and presented as colors and ranges,
wherein the fold changes were displayed in the rows. As a first step, we revealed which
genes are involved in the apoptotic processes (Figure 6) depending on the differentiated
cells, most of which were downregulated. In the adipocytes vs. controls, the genes most
differentially expressed were BIRC5, GREM1, TCIM, PPP2R2B and IL24, all of which were
downregulated. For the chondrocytes vs. controls, there was a downregulation of TCIM,
IL1B, BIRC5, CDK1, and BUB1B. Meanwhile, at the neural-like cells, it appears that BUB1B,
BIRC5, CDK1, TCIM, and BUB1 were downregulated. Regarding the comparison of the
osteoblast cells and control, it appears that apoptotic processes are involved through the
expression of the CD14, SLC40A1 and CHI3L1 genes. GREM1, NLRP1 and DAB2 were the
genes downregulated across all the studied groups compared to the controls. Furthermore,
we analyzed the genes related to the apoptosis intrinsic apoptotic signaling pathway in
response to endoplasmic reticulum stress (Figure 7). ITPR1 was the only overexpressed
gene in all the differentiated groups compared to controls. In the analysis of the genes
related to the negative regulation of the apoptotic process (Figure 8), we found that the
expression of TGFA, GREM1, CD44, SH3RF1, DAB2, SH3RF2, PLAUR, SMAD3 and AXL
was decreased in all differentiated groups as compared to the controls. Moreover, genes
related to the positive regulation of the apoptotic process were clustered (Figure 9). These
analyses reveal that the expression of the ZBTB16, FOXO1, SEPTIN4, CLU and HTRA1
genes was enhanced in all analyzed groups compared to the controls.
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Figure 6. Heatmap with hierarchic clustering of differentially expressed genes related to the apoptotic
process in all analyzed groups. Expression values are scaled by rows and presented as colours and
range from red (low expression) to green (high expression).
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Figure 7. Heatmap with hierarchic clustering of differentially expressed genes related to the intrinsic

apoptotic signaling pathway in response to endoplasmic reticulum stress in all analyzed groups.

Expression values are scaled by rows and presented as colours and range from red (low expression)

to green (high expression).
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Figure 8. Heatmap with hierarchic clustering of differentially expressed genes related to the negative

regulation of the apoptotic process in all analyzed groups. Expression values are scaled by rows and

presented as colours and range from red (low expression) to green (high expression).
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Figure 9. Heatmap with hierarchic clustering of differentially expressed genes involved in the positive

regulation of the apoptotic process of all analyzed groups. Expression values are scaled by rows and

presented as colours and range from red (low expression) to green (high expression).

Additionally, a Gene Set Enrichment Analysis (GSEA) was performed to establish the
received effects in all analyzed groups (Figures 10 and 11). The normalized expression
level data from the microarray were uploaded to the software, letting us generate a list
of significantly described terms from the Hallmark database software. The GSEA did not
indicate any statistical importances (p > 0.05). However, for some comparisons, such as
neuro-induced vs. control, osteo-induced vs. chondro-induced, and osteo-induced vs.
neuro-induced, we revealed that genes regulated in apoptotic processes are significantly

activated (p < 0.05).
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Figure 10. Gene set enrichment analysis (GSEA) for the comparison of the control to all ana-
lyzed groups; (A) adipo-induced WJ-MSCs vs. control; (B) chondro-induced WJ-MSCs vs. control;
(C) neuro-induced WJ-MSCs vs. control; (D) osteo-induced WJ-MSCs vs. control. (1) Barplot with
the most activated (green) and inhibited (red) gene terms according to the normalized enrichment
score (NES) values. (2/3) Detailed enrichment plots for the five most inhibited /activated gene sets,
showing the profile of the running ES score and the positions of the genes on the rank-ordered list.
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Figure 11. Gene set enrichment analysis (GSEA) for the comparison of all analyzed groups.
A) chondro-induced WJ-MSCs vs. adipo-induced WJ-MSCs; (B) neuro-induced WJ-MSCs vs.
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adipo-induced WJ-MSCs; (C) neuro-induced WJ-MSCs vs. chondro-induced WJ-MSCs; (D) osteo-
induced WJ]-MSCs vs. adipo-induced WJ-MSCs; (E) osteo-induced WJ-MSCs vs. chondro-induced
WJ-MSCs; (F) osteo-induced WJ-MSCs vs. neuro-induced WJ-MSCs. (1) Barplot with the most
activated (green) and inhibited (red) gene terms according to the normalized enrichment score (NES)
values. (2/3) Detailed enrichment plots for the five most inhibited /activated gene sets, showing the
profile of the running ES score and the positions of the genes on the rank-ordered list.

The current data coincides with the well-documented association between apoptosis
and the p53 signaling pathway (Figures 12 and 13). The comparison of control and os-
teoblast cells did not indicate the expression of genes involved in the p53 signaling pathway
(Figure 12). In the comparison of neural-like cells with chondrocytes, no expression of
genes involved in the p53 signaling pathway or apoptosis was observed.
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Figure 12. Apoptosis and p53 signaling pathway in the control compared to adipocytes, chondrocytes,
neural-like cells and osteoblasts. Changes in the expression profile of genes involved in the pathway
are marked in green for statistically significant upregulation and red for statistically significant
downregulation. The beige color indicates the enriched term. The size of the bubble corresponds to
the number of genes involved in a particular GO term.
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Figure 13. Apoptosis and p53 signaling pathway in all analyzed groups. Changes in the expression
profile of genes involved in the pathway are marked in green for statistically significant upregulation
and red for statistically significant downregulation. The beige color indicates the enriched term. The
size of the bubble corresponds to the number of genes involved in a particular GO term.

Moreover, to conduct a comprehensive functional analysis of protein—protein interac-
tions, a functional enrichment interactome analysis, gene annotation, and a membership
search, we employed the online platform Metascape. For the analysis, we utilized four
lists of differentially expressed genes that were categorized according to Gene Ontology
biological process (GO BP) terms and obtained from heatmaps. We identified all the statis-
tically enriched Gene Ontology (GO) terms, among which the top five enriched processes
were: positive regulation of apoptotic process (GO:0043065; logl0(P) = —78.6); regula-
tion of cysteine-type endopeptidase activity (GO:2000116, log10(P) = —45.9); regulation
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of the apoptotic signaling pathway (GO:2001233, log10(P)= —32.9); cytokine signaling
immune system (R-HAS-1280215, log10(P) = —27.7); and the apoptotic signaling pathway
(GO:0097190, 1og10(P) = —26.7) (Figure 14A). A subset of representative terms was chosen
from the entire cluster, converted into a network layout (Figure 14C,D), and analyzed
using the MCODE algorithm to identify densely connected neighborhoods of proteins
(Figure 14B).
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Figure 14. Transcriptome profiles were analyzed using Metascape functional analysis to identify

the enriched Gene Ontology (GO) terms related to the apoptotic process, based on differentially
expressed genes and GO BP terms. The results were visualized in four components. (A) A heatmap
of enriched GO terms colored by p-values was generated; (B) The protein—protein interaction (PPI)
network was clustered into the five most significant MCODE components, where each enriched GO
term was represented by a circle node, with its size proportional to the number of input genes that
fell under that term, and its color indicating its cluster identity; (C) A clustered network of enriched
GO terms was created, where each term was represented by a circle node, with its size proportional
to the number of input genes that fell under that term, and its color indicating its cluster identity;
(D) A clustered network of enriched GO terms was generated, with the node colors indicating their
p-values, and terms containing more genes having a more significant p-value.

3. Discussion

The aim of this study was to identify the apoptosis-related genes involved in the
process of the in vitro differentiation of WJ-MSCs towards osteogenic, chondrogenic, adi-
pogenic and neurogenic lineages utilizing RNA-seq. Microarray expression analysis may
also be used for that purpose [41,42]; however, RNA-seq is a powerful technique used to
analyze the transcriptomic changes occurring during the differentiation of WJ-MSCs. An
RNA-seq allows for an in depth analysis of eukaryotic transcriptomes and the results are
highly reproducible and might reveal sequence variations, as well as the most differentially
expressed genes, providing possible markers of an investigated process [43,44]. Gaining
an insight into the transcriptomic changes occurring during the in vitro differentiation
of WJ-MSCs is of vital importance since in vitro cultures allow a better understanding
of the molecular and cellular processes taking place in these cells [45]. This is particu-
larly important when considering the use of WJ-MSCs in the clinical setting and most
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likely will contribute to the development of new treatment possibilities and therapies in
regenerative medicine.

However, it is important to consider the fact that the in vivo application of MSCs
is fraught with a high risk of cell death due to an ischemic environment and nutrient
deprivation [40]. Potier et al. [40] revealed that after 120 h of hypoxia combined with serum
deprivation, 99% of MSCs were not able to survive. Binder et al. [46] demonstrated, in
the example of human BM-MSCs, that osteogenic differentiation promotes the survival of
MSCs subjected to serum deprivation and hypoxia in vitro and in vivo, suggesting that the
appropriate preconditioning of MSCs prior to their use for tissue regeneration may increase
their efficacy. Similarly, Pesarini et al. [47] revealed that adipose tissue-derived MSCs
(ASCs) were more sensitive to apoptosis caused by calcitriol combined with CaCl, than
ASCs subjected to adipogenic differentiation. Similarly, Lo Furno et al. [48] demonstrated a
decrease in apoptotic markers in adipogenic-differentiated ASCs as compared to undiffer-
entiated ASCs. On the contrary, Oliver et al. [49] showed that the in vitro adipogenic and
osteogenic differentiation of human BM-MSCs was accompanied by an increased sensitivity
towards apoptosis due to the decreased repair of DNA double-strand breaks.

Chondrogenically, adipogenically, neurogenically and osteogenically differentiated
W]J-MSCs were related to each other and to W]-MSCs not subjected to any differentiation
regimen to search for the effects on the expression of apoptotic-related genes. Subsequently,
a set of differentially expressed genes belonging to apoptosis-related ontological groups,

YZ7i

namely “apoptotic process”, “intrinsic apoptotic signaling pathway in response to en-
doplasmic reticulum stress”, “negative regulation of apoptotic process”, and “positive
regulation of apoptotic process”, was identified.

ZBTB16 (zinc finger and BTB domain containing 16) involved in the “positive regula-
tion of apoptotic process” was upregulated in all differentiated cells as compared to the con-
trols. ZBTB16 is a transcription factor that was already reported to be upregulated during
the adipogenic, chondrogenic and osteogenic differentiation of MSCs [50-55]. In the case
of neurogenic differentiation, the role of ZBTB16 is the least known. Sobieszczuk et al. [56]
reported that ZBTB16 was involved in neuronal differentiation in Zebrafish, while Zhu
et al. [57] showed the neuroprotective role of human umbilical cord-derived MSCs on
spinal cord injury in mice, possibly due to ZBTB16, among others. Therefore, the current
results correspond with previous studies and demonstrate, for the first time, the role of
ZBTB16 in the four-lineage differentiation of WJ-MSC. Similarly, FOXO1 (forkhead box
0O1) is involved in the “positive regulation of apoptotic process” and was one of the top
five upregulated genes in W]J-MSCs subjected to chondrogenic and adipogenic differentia-
tion and, in addition, one of the top ten genes upregulated in neuro- and osteo-induced
WJ-MSCs. FOXOL1 is a transcription factor participating in stemness and differentiation in
several tissues [58]. Its role in the chondrogenic, osteogenic, adipogenic and neurogenic
differentiation of MSCs has already been reported [59-64]. In terms of neurogenic differen-
tiation, Dominguez-Castro et al. [65] reported the role of FOXO1 in W]-MSCs specifically,
revealing an elevated level of FOXO1 in W]-MSCs during neuronal differentiation both in
normoglycemic pregnancies and in pregestational diabetes mellitus. The current results are
consistent with previous findings and provide evidence for FOXO1's involvement in the
in vitro differentiation of WJ-MSCs.

SEPTIN4 is amongst the top five upregulated genes in chondro- and neuro-induced
WJ-MSCs, it was also upregulated to a lesser extent in WJ-MSCs subjected to osteogenic and
adipogenic differentiation. Similarly to the two previously described genes, it is involved in
the “positive regulation of apoptotic process”, encoding the proapoptotic ARTS (apoptosis-
related protein in the TGFf signaling pathway). ARTS induces apoptosis [66,67]; however,
its role in the differentiation of WJ-MSCs has not yet been described. The current results
indicate its involvement in chondro-, neuro-, adipo- and osteo-induced WJ-MSCs, possibly
via engaging in a proapoptotic function.

Amongst the top five genes upregulated in neuro- and chondro-induced WJ-MSCs was
IGF1 (insulin-like growth factor 1), which belongs to the “negative regulation of apoptotic
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process” group and encodes a protein generally involved in growth and development. The
upregulation of IGF1 in neuro-induced WJ-MSCs is consistent with its role in neurogenesis
since it is associated with the enhanced proliferation and migration of neural stem cells,
as well as with the inhibition of apoptosis and cell survival [68]. Moreover, a study
conducted on umbilical cord-derived MSCs revealed that IGF1 could improve the neural
differentiation of these cells and subsequent astrocyte differentiation [69]. The role of IGF1
in the chondrogenic differentiation of MSCs has already been reported. Zhou et al. [70]
showed that IGF1 induced chondrogenic differentiation of ASCs in vitro and enhanced
chondrogenesis in vivo. Furthermore, IGF1 was implicated in the osteogenic differentiation
of MSCs [71], which coincides with the current results, as IGF1 was amongst the top ten
genes upregulated in osteo-induced WJ-MSCs.

ITPR1 (inositol 1,4,5-triphosphate receptor type 1) belonging to the “intrinsic apop-
totic signaling pathway in response to endoplasmic reticulum stress” group was upreg-
ulated in neuro- and adipo-induced WJ-MSCs. ITPR1 encodes a receptor for inositol
1,4,5-triphosphate (IP3), which mediates Ca?* release from the endoplasmic reticulum upon
stimulation, and mutations in ITPR1 are the cause of spinocerebellar ataxias [72]; thus,
the role of ITPR1 in the nervous system is well-established. In the case of adipose tissue,
ITPR1 has been associated with lipid accumulation and inflammation in preadipocytes, as
well as with glucose homeostasis [73]. However, the role of ITPR1 in the neurogenic and
adipogenic differentiations of WJ-MSCs was not yet described.

The other of the top five upregulated genes in adipo-induced WJ-MSCs include
CNR1 (cannabinoid receptor 1) and FRZB (frizzled related protein), which also belong
to the “positive regulation of apoptotic process” group. Although the role of CNR1 has
not yet been described in the adipogenic differentiation of WJ-MSCs, Chen et al. [74]
reported its upregulation in ASCs during osteogenic differentiation. In addition, CNR1
is expressed in adipose tissue and might be involved in insulin resistance [75]. FRZB
encodes SFRP3 (secreted frizzled-related protein 3), which is involved in the regulation
of bone development. SFRP3 has been demonstrated to participate in the osteogenic and
chondrogenic differentiation of BM-MSCs [76,77] and the adipogenic differentiation of
ASCs [78], while the current study shows its involvement in the adipogenic differentiation
of WJ-MSCs.

WNT11 constitutes the last of the top five upregulated genes in chondro-induced
WJ-MSCs. WNT11 belongs to the “positive regulation of apoptotic process” group and
has already been implicated in the chondrogenic differentiation of human MSCs; however,
none of these cells were derived from Wharton's jelly [79].

The remaining gene of the top five upregulated genes in neuro-induced WJ-MSCs
has not yet been implicated in the neurogenic differentiation of these cells. BEX2 (brain
expressed x-linked 2), belonging to the “apoptotic process” ontology group is involved
in broadly defined apoptosis. A protein encoded by BEX2 was demonstrated to exert
anti-apoptotic effects when overexpressed in breast cancer cells and malignant glioma
cells [80,81]. Although BEX2 is expressed in the central nervous system, its precise role
in the neurogenic differentiation of MSCs remains unclear [82]. Thus, BEX? is a potential
novel marker involved in the neurogenic differentiation of WJ-MSCs.

In osteo-induced WJ-MSCs, the top five upregulated genes include SFRP2 (secreted
frizzled related protein 2), CD14 (CD14 molecule), EDNRB (endothelin receptor type B),
and TNF (tumor necrosis factor), besides the aforementioned ZBTB16. Both SFRP2 and TNF
belong to the “positive regulation of apoptotic process” ontology group and were already
implicated in the osteogenic differentiation of MSCs [83,84]. In addition, the overexpression
of SFRP2 in human MSCs has been demonstrated to enhance cell survival under oxidative
stress [85]. The effect of TNF on the osteogenic differentiation of murine MSCs is dose-
dependent [86]. In the case of MSCs derived from umbilical cords, TNF-« treatment
was shown to induce osteogenic differentiation [87]. In turn, CD14, belonging to the
“apoptotic process” ontology group, and EDNRB, implicated in the “negative regulation of
apoptotic process”, were not directly associated with the osteogenic differentiation of MSCs.
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According to Dominici et al. [17], human MSCs should not express the CD14 molecule.
CD14 has been shown to mediate the inflammatory response and rescue human monocytes
from apoptosis [88]. In contrast, the overexpression of CD14 in gastric carcinoma cells
has resulted in enhanced apoptosis and has antitumor potential [89]. EDNRB encodes
a receptor for endothelin and its activation leads to cell proliferation and survival. Lee
et al. [90] revealed that EDNRB participates in the regulation of lineage specification and
its activation, due to the endothelin priming of BM-MSCs, was associated with the increase
in osteogenesis of these cells. In addition, it was reported that neuropeptides may regulate
the biological activity of the major bone cell types [91].

In summary, the upregulation of several genes involved in the apoptotic process
was observed in all differentiated groups, indicating the importance of apoptosis-related
genes in the four-lineage differentiation of WJ-MSCs. Several genes, such as ZBTB16,
FOXO1, IGF1, FRZB, WNT11, SFRP2 and TNF were already implicated in at least the
one-lineage differentiation of MSCs; however, in most cases, these cells were not derived
from Wharton’s jelly. Therefore, the current results confirm the role of these genes as the
differentiation markers of WJ-MSCs as well. Moreover, potential novel markers of the
osteogenic- (CD14, EDNRB, SEPTIN4), neurogenic- (BEX2, ITPR1, SEPTIN4), adipogenic-
(ITPR1, SEPTIN4) and chondrogenic-differentiation (SEPTIN4) of W]-MSCs were revealed.
Overall, this study provides an insight into the molecular mechanisms involved in the
in vitro long-term culture and differentiation of WJ-MSCs. It is important to uncover the
effects of long-term in vitro culture and differentiation in the context of apoptosis prior to
the clinical application of W]-MSCs, considering the fact that MSCs applied in vivo may
be fraught with the high risk of cell death due to the ischemic environment and a lack of
nutrients. Since the current results indicate that most of the differentially expressed genes
in W]-MSCs subjected to four-lineage differentiation belong to the “positive regulation of
apoptotic process” group, it should be considered whether prolonged in vitro culture and
differentiation prior to clinical application is reasonable. Further studies are required to
address this issue; however, based on the current results, the benefits of in vitro differentia-
tion do not outweigh the flaws and the therapeutic application of WJ-MSCs should rather
take place at the earlier stages of culture.

4. Materials and Methods
4.1. Material Collection

Samples of umbilical cord were obtained from healthy full-term deliveries with the
written consent of the mother, according to the Ethics Committee of Poznan University of
Medical Sciences (237/19). The age range of the patients was 24—40 years. The study was
conducted according to the recommendations of the Declaration of Helsinki. Umbilical
cords of around 15 cm length were collected in cold Dulbecco’s phosphate-buffered saline
(DPBS; Merck, Darmstadt, Germany) with the addition of 10 U mL~! penicillin, 10 mg
mL~! streptomycin and 25 pg mL~! amphotericin B (Antibiotic Antimycotic Solution;
Merck, Darmstadt, Germany), and transported directly to the laboratory within 24 h
following acquisition.

4.2. Wharton’s Jelly-Derived Mesenchymal Stem Cells Isolation

The umbilical cords were washed twice in Dulbecco’s phosphate-buffered saline
(DPBS; Merck, Darmstadt, Germany) with the addition of 10 U mL~! penicillin, 10 mg mL~!
streptomycin and 25 pg mL~! amphotericin B (Antibiotic Antimycotic Solution; Merck,
Darmstadt, Germany) to remove residual blood. Then, the umbilical cords were placed on
a Petri dish and sliced with the use of a sterile scalpel to 1 cm wide pieces. Furthermore,
2-3 mm pieces of Wharton's jelly were excised from the umbilical cord’s tissue (excluding
blood vessels and umbilical lining), with the use of sterile forceps. Obtained pieces of
Wharton’s jelly were subsequently minced and incubated with 1 mg mL~! collagenase
type I (Gibco, Life Technologies, Waltham, MA, USA) for 24 h at 37 °C in a shaker. The
cell suspension obtained after the digestion was centrifuged at 500 x g for 20 min, and the
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supernatant was discarded. The cell pellet was suspended in DPBS and centrifuged at
500x g for 10 min. Then, the supernatant was discarded and the cell pellet was dissolved
in 4 mL Dulbecco’s Modified Eagle’s medium (DMEM, Merck, Darmstadt, Germany),
supplemented with 10% fetal bovine serum (FBS, Merck, Darmstadt, Germany), 4 mM
of L-glutamine (Merck, Darmstadt, Germany), and 10 U mL1 penicillin, 10 mg mL~1
streptomycin and 25 pg mL~! amphotericin B (Antibiotic Antimycotic Solution; Merck,
Darmstadt, Germany).

4.3. In Vitro Cell Culture

Cell viability was assessed using the ADAM Automatic Cell Counter (NanoEntek,
Waltham, MA, USA) and only samples with more than 85% viability were used for primary
cell culture establishment. The cell culture was conducted in 25 cm?® culture flasks at
37 °C in a humified atmosphere of 5% CO,. The culture medium was changed every
72 h. Cells were cultured until 90% confluent and then they were passaged using a 0.25%
trypsin solution (Merck, Darmstadt, Germany). The primary in vitro culture was conducted
until the third passage, and cellular morphology was evaluated daily using an inverted
phase-contrast microscope (Olympus IX70, Olympus, Tokyo, Japan).

4.4. Flow Cytometry Analysis

During the third passage, half of the detached cells were subjected to flow cytometry
analysis. Cells were incubated with the following antibodies: anti-CD44-PE, anti-CD90-
FITC, anti-CD105-APC, anti-CD31-FITC, anti-CD73-PE, anti-CD45-PerCP, anti-CD34-PE, as
well as the isotype controls: IgG1k-PE, IgG1-FITC, REA105-APC, REA-PE, IgG2ak-PerCP,
IgG2ak-PE, IgG2ak-REA, for 30 min in darkness, according to the manufacturers’ protocols.
Subsequently, the cells were washed with PBS (Merck, Darmstadt, Germany) and analyzed
using the BD FACSAria™ cytometer (Becton Dickinson, Franklin Lanes, NJ, USA).

4.5. Multilineage Differentiation

After the third passage, the cells were counted using the ADAM Automatic
Cell Counter (NanoEntek, Waltham, MA, USA) and subjected to the osteogenic,
neurogenic, chondrogenic and adipogenic differentiation regimen. Half of the culture plates
were destined for RNA isolation, and half were destined for specific staining to confirm
their differentiation.

4.5.1. Osteogenic Differentiation

For osteogenic differentiation, the cells were seeded on 6-well culture plates at
1 x 10° cells per well in standard culture medium. Each plate contained cells isolated
from a separate umbilical cord. After the cells reached 100% confluency, the standard
medium was replaced with Mesenchymal Stem Cell Osteogenic Differentiation Medium
(PromoCell, Heidelberg, Germany) in half of the wells; whereas, in the remaining half,
the cultures were conducted in a standard medium as negative controls. Differentiation
was carried out for 14 days, with a medium change every 72 h. Then, the cells were
washed with PBS, fixed with Saccomanno Fixative solution (Morphisto GmbH, Offenbach
am Main, Germany) for 30 min, and stained with Alizarin Red S (Sigma-Aldrich, Saint
Louis, MO, USA), which stains calcium deposits, in darkness for 15 min, according to the
manufacturer’s protocol. The results of the staining were examined using an inverted
phase-contrast microscope (Olympus IX70, Olympus, Tokyo, Japan).

4.5.2. Neurogenic Differentiation

Neurogenic differentiation was conducted in 6-well culture plates. In total,
4 x 103 cells/cm? were seeded into single wells in a standard culture medium and cultured
until 60-80% confluent, with the culture medium changed every 48 h. Then, the culture
medium was replaced with Mesenchymal Stem Cell Neurogenic Differentiation Medium
(PromoCell, Heidelberg, Germany) for seven days in half of the wells. The remaining wells
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contained cells cultured in a standard culture medium as negative controls. Differentiation
results were examined with Nissl bodies staining. Briefly, the cell layer was washed with
PBS and fixed with Saccomanno Fixative solution (Morphisto GmbH, Offenbach am Main,
Germany) for 30 min at room temperature. Then, the cell layer was washed with PBS twice
and stained with 0.5% Cresyl violet, previously filtered with the use of a 0.22 pm syringe
filter (Millex, Merck, Germany), for 30 min at room temperature. Subsequently, the cell
layer was washed three times with PBS and the results of the differentiation were examined
using an inverted phase-contrast microscope (Olympus IX70, Olympus, Tokyo, Japan).

4.5.3. Chondrogenic Differentiation

Chondrogenic differentiation was based on the spheroid model. For spheroid gener-
ation, the cells were seeded on a Nunc 96-well Round Bottom Microwell Plate (Thermo
Scientific, Waltham, MA, USA) with 300,000 cells per well. The plates were incubated at
5% CO;, and 37 °C for 48 h, after which the cells had assembled into spheroids suitable
for subsequent studies. After spheroid formation, the Mesenchymal Stem Cell Chondro-
genic Differentiation Medium (PromoCell, Heidelberg, Germany) was added to half of
the wells; whereas, in the other half, a standard culture medium was utilized for negative
controls. The culture was conducted for 21 days, with a change of medium every 72 h. The
results of the differentiation were evaluated with Alcian Blue (Sigma-Aldrich, Saint Louis,
MO, USA) staining for aggrecan detection. Spheroids were washed gently with PBS and
fixed with Saccomanno Fixative solution for 3 h at room temperature. Subsequently, the
spheroids were washed twice with distilled water and stained with Alcian Blue, previously
filtered with the use of a 0.22 pum syringe filter (Millex, Merck, Germany), for 45 min. The
spheroids were washed three times with a destaining solution. The results of the staining
were observed using an inverted phase-contrast microscope (Olympus IX70, Olympus,
Tokyo, Japan).

4.5.4. Adipogenic Differentiation

Adipogenic differentiation was conducted in 6-well culture plates. In total,
1 x 10° cells per well were seeded in standard culture medium and cultured until 80-90%
confluent. Then, the culture medium was replaced with Mesenchymal Stem Cell Adi-
pogenic Differentiation Medium (PromoCell, Heidelberg, Germany) in half of the wells;
whereas the other half contained cells cultured as negative controls in a standard culture
medium. Differentiation was conducted for 14 days and the medium was changed every
72 h. The results of the differentiation were evaluated via Oil Red O (Sigma-Aldrich, Saint
Louis, MO, USA) staining. The cell monolayer was washed with PBS and fixed with
Saccomanno Fixative solution for 30 min at room temperature; then, the monolayer was
washed with water and incubated with 60% isopropanol for 5 min. Subsequently, the cells
were stained with Oil Red O for 3 min, and the results were observed using an inverted
phase-contrast microscope (Olympus IX70, Olympus, Tokyo, Japan).

4.6. RNA Isolation

After differentiation, cells destined for RNA isolation (both the differentiated cells
and controls) were detached using a 0.25% trypsin solution and suspended in 1 mL of
TRIzol (Thermo-Fischer Scientific, Waltham, MA, USA) and immediately frozen at —80 °C.
After phase separation using chloroform, total RNA was precipitated from the aqueous
phase by adding isopropanol. Then, the total RNA was purified using an RNeasy Mini kit,
eluted in 30 pL of RNAse/DNase free water, and stored at —80 °C after quality assessment.
Quantification of the isolated RNA and its quality was performed using the Qubit™ RNA
BR/HS Assay Kit and the Agilent RNA 6000 Nano/Pico Chip on the Bioanalyzer 2100
instrument, respectively. Both the concentration (6.2-335.0 ng/pL) and RIN values (6.9-10)
met the criteria for library preparation.
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4.7. RNA-Seq

A SMARter Stranded total RNA-Seq pico input Mammalian v3 kit was used for
library preparation of the RNA samples with the input of 10 ng. Ribosomal RNA was
depleted after cDNA synthesis and the library was amplified in 15 PCR cycles. The
quantity (32.1-64.4 nM) of libraries passed the criteria for successful library preparation
(more than 4 nM). Libraries were denaturated, diluted to final loading concentration
(300 pM), and sequenced on a NovaSeq 6000 S4 flowcell with the aim of reaching 60M PE
reads. A NovaSeq XP workflow was used for individual lane loading. Raw sequenced
data were demultiplexed and QC metrics were generated. All the samples passed all the
quality control parameters but noAdapters and low-quality sequences were trimmed using
Cutadapt [92]. Trimmed raw reads were aligned to the human reference genome (hg19)
from the Ensembl database. Alignment was performed using STAR software (version
2.5.2b) [93]. Overall summarization results, including the number of successfully assigned
reads with unnormalized counts, were obtained using featureCounts [94]. Differential
expression was determined using the Deseq?2 library [95].

4.8. Bioinformatical and Statistical Analysis

Tabular data containing information about the fold change, adj. p.value, and the nor-
malized counts for each comparison were analyzed using a BioConductor repository with
the statistical R programming language (v4.1.2; R Core Team 2021). The selection criteria
for differentially expressed genes (DEGs) were based on an absolute fold change > 2 and a
p-value with a false discovery rate (FDR) correction < 0.05. The results of such selection were
presented as volcano plots, illustrating the total number of up- and downregulated genes.

The complete set of DEGs from each comparison were subjected to functional an-
notation and clustering using the DAVID (Database for Annotation, Visualization, and
Integrated Discovery) bioinformatics tool [96]. The gene symbols of DEGs were uploaded
to DAVID using the “RDAVIDWebService” BioConductor library [97]. Then, we selected
significantly enriched GO terms from the GO BP Direct database. The p-values of the
selected GO terms were corrected using the Benjamini-Hochberg correction [98]. Hierar-
chic clustering of differentially expressed genes was performed, and the DEGs from each
comparison were visualized as a heatmap using the “ComplexHeatmap” library [99].

Furthermore, Gene Set Enrichment Analysis (GSEA) has been performed by the
“cluster profiler” library. The objective of this analysis was to determinate the extent of the
depletion or enrichment in GO terms; thus, we limited the analysis only to GO terms related
to apoptosis. A normalized enrichment score (NES) along with the corresponding p-value
was calculated. To provide a summary of the most significant enrichment and depletion
scores, a bar chart was created to display the ontology groups with the highest enrichment
scores (highest NES values) as well as the groups with the most depleted enrichment scores
(lowest NES values). Moreover, enrichment plots were generated for the five most enriched
and depleted GO terms, offering a more detailed visualization of the enrichment levels.

Next, we used the PathFinder library to identify and visualize the relationships be-
tween the DEGs and the biological pathways or processes in which they are involved [100].
We constructed a graph-based representation of the DEGs, where the edges correspond
to genes and the central nodes correspond to selected biological processes between the
gene expression levels. One of the key advantages of using PathFinder is the possibility of
detecting relationships between genes and processes, which can be particularly useful in
complex biological systems.

To identify functional protein partners among all the input gene lists, we utilized
Metascape [101]. This database provides a comprehensive resource for the analysis and
interpretation of gene and protein function, pathway analysis, and PPI network analysis.
The minimum required interaction score was set at medium confidence (0.4). When the
protein—protein interaction (PPI) network contained more than three nodes, the Detection
(MCODE) algorithm was utilized to reveal clusters directly related to genes within the
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PPI [102]. Furthermore, MCODE assigned a unique color based on the p-value in the
generated network.
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