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Abstract: Alzheimer’s disease (AD), a neurodegenerative disorder, is the most common cause of
dementia in the elderly population. Since its original description, there has been intense debate
regarding the factors that trigger its pathology. It is becoming apparent that AD is more than a brain
disease and harms the whole-body metabolism. We analyzed 630 polar and apolar metabolites in
the blood of 20 patients with AD and 20 healthy individuals, to determine whether the composition
of plasma metabolites could offer additional indicators to evaluate any alterations in the metabolic
pathways related to the illness. Multivariate statistical analysis showed that there were at least
25 significantly dysregulated metabolites in patients with AD compared with the controls. Two mem-
brane lipid components, glycerophospholipids and ceramide, were upregulated, whereas glutamic
acid, other phospholipids, and sphingolipids were downregulated. The data were analyzed using
metabolite set enrichment analysis and pathway analysis using the KEGG library. The results showed
that at least five pathways involved in the metabolism of polar compounds were dysregulated in
patients with AD. Conversely, the lipid pathways did not show significant alterations. These results
support the possibility of using metabolome analysis to understand alterations in the metabolic
pathways related to AD pathophysiology.

Keywords: Alzheimer’s disease; metabolomic profile; lipidomic profile; targeted mass spectrometry

1. Introduction

Alzheimer’s disease (AD) has been known, for more than 100 years, as a brain dis-
ease, characterized by the combined presence of extracellular amyloid plaques consisting
of amyloid-β (Aβ) peptides and intraneuronal neurofibrillary tangles, both densely packed
to form highly insoluble structures [1]. Over the last decade, it has been noted that other
conditions are usually associated with AD, such as cardiovascular disease and metabolic
syndrome [2,3]. Indeed, AD usually includes various comorbidities, such as obesity, dia-
betes, dyslipidemia, and hypertension, collectively merging with metabolic syndrome [4–7].
In addition, the high Aβ insolubility of senile plaques and meningovascular Aβ deposits
and the fact that Aβ is derived from the transmembrane cleavage of an integral membrane
protein, the amyloid precursor protein (APP), suggests that membrane composition may
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control APP localization and trafficking in neurons, thus predisposing APP to undergo β-or α
secretase-mediated APP processing [8,9].

Recent progress in targeted liquid chromatography coupled with mass spectrometry
(LC-MS), has facilitated the dynamic evaluation of thousands of metabolites, reflecting
complex networks and pathways of downstream changes at the genomic, transcriptomic,
and proteome levels [10].

Here, we examined the plasma metabolome composition using a validated metabolomics
procedure in patients with AD and healthy controls to assess the disease-related alterations
in the metabolic pathways. The ultimate goal was to strengthen our understanding of the
role of specific metabolites that might cause further disorders in AD, and to design common
strategies to prevent or control these disorders during disease progression.

2. Results
2.1. Demographics of Participants

The present study investigated the plasma samples from 20 control subjects and 20 pa-
tients with AD. The epidemiological characteristics of the enrolled patients are presented
in Table 1.

Table 1. Epidemiological factors and disease status of the study participants. Healthy volunteers
(controls, n = 20) and Alzheimer’s patients (AD, n = 20).

Controls (n = 20) AD (n = 20) p-Value

Age (mean ± SD) 76.85 ± 7.9 80.85 ± 5.3 0.075
Gender (n %): 1

Male 10 (50%) 8 (40%)
Female 10 (50%) 12 (60%)

Education (mean of years ± SD) 11.9 ± 3.7 8.35 ± 3.4 0.003406 *
MMSE score (mean ± SD) 29.83 ± 1.2 20.95 ± 2.9 2.86 × 10−12 *

GDS (mean ± SD) 3.05 ± 2.9 5.38 ± 3.5 0.060041
BMI (mean ± SD) 27.08 ± 1.6 25.3 ± 3.9 0.108194

Comorbidities (n, %):
Alcohol 12 (60%) 11 (55%) 0.749
Smoker 12 (60%) 6 (30%) 0–056

Dyslipidaemia 6 (30%) 3 (15%) 0.255
Diabetes 3 (15%) 3 (15%) 1

Hypertension 9 (45%) 6 (30%) 0.327
TIA/ischemia 1 (5%) 1 (5%) 1

Cardiac ischemia 0 (0%) 2 (10%) 0.167
Prior tumors 4 (20%) 2 (10%) 0.375

Drugs:

Antihypertension 9 (45%) 6 (30%) 0.327
Hypoglycaemic 3 (15%) 3 (15%) 1
Hypolipidemic 6 (30%) 3 (15%) 0.255

Antiplatelet 1 (5%) 3 (15%) 0.197
Antiacid 2 (10%) 4 (20%) 0.375

MMSE: Mini-Mental State Examination; GDS: geriatric depression scale; BMI: body mass index.
* Statistically significant.

The AD patients did not differ in age or sex, but had significantly reduced MMSE
scores compared with those of controls (p < 2.86 × 10−12). Significant differences were also
observed in the educational level, which was lower in patients with AD than in controls
(p < 0.05).
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2.2. Partial Least Squares Discriminant Analysis (PLS-DA) and Volcano Plot for Control
and AD Subjects

A well-defined platform for mass spectrometry analysis developed by the Biocrates
Life Science AG service was used to analyze the metabolomic profiles of the 20 AD and
20 control subjects.

Potential alterations in the concentration of the 630 analyzed metabolites were first
explored via univariate and multivariate statistical analysis, using the MetaboAnalyst 5.0
statistical analysis module.

Figure 1 shows the results of PLS-DA. In particular, the 3D graph shows the percentage
variability in the first three principal components (PC) between the patients with AD (red)
and the healthy subjects (green) (Figure 1a). Patients with AD tend to have the first three
components that separate them from the control subjects. The observed differences were
attributable to significant differences between the concentrations of the metabolites repre-
sented in the variable importance in projection (VIP) scores (Figure 1b). Figure 1b shows that
18 of the top 25 metabolites were downregulated. Seventeen metabolites were significantly
altered in the patients with AD (Figure 1c). These compounds belong to various classes of
organic compounds: five sphingolipids, five amino acids, three phospholipids, two lipids,
one organic acid, and one fatty acid derivative. The metabolites were represented based on
fold-change values (log2 (FC)) and statistical significance (−log10 (p)). The graph shows
that the main downregulated metabolites are those reported in the upper left quadrant,
for example, glutamic acid, hydroxy sphingomyelin, octadecadienoate, and aspartic acid.
Instead, ceramide (d18:1/24:1) appeared to be the only significantly upregulated metabolite,
considering that phosphatidylcholines showed borderline variation.

Table 2 shows that most significant metabolites, with a VIP score higher than 1.7, a
statistical significance (p-value) lower than 0.05, and a |log2FC| > 0.0: 15 were downregu-
lated and only two were upregulated. The mean, standard deviation, standard error, range
values, and 95% CI of the mean of the downregulated or/upregulated metabolites are
reported in Supplementary Table S2 for comparisons between AD and controls. Pearson’s
correlation analysis is reported in Supplementary Table S3.

2.3. MSEA and Pathway Analysis

After the exploratory analysis, the complete data matrix with the quantified 630 metabo-
lites was submitted to the MetaboAnalyst 5.0 modules for enrichment analysis using the
MSEA algorithm, and pathway analysis.

Quantitative analysis of the metabolic pathways enriched for the 630 metabolites was
not statistically significant. Nevertheless, the pathways for the biosynthesis of unsaturated
fatty acids and steroid hormones were the most enriched lipids in this study. Specifically,
oleic, arachidonic, docosahexaenoic, and eicosapentaenoic acids were the most enriched
lipids in unsaturated fatty acid biosynthesis, whereas dehydroepiandrosterone sulfate and
cortisol were the most enriched lipids in steroid hormone biosynthesis. These results are
shown in Figure 2 and Table 3.

Interestingly, eight metabolic pathways were significantly altered, and the metabolite
hits for each pathway are shown in Figure 3 and Table 4. Among all the hits, L-glutamate
and L-aspartate were found to be altered, which is consistent with the univariate and
PLS-DA analyses reported in the previous section.



Int. J. Mol. Sci. 2023, 24, 9736 4 of 13
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 13 
 

 

 

Figure 1. (a) 3D score plot of the three selected PCs for AD (red) and controls (green). The corre-

sponding percentages of the variance (%) are reported in parentheses. (b) Important features iden-

tified by the PLS-DA. The boxes on the right indicate the relative concentrations of the metabolites 

in the AD and control. (c) Volcano plot with fold-change threshold (x) 1 and t-test threshold (y) of 

0.05. The red circles represent features above the threshold. Note that fold changes log2 (FC) and p 

values log10 (p) were log transformed. On the (x) axis, the further the position from (0,0), the more 

significant the feature. 

Table 2 shows that most significant metabolites, with a VIP score higher than 1.7, a 

statistical significance (p-value) lower than 0.05, and a |log2FC| > 0.0: 15 were downregu-

lated and only two were upregulated. The mean, standard deviation, standard error, 

range values, and 95% CI of the mean of the downregulated or/upregulated metabolites 

are reported in Supplementary Table S2 for comparisons between AD and controls. Pear-

son’s correlation analysis is reported in Supplementary Table S3.  
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Hydroxysphingo-myelin C24:2 sphingolipid Down 0.0024 0.7779 −0.3624 2.552 

L-Glutamic acid amino acid Down 0.0043 0.6142 −0.7032 2.419 

Gamma-Aminobutyric acid amino acid Down 0.0089 0.8282 −0.272 2.231 

Ceramide (d18:1/24:1) lipid Up 0.0133 1.1814 0.2405 2.123 

CE (18:2(9Z,12Z)) lipid Down 0.0142 0.8273 −0.2735 2.103 

L-Aspartic acid amino acid Down 0.0164 0.8039 −0.315 2.063 

Hydroxysphingo-myelin C22:2 sphingolipid Down 0.0188 0.8346 −0.2608 2.023 

SM(d18:1/26:0) sphingolipid Down 0.0193 0.7856 −0.3482 2.015 

L-2-Hydroxyglutaric acid organic acid Down 0.0207 0.8858 −0.175 1.993 

Figure 1. (a) 3D score plot of the three selected PCs for AD (red) and controls (green). The corresponding
percentages of the variance (%) are reported in parentheses. (b) Important features identified by the
PLS-DA. The boxes on the right indicate the relative concentrations of the metabolites in the AD and
control. (c) Volcano plot with fold-change threshold (x) 1 and t-test threshold (y) of 0.05. The red circles
represent features above the threshold. Note that fold changes log2 (FC) and p values log10 (p) were log
transformed. On the (x) axis, the further the position from (0,0), the more significant the feature.

Table 2. Down/upregulated metabolites for comparison between AD and controls.

Compound Class Type p-Value FC log2(FC) VIP

Hydroxysphingo-myelin C22:1 sphingolipid Down 0.0008 0.7728 −0.3718 2.775
Hydroxysphingo-myelin C24:2 sphingolipid Down 0.0024 0.7779 −0.3624 2.552

L-Glutamic acid amino acid Down 0.0043 0.6142 −0.7032 2.419
Gamma-Aminobutyric acid amino acid Down 0.0089 0.8282 −0.272 2.231

Ceramide (d18:1/24:1) lipid Up 0.0133 1.1814 0.2405 2.123
CE (18:2(9Z,12Z)) lipid Down 0.0142 0.8273 −0.2735 2.103
L-Aspartic acid amino acid Down 0.0164 0.8039 −0.315 2.063

Hydroxysphingo-myelin C22:2 sphingolipid Down 0.0188 0.8346 −0.2608 2.023
SM(d18:1/26:0) sphingolipid Down 0.0193 0.7856 −0.3482 2.015

L-2-Hydroxyglutaric acid organic acid Down 0.0207 0.8858 −0.175 1.993
SM (d18:1/24:0) sphingolipid Down 0.0229 0.8416 −0.2488 1.963

Lysophosphatidyl-choline C14:1 phospholipid Down 0.0238 0.8017 −0.319 1.951
Homo-L-arginine amino acid Down 0.0296 0.7429 −0.4287 1.883

Octadecadienoate fatty acid
derivative Down 0.0321 0.6734 −0.5705 1.856

Phosphatidyl-choline aa C28:1 phospholipid Down 0.0355 0.8997 −0.1524 1.823
L-Carnitine amino acid Down 0.0438 0.8435 −0.2456 1.752
PC aa C40:3 phospholipid Up 0.0486 1.2641 0.3381 1.716

Legend: CE = cholesteryl ester; SM = sphingomyelin; PC = phosphatidylcholine.
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Figure 2. Quantitative enrichment analysis (QEA). The color of the bar refers to the p-value. Red bars
indicate more significant enrichment.

Table 3. Table summarizing the QEA results. FDR: false discovery rate control.

Pathway Total
Metabolites

Hits
Metabolites Raw p FDR

Biosynthesis of
unsaturated fatty acids 36 4 0.176 0.482

Steroid hormone biosynthesis 85 2 0.238 0.482
Fatty acid degradation 39 1 0.305 0.482

Primary bile acid biosynthesis 46 4 0.321 0.482
Lysine degradation 25 1 0.684 0.777

Arachidonic acid metabolism 36 1 0.777 0.777
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Figure 3. Summary of the pathway analysis. The color of the dot is the p-value; the redder the point,
the more significant is the enrichment. The size of the spot represents the number of metabolite hits
in the study.

Table 4. Altered metabolic pathways (raw p < 0. 05, FDR < 0.15) and altered metabolites in different
pathways.

Pathway Raw p FDR
Total

Metabolites in
the Pathway

Hits Metabolites Altered Metabolites Type

Butanoate
metabolism 0.0004 0.02 15 4-Aminobutanoate

L-Glutamate L-Glutamate Down

Histidine
metabolism 0.0070 0.13 16

L-Glutamate
L-Histidine

N(pi)-Methyl-L-histidine
L-Aspartate

L-Glutamate
L-Aspartate

Down
Down

Alanine aspartate and
glutamate

metabolism
0.0135 0.13 28

L-Aspartate
L-Asparagine

L-Alanine
L-Glutamate

4-Aminobutanoate
L-Glutamine

4-Aminobutanoate
L-Glutamate

Down
Down

Arginine and
proline

metabolism
0.0161 0.13 38

L-Arginine
4-Aminobutanoate

Putrescine
Hydroxyproline

L-Proline
L-Glutamate
L-Ornithine

4-Aminobutanoate
L-Glutamate

Down
Down

Nicotinate and
nicotinamide
metabolism

0.0164 0.13 15 L-Aspartate L-Aspartate Down

Porphyrin and
chlorophyll
metabolism

0.0173 0.13 30 Glycine
L-Glutamate L-Glutamate Down

D-Glutamine and
D-glutamate
metabolism

0.0253 0.14 6 L-Glutamate
L-Glutamine L-Glutamate Down

Nitrogen
metabolism 0.0253 0.14 6 L-Glutamate

L-Glutamine L-Glutamate Down
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3. Discussion

There has been considerable speculation regarding factors besides tau protein and
Aβ that may contribute to AD. Metabolic dysregulation has been reported in the brain
and blood samples of patients [11–15]. Changes in the metabolome are detectable well
before the overt clinical signs of AD and are retained as the disease progresses towards
more advanced stages [16–18]. However, whether dysregulated metabolites play causative
or modulating roles, or are by-products of AD, remains unclear. Here, we used a new
and well-defined platform for mass spectrometry analysis developed by the Biocrates Life
Science AG service to analyze the metabolomic profiles of 20 AD and 20 control subjects.

PLS-DA and volcano plot analysis are very useful for identifying the main compo-
nents, even the latent ones, which can differentiate patients from the controls. Moreover,
the PLS-DA algorithm should be regarded as just one building block in a series of steps
used to develop a classification model, particularly when the study involves small sample
sizes and large numbers of variables [19]. Therefore, we further investigated our data to
evaluate their impact on the metabolic pathways. We, subsequently, analyzed the most
significant variables, indicated by both the VIP score and volcano plot, using quantitative
MSEA and pathway analysis for polar and nonpolar metabolites. The volcano plots and
VIP analyses revealed an increase in the ceramide levels and a decrease in the glutamic
acid levels. In this context, several other studies have reported changes in ceramide levels
in the plasma of patients [20–23] or neurons in AD animal models [24–26]. Ceramides are
precursors of sphingolipids, including sphingomyelins, gluco- and galactosyl ceramides,
hexosylceramides, lactosylceramides, sphingosine, dihydrosphingosine, and dihydroce-
ramides. The role of ceramides in AD might be consistent with their potent action as
regulators of cell survival, triggering pro-apoptotic signaling pathways and leading to neu-
rodegeneration [27]. Ceramides have also been linked to oxidative stress and mitochondrial
dysfunction [28]. Alterations in the lipid raft, containing a large number of sterols (choles-
terol) and sphingolipids (sphingomyelin and glycosphingolipids), have been described as
being responsible for the proteolytic activities of α- or β-secretases on APP [29–31]. This
provides a strong rationale for hypothesizing that issues with membrane restructuring
may be an early cause of Aβ accumulation in the brain. Accordingly, APP trafficking
into or out of lipid rafts depends on the lipid composition [15,32]. In AD neurons, owing
to specific cellular signals, APP interacts with transducers or different effector proteins
and accumulates in lipid raft fractions, where β- and y-secretases are mostly located and
activate amyloidogenic processing [33–35]. Several studies have demonstrated that the dys-
regulation of biosynthesis, turnover, and remodeling of membrane sphingolipids promotes
β peptide production and aggregation [15]. The β peptides directly disrupt the integrity of
the lipid bilayer by interacting with sphingolipids [36].

In addition, alterations in the sphingolipid structure and composition affect phos-
phatase and tyrosine kinase activities [37,38], which are known to be altered in AD and
other neurodegenerative diseases [39]. Notably, Fyn tyrosine kinase, which belongs to
the Src family of protein tyrosine kinases (STKs), is an integral lipid raft protein widely
expressed in the brain [39,40]. It is hyperactivated in AD and promotes either APP phos-
phorylation on Tyr682 [41] or Tau phosphorylation on Tyr18 [42]. In contrast, a significant
reduction in plasma glutamic acid level was observed.

Glutamate is a non-essential amino acid that acts as an excitatory neurotransmitter
or GABA precursor. The role of glutamate in cognitive aging and AD remains unclear,
although its role in the regulation of learning and memory functions in the CNS is well
recognized [43,44]. Indeed, glutamatergic synapses appear to be compromised in the AD
brain, thus affecting cognition and behavior. A reduction in plasma glutamate levels was
previously reported [45] and was proposed as a peripheral marker to identify patients with
mild cognitive impairment (MCI) and AD [46]. A decrease in peripheral glutamate is likely
paralleled by the accumulation of glutamate in the brain, with consequent neurotoxicity due
to an increase in the entry of Ca2+ into the neurons [44]. Notably, Aβ peptides and oligomers
are neurotoxic because they directly bind to glutamate receptors and activate downstream
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signaling, ultimately causing hyperexcitability [47,48]. Consistently, the NMDA partial
antagonist, memantine, is believed to improve cognition, behavior, and global function in
subjects with AD by reducing glutamate activity in the brain. Decreased glutamate levels
have also been reported in the brains of patients with amnestic mild cognitive impairment
(MCI), by proton magnetic resonance spectroscopy in vivo imaging (MRSI) [49]. Lin
et al. reported higher L-glutamate levels in the blood of individuals with MCI and mild
or moderately severe AD than in controls. In contrast, the same group showed that D-
glutamate levels in the blood progressively decreased from the control to MCI, mild AD, and
late-phase AD [50]. This reduction suggests that, at least in a subgroup of patients with AD,
the pathogenic mechanism is characterized by an increased use of some ketogenic and/or
glucogenic amino acids as an energy substrate. The carbon skeletons of ketogenic and/or
glucogenic amino acids may be broken down into metabolites that enter the tricarboxylic
acid (TCA) cycle to produce energy. The observation of a possible upregulation of the
TCA cycle in neurodegenerative dementia, inferred from the marginal increase in several
intermediates of this cycle in the serum of patients [51,52], also substantiates our hypothesis.
Moreover, it is important to highlight that D-glutamate is involved in pathophysiological
processes in the brains of patients with AD [45]. This finding suggests that much work
needs to be conducted to elucidate the various roles of these D-amino acids in the onset and
progression of AD, as recent work has clearly shown that these compounds are distinct.

Investigating the lipidome is very attractive because of its high variability over time,
due to the different perturbations experienced by the human body. From an analytical
perspective, the most commonly used platforms are targeted LC-MS-based techniques.
High-throughput blood lipid profiling has provided insights into the crucial role of these
compounds in the pathophysiology of AD. Therefore, we strongly suggest that oleic acid,
arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid, dehydroepiandrosterone
sulfate, and cortisol should be monitored in future studies. An adequate daily intake of
unsaturated fatty acids, EPA (20:5 n–3) and DHA (22:6 n–3), is officially recommended
based on epidemiological results showing the beneficial role of these long-chain PUFAs n–3
in the prevention of cardiovascular and inflammatory diseases [53]. The parent fatty acid
ALA (18:3 n–3), found in vegetable oils such as linseed or rapeseed oil, is used by the human
body partly as an energy source and partly as a precursor of metabolites. However, the
degree of endogenous conversion appears to be unreliable and limited [54]. Most human
studies have shown that the conversion of high doses of ALA to EPA occurs, but to a limited
extent, whereas the conversion to DHA is severely limited. Indeed, rigorous studies with
radioisotopes have shown that in diets rich in saturated fats, the conversion to long-chain
metabolites are approximately 6% for EPA and 3.8% for DHA. In contrast, in a diet rich
in n–6 PUFA, this conversion was reduced by at least 40%. Therefore, it is reasonable to
observe an n–6/n–3 PUFA ratio ≤ 2/3. Restricted conversion to DHA can be critical, as
evidence has indicated that this long-chain metabolite has an autonomous function in the
brain, retina, and spermatozoa, where it is the most prominent fatty acid [55].

The main limitation of the present study was the small number of participants. An-
other general problem affecting AD metabolomic and lipidomic studies is the lack of
standardization of sampling or analytical methods, which makes it difficult to compare the
results between different studies and frequently results in conflicting outcomes. The harmo-
nization of such procedures could help scientists in this fundamental field of investigation.
Although some of our findings align well with those reported in other studies [46,55–57],
suggesting that metabolic dyshomeostasis of specific metabolites is a valuable signature of
AD, there is still a significant body of literature utilizing metabolomic approaches, in which
the majority of the data obtained differ depending on the patient population selected or
the detection procedure applied. Therefore, to gain a greater understanding of the changes
in the metabolic pathways in patients with AD, there is a need to increase the number of
studies on this topic, bringing all the information together and defining common altered
pathways, which might become AD signatures.
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4. Materials and Methods
4.1. Participants

The subjects were recruited from the Centre for Research and Training in Medicine of
Aging of the University of Molise. All subjects underwent a detailed evaluation including
a neurological examination, neuropsychological tests, and routine blood tests. Patients
with AD met the National Institute on Aging and the Alzheimer’s Association (NIA-AA)
diagnostic criteria for “probable AD, with a documented decline” [58]. They had a Mini-
Mental State Examination (MMSE) score of <24 and a Clinical Dementia Rating (CDR) of
>0.5. The patient underwent brain imaging to rule out other structural causes of dementia.
Subjects were classified as controls when no subjective cognitive complaint was detectable,
as well as when neuropsychological tests showed normal cognitive performance with
respect to age, sex, and education. The epidemiological factors of all the participants are
shown in Table 1.

4.2. Blood Sample Collection

Blood samples were collected between 8:00 and 8:30 a.m. after a 12 h overnight fast,
transferred into vacutainer tubes (Becton Dickinson, Milan, Italy), centrifuged at 2000 rpm
for 15 min, and stored at −80 ◦C until they were analyzed.

4.3. Sample Analysis by MxP Quant 500 Assay by Biocrates Life Sciences

All analyses were performed by the Biocrates service using the MxP Quant 500 kit
(Biocrates Life Sciences AG, Innsbruck, Austria), including the 630 metabolites.

The kit includes reagents, analytical standards, internal standards, quality control (QC)
samples containing expected levels of endogenous analytes, and sample extraction plates.

Briefly, 10 µL of each plasma sample from the patients and controls were extracted in
duplicates along the kit QCs and kit calibrator material by using the 96 well plate provided
with the kit for sample preparation and quantitative analysis of the metabolite profiles.
This device consists of inserts that have been impregnated with internal standards and a
predefined sample amount was added to the inserts. After a drying step of 30 min using
nitrogen, the derivatization step was performed using a 5% phenyl isothiocyanate (PITC)
solution for 1 hour. After another drying step, 300 µL of 5 mM methanolic ammonium
acetate was added as the extraction solvent, and the plate was shaken for 30 min, the
contents were filtered into a lower sandwich plate by centrifugation at 200× g for 2 min.
The sample extracts were diluted for subsequent analysis by mass spectrometry (MS), as
specified in the kit user manual.

One extract was analyzed to identify the polar metabolites, including amino acids
and related compounds, biogenic amines, fatty acids, bile acids, carbohydrates and related
derivatives, hormones, vitamins, indoles and derivatives, nucleobases and their derivatives,
using liquid chromatography (LC) coupled with triple quadrupole mass spectrometry
(QQQ MS). The other apolar extract was analyzed for lipids including acylcarnitines,
phosphatidylcholines (PC, including lyso-PC), sphingomyelins, cholesteryl esters, using
flow injection analysis and QQQ MS detection. The concentrations were calculated using
appropriate mass spectrometry software (Sciex-Analyst 1.7.2) and a quality control process
was conducted with Biocrates MetIDQTM software. Metabolite concentrations, in µM, were
provided by Biocrates Life Sciences as an Excel file (Table S1).

Further details on the analytical protocol used for the metabolite profiling can be found
in patents EP1897014B1 (https://patentimages.storage.googleapis.com/ee/25/76/af35210
654bdc8/EP1897014B1.pdf) and EP1875401B1 (https://patentimages.storage.googleapis.
com/78/a1/77/4677d9befb2d3e/EP1875401B1.pdf).

4.4. Data Analysis

Multivariate statistical analysis, metabolite set enrichment analysis (MSEA), and path-
way analysis were performed using the freely available online tool MetaboAnalyst 5.0
(www.metaboanalyst.ca) [59]. The volcano plot describes the up- and down regulation

https://patentimages.storage.googleapis.com/ee/25/76/af35210654bdc8/EP1897014B1.pdf
https://patentimages.storage.googleapis.com/ee/25/76/af35210654bdc8/EP1897014B1.pdf
https://patentimages.storage.googleapis.com/78/a1/77/4677d9befb2d3e/EP1875401B1.pdf
https://patentimages.storage.googleapis.com/78/a1/77/4677d9befb2d3e/EP1875401B1.pdf
www.metaboanalyst.ca
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of metabolites by using the fold-change (FC) as a ratio between the AD and control sub-
jects, using a criterion of |log2FC| > 0.0. The significant level was selected as the p value
threshold < 0.05 transformed as follows: |−log10(p)|. For PLS-DA analysis, the data
were normalized using the median, square root transformation, and auto scaled. Only
features with VIP > 1.7 were selected. The VIP scores represent the variable’s importance
in the PLS-DA model, they summarize the contribution a variable makes to the model
in the classification of the two groups: control and AD. Both metabolite set enrichment
analysis (MSEA) and pathway analysis were performed using the two modules available
in MetaboAnalyst 5.0. The MSEA is used to identify biologically meaningful patterns that
are significantly enriched in quantitative metabolomic data. In conventional approaches,
metabolites are evaluated individually for their significance under study conditions. Com-
pounds that passed certain significance levels were then combined to determine if any
meaningful patterns could be discerned. In contrast, the MSEA directly investigates a set
of functionally related metabolites without preselecting compounds based on an arbitrary
cut-off threshold. It has the potential to identify subtle but consistent changes among a
group of related compounds that may go undetected using conventional approaches. The
algorithm selected for the MSEA analysis was quantitative enrichment analysis (QEA).
The pathway analysis module combines powerful pathway enrichment analysis results
with pathway topology analysis to identify the most relevant pathways involved in the
conditions under study. Pathway enrichment analysis uses compound concentration values
compared to the compound lists used in the over-representation analysis. The KEGG
library was selected for pathway analysis. The significance levels were selected at 0.05 for
the p-value and 0.15 for the FDR for both the MSEA and pathway analysis.

5. Conclusions

The targeted mass spectrometry used in this study showed that approximately 25 metabo-
lites were dysregulated in patients with AD compared with the controls. Glycerophospho-
lipids and ceramides were upregulated, while glutamic acid, other phospho-lipids, and
sphingolipids were downregulated. Patients with AD also showed dysregulation of at least
five pathways involved in the metabolism of polar compounds. To our knowledge, this is the
first time that a kit including 630 metabolites was used in the blood of patients with AD. The
obtained results could be of help in understanding the metabolic pathways involved in the
onset and progression of AD.

Despite some limitations related to the small sample size, this study provides an
interesting picture on the use of dysregulations in the lipidomic profile as blood signatures
for patients with AD. This paves the way for the possibility of stratifying patients based on
changes in metabolic/lipidic blood signatures, thus paving the way for the management of
the disease using medications that have been previously used for other pathologies. Indeed,
the identification of AD-related blood signatures may be used as an initial diagnostic
criterion that can be further analyzed with other examinations, such as PET, neuroimaging,
and cerebrospinal fluid analysis of Aβ peptides.
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