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Abstract: In this study, the intrinsic surface-enhanced Raman spectroscopy (SERS)-based approach
coupled with chemometric analysis was adopted to establish the biochemical fingerprint of SARS-
CoV-2 infected human fluids: saliva and nasopharyngeal swabs. The numerical methods, partial least
squares discriminant analysis (PLS-DA) and support vector machine classification (SVMC), facilitated
the spectroscopic identification of the viral-specific molecules, molecular changes, and distinct
physiological signatures of pathetically altered fluids. Next, we developed the reliable classification
model for fast identification and differentiation of negative CoV(−) and positive CoV(+) groups. The
PLS-DA calibration model was described by a great statistical value—RMSEC and RMSECV below
0.3 and R2

cal at the level of ~0.7 for both type of body fluids. The calculated diagnostic parameters
for SVMC and PLS-DA at the stage of preparation of calibration model and classification of external
samples simulating real diagnostic conditions evinced high accuracy, sensitivity, and specificity
for saliva specimens. Here, we outlined the significant role of neopterin as the biomarker in the
prediction of COVID-19 infection from nasopharyngeal swab. We also observed the increased content
of nucleic acids of DNA/RNA and proteins such as ferritin as well as specific immunoglobulins. The
developed SERS for SARS-CoV-2 approach allows: (i) fast, simple and non-invasive collection of
analyzed specimens; (ii) fast response with the time of analysis below 15 min, and (iii) sensitive and
reliable SERS-based screening of COVID-19 disease.

Keywords: SARS-CoV-2; saliva; nasopharyngeal swabs; surface-enhanced Raman spectroscopy;
chemometric analysis

1. Introduction

The pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2), burdens the economy and the healthcare
around the globe. This disease was first reported in December 2019 in Wuhan, China, and
resulted in more than 6,000,000 deaths (as of May 2023) [1].

The fast human-to-human spread of COVID-19 infection across the world is related to
(i) its highly infectious properties, (ii) easy transmission through respiratory droplets (saliva,
nasal discharge) [2] (iii) direct contact routes via oral, nasal, eye mucous membrane, (iv)
large number of asymptomatic cases [3–6], and (v) high mutation rates of viral RNA [7–9].
Nowadays, mainly symptomatic patients are tested and we still do not catch a large number
of people who pass the infection asymptomatically and may infect others. Hatching a
network of contacts is crucial with the British variant of SARS-CoV-2, which is much more
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contagious [10–12]. Developing the new testing strategies are central to gather information
about the presence and propagation of SARS-CoV-2 in the population, understand the
COVID-19 disease at different stages, and to monitor the effectiveness of vaccinations in
order to estimate the prevalence of immunity (population surveillance) [13–16]. Typically,
two types of tests were used for detection of COVID-19: (1) molecular diagnostic test that
detects the presence of the virus (viral genetic material (RNA) in a patient sample) and
(2) serologic test that detects the immune response to the virus (antibodies against various
SARS-CoV-2 proteins (including the spike protein, nucleocapsid protein, and receptor-
binding domain) [17–23]. The first and most common test for detection of SARS-CoV-2
infection is based on real time reverse transcription polymerase chain reaction (RT-PCR)
on nasopharyngeal swabs [24]. Although this technique possesses advantages, including
very high sensitivity and specificity, the false negative and false positive results are also
possible [25–28]. According to WHO, a number of factors could lead to an incorrect result
during RT-PCR analysis, caused by the technical reasons inherent in the test, virus mutation
or PCR inhibition [29]. Moreover, this method is time-consuming (the results are received
after at least few hours and, in some cases, more than a 24 h period), requires the purchase
of expensive reagents, and is a labor-intensive procedure. In consequence, the number of
tests performed per day is strongly limited. The serologic methods (e.g., chemiluminescent
and enzyme-linked immunosorbent assays, ELISA) are based on the detection of antibodies
engaged against the virus. As the knowledge on SARS-CoV-2 antibody kinetics is limited,
the optimization of immune-response based tests and proper interpretation of readings
is still challenging. Therefore, the immunological methods are not applicable for early
COVID-19 diagnosis.

New methods enabling fast and reliable detection of SARS-CoV-2 are extremely de-
sired. Surface-enhanced Raman spectroscopy (SERS) can be successfully used for such
detection, as it is very sensitive technique which can be performed in a label-free man-
ner. The SERS technique enhances the Raman signal when analyzed molecules are close
to metallic nanostructure, roughened surface or nanoparticles, usually silver, gold, and
copper [30]. According to scientific reports, there are two phenomena contributing to total
enhancement of normal Raman signal: (i) electromagnetic connected with the excitation
of localized surface plasmons; (ii) chemicals which arise due to charge transfer between
analyzed molecules and the surface [31–33]. High enhancement (typically 106–108) make
the SERS a promising method for single molecule detection with very high specificity and
sensitivity which can be applied in pharmacology, chemistry, medicine, and for imaging
biological systems, e.g., viruses, yeasts, bacteria, and cancer cells [34–38]. Interestingly,
SERS can be used to study RNA, e.g., to identify and quantify AS genes [39], to detect four
different RNA species from plant [40] and also to detect the effect of T-DNA insertion on
mRNA with high sensitivity and precision [41]. The results of the SERS measurements can
be obtained in a few minutes and no additional reagents are needed. Currently, the complex
spectroscopic responses from biological specimens, especially from clinical samples, are
analyzed and resolved via chemometric methods and artificial intelligence. Such features,
together with the highly sensitive and selective nanoplasmonic SERS substrates are very
advantageous in COVID-19 detection. Carlomagno et al. demonstrated that saliva can be
used for discrimination between patients with current and past infection of SARS-CoV-2
and the uninfected ones [42]. The similar studies on saliva samples was performed by
Ember et al., who obtained the specificity and sensitivity at the level of 84% and 64%, re-
spectively [43]. Karunakaran et al., using SVM, obtained 95% accuracy in the differentiation
between patients with and without COVID-19 [44]. The SERS spectra of nasopharyngeal
swabs (NHS) was also analyzed by Yang et al., but no significant differences between
infected and noninfected group of NHS samples was observed [45].

In laboratory practice, to evaluate patients with suspected respiratory infection caused
by viruses and bacteria, mainly RT-PCR and immune-based recognition assays are applied.
In the present study, we developed a biosensing platform based on femtosecond laser-
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modified silicon integrated with a small, portable Raman spectrometer for fast, label-free,
cheap and reliable diagnosis of COVID-19 from nasopharyngeal swab and saliva.

The clinical application of SERS-based biosensor on solid nanoplasmonic platform
for COVID-19 diagnosis was not yet presented. Considering the complexity of spectral
images of tested biological specimens additionally enriched by the expression of the po-
tential COVID-19 biomarkers such as ACE2, immunoglobulins G, M, and A, microRNAs,
adenosine deaminase [46], multivariate analysis approaches were applied to record SERS
datasets. We utilized supervised methods, such as PLS-DA, PCA-LDA, and SVMC, to
screen important spectroscopic features reflecting the main biochemical differences between
infected and uninfected samples. In addition, these methods offer the classification of new
samples based on a previously created and optimized calibration model. Therefore, it
becomes possible to identify the origin of a sample and determine its class membership
(CoV(+) or CoV(−)) in a rapid and automated manner. This type of solution would improve
point-of-care diagnostics [47,48].

The clinical sensitivity of SARS-CoV-2 detection varies in different types of clinical
specimens [49] and, thus, it is very important not only to develop a novel detection ap-
proach, but also to examine its diagnostic accuracy for different clinically acceptable testing
specimens. We performed a perspective investigations to: (i) study the changes in bio-
chemical composition of saliva and nasopharyngeal swabs associated with viral infection;
(ii) indicate the SERS-biomarkers for COVID-19 immunopathology controlling and detec-
tion; (iii) create the classification model (with validation stage) to develop the automated
procedure of classification of patient’s samples into two groups CoV(+) and CoV(−) using
chemometric analysis, and (iv) calculate the sensitivity of SARS-CoV-2 detection from both
saliva and nasopharyngeal specimens.

2. Results and Discussion

For the SERS studies, the saliva and nasopharyngeal swabs samples were included
from patients being tested for SARS-CoV-2 by the qRT-PCR method, according to the De-
partment of Clinical Genetics, Medical University of Łódź guidelines. Scheme 1 illustrates
the subsequent operation steps for the SERS-based COVID-19 diagnosis.
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typically 2 µL, saliva and nasopharyngeal swabs onto the SERS-active platform. (C) Investigating
dried samples using a portable Bruker BRAVO spectrometer. (D) Automated classification of the
samples into two groups CoV(+) and CoV(−) using supervised chemometric methods.

2.1. Salivary SERS Fingerprint of COVID-19

We performed SERS investigations of saliva samples taken from 149 human donors
(72 participants tested positive and 77 participants tested negative by the PCR method) on
Si/Ag SERS platforms. The platforms were recently developed and optimized in the context
of biological and medical samples in our group [50]. The averaged SERS spectra with the
variation of the saliva spectra for each of the two groups CoV(+) and CoV(−) are presented
as standard deviation SD (ribbon-like plots) in Figure 1A. The differences between the
spectra of different participants and points are among 15–39% for both CoV(+) and CoV(−)
data. The observed SD are related to the patient-specific features of the SERS spectra within
the same group and result from some individual factors, i.e., the stage of disease or the
organism’s response to the disease, and may manifest in different ways (the spectrum
may be devoid of some bands). In order to more deeply analyze the observed spectral
variations, as well as the reproducibility of spectra, Figure S1 presents averaged spectra
for saliva taken from five patients infected and five patients non-infected with COVID-19
(representing these two considered groups CoV(+) and CoV(−)). All recorded 15 spectra for
each sample (marked as red for CoV(+), and green for CoV(−)) were superimposed along
with the corresponding averaged spectrum (marked as black). All the spectra for each
patient within the same group revealed similar bands, whereas the differences referred
to the relative intensities between them. For negative saliva subject CoV(−), the most
characteristics bands were observed at 691, 724, 853, 878, 1002, 1047, 1128, 1270, 1325, 1452,
1590, 1690, and 1792 cm−1. Among the most intense bands: (i) 724 cm−1 corresponds
to O–O stretching vibration in oxygenated proteins, glycoproteins such as mucin, and to
ring breathing mode of tryptophan, (ii) 1325 cm−1 is characteristic to amide III band in
proteins and/or DNA (G and A) mode, (iii) 1452 cm−1 is assigned to the C-H stretching of
glycoproteins including mucin, (iv) 1585 cm−1 is associated with ring and C=C vibrations
in tyrosine and phenylalanine.

The spectral response for CoV(+) saliva revealed similar features located at the same
Raman frequencies, yet some differences associated with their relative intensities can be
noted. Spectral changes may reflect the biochemical composition and provide information
about interactions between components. The intensity ratio of the characteristic tyrosine
doubled at 828 and 853 cm−1, indicating the nature of tyrosine residues [51] is changing
upon SARS-CoV-2 infection. In the SERS spectra of CoV(−) saliva samples, the intensity
ratio of 853/828 cm−1 equaled 4.8. The intensity of the 853 cm−1 band significantly
decreased for the CoV(+), bringing the intensity ratio 853/828 cm−1 down to a value of 0.8,
which could be explained by some specific interaction between tyrosine residues that now
are hydrogen-bonded acceptors with viral proteins (spike glycoproteins) or other expressed
molecules (ACE2 receptor) [52] and immunity proteins (IgA, IgM, IgG) [53].

The SERS fingerprint of SARS-CoV-2-infected saliva subject (CoV+) was characterized
by the bands at 654, 720, 1320, 1443 cm−1, which can be assigned to some specific oscillations
in methionine (e.g., C-S stretching and CH3, CH2 deformation) or methionine adenosyl
transferase (enzyme which converts methionine to S-adenosylmethionine) [54]. The inten-
sity ratio of the individual bands to the band at 1002 cm−1 (I654/I1002, I720/I1002, I1320/I1002,
I1445/I1002) was always higher for CoV(+) samples (Table S1), yielding information about
elevated production of methionine during infection. Such a conclusion can be supported by
two phenomena that were discovered so far. First, S-adenosylmethionine, in the presence
of nonstructural proteins (e.g., nsp10, nsp14, and nsp16) of SARS-CoV-2 was involved as a
methyl donor in the process of viral RNA cap methylation (transferring a methyl group
to the viral genome). This process was essential for virus replication, translation, and
continued survival in host cells and the efficiency of S-adenosylmethionine synthesis is
strictly correlated with the level of methionine [55]. If the concentration of methionine is
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too low, the viral methyltransferases reaction will be blocked. The reduced ability of the
virus to proper replication, ultimately impinges on degradation of viral genomes. Second,
during SARS-CoV-2 infection, T-cells and macrophages are over-activated, resulting in a
huge increase in the level of cytokines (IL-1β, IL-6, TNF-α) and proteins associated with
the macrophage. Upon this activation the T-cells also have an increased requirement for
methionine [56]. The presence of T cells itself can be manifested by the 1094, 1325, 1372,
1452, and 1690 cm−1 bands, where their increased intensity ratios, with respect to the band
at 1002 cm−1 for CoV(+) saliva, only prove the mentioned overactivation.
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Figure 1. Averaged SERS spectra of saliva with standard deviation SD in the range of 15–39% (A),
and PLS-DA results in the form of score plots (B) and weighted regression coefficients (C) calculated
for 77 CoV(−) and 72 CoV(+) saliva samples. On the score plots each dot represents single spectrum.
Green dots refer to CoV(−) samples while red dots refer to CoV(+).

Ferritin is a protein that stores iron and releases it during cell proliferation or metabolic
renewal. The study of ferritin levels is significant from the point of view of its deficiency
as well as excess which implicates various diseases (e.g., anemia) [57]. Recent studies
showed that salivary ferritin levels can rise significantly during the course of COVID-19
infection [58]. Immunoglobulins (e.g., IgG) are produced by cells in organisms of immune
system in a response to some external agent (bacteria, viruses, protozoans). These proteins,
having the ability to recognize and specific bind to their antigens, lead to the inactivation
of microorganisms [59]. In these studies, the observed intensified bands in the region
1200–1300 cm−1 and the bands at 1325 cm−1, 1450 cm−1, 1690 cm−1 coming from amide
III, amide I of proteins may reflect the increased level of ferritin [60] as well as specific
immunoglobulins [61] in CoV(+) saliva.

In the SERS technique, bands can be assigned in an approximate way, as some of them
have multiple origins, e.g., the previously mentioned bands at 1094, 1242, 1325 cm−1 can
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additionally arise because of individual (PO2
−, phosphodiester group, and purine bases

of nucleic acids) highly associated with DNA/RNA bases. Their increased intensity for
CoV(+) saliva can be explained by the multiplication of genetic material during infection.
The proposed band assignments of the SERS spectra are presented in Table 1 and the SERS
spectra of the most prominent amino acids and peptides are shown in Figures S2 and S3.

Table 1. Tentative assignments for the main bands observed in the SERS spectra of SARS-CoV-2
infected CoV(+) and healthy CoV(−) subjects [51,60,62–72].

Sample

AssignmentSaliva Nasopharyngeal Swabs

CoV(−) CoV(+) CoV(−) CoV(+)

622 622 623 623 adenine, C-C twisting mode of phenylalanine (protein)

649 654 654 654 C-S stretching vibration in methionine
C-C twisting mode of tyrosine

- - - 679 Ring breathing modes in the DNA bases,
G (ring breathing modes in the DNA bases) neopterin

691 - - - δ(O–C=O) Creatinine, cytosine

724 724 724 724
O-O stretching vibration in oxygenated proteins, glycoproteins such as

mucines, ring breathing mode of tryptophan (protein assignment),
C-N head group choline (H3C)3N+ (lipid assignment)

828 828 828 828 Ring breathing mode of tyrosine, Transferrin (Tyrosine, H-bonding)

853 853 853 853 Ring breathing mode of tyrosine, Transferrin (Tyrosine, H-bonding)

878 878 878 878
Proline, valine, glycine, tryptophan, glutamate or ν (C–C)
Hydro-oxyproline, Transferrin (Tryptophan, H-bonding)

or νsP(OH)2 of phosphate

925 925 925 925 C-C stretching proline ring, carboxylates including
glucose and glycogen

956 956 956 956 hydroxyapatite, xanthine
proline, valine

1002 1002 1002 1002
aromatic ring breathing of phenylalanine

phenylalanine in Lysozyme, lactoferrin, albumin,
Transferrin (Phenylalanine)

1030 1030 - - C-H in-plane bending mode of phenylalanine
Phenylalanine in Lysozyme, lactoferrin, albumin

1047 - 1046 1046 C-O and C-N stretching in proteins, Glycogen C–CH3 vibration

1094 1094 1094 1094 Symmetric PO2
− stretching vibration of the DNA backbone

T cells

1128 1128 1128 1128 C-O stretching (carbohydrates), C-N stretching (proteins)

1172 1172 1172 1172 bending C-H tyrosine, Transferrin (Tyrosine, CH3)

1207 1207 1207 1207
tryptophan and phenylalanine v(C-C6H5) mode,

Hydroxyproline, tyrosine
Tryptophan in Lysozyme, lactoferrin, albumin

1243 1243 1243 1243
phosphodiester group associate with nucleic acid

B-sheet (the most common secondary structures in proteins,
e.g., alfa amylase)

1270 1270 1270 1270

Stretching C-N, bending N-H—amide III band in proteins
Transferrin (Tyrosine/α-helix)

α-helix (the most common secondary structures in proteins,
e.g., alfa amylase)
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Table 1. Cont.

Sample

AssignmentSaliva Nasopharyngeal Swabs

CoV(−) CoV(+) CoV(−) CoV(+)

1325 1325 1325 1325
amide III band in proteins

CH3CH2 wagging mode in purine bases of nucleic acids
T cells

1372 1372 1372 1372
Lipids, proteins (tryptophan)

T, A, G (ring breathing modes of the DNA/RNA bases)
T cells

1402 - - - Bending of methyl groups in proteins

1452 1452 1452 1452

the C-H stretching of glycoproteins including mucines or Hydrocarbon
chain of lipid, Triglycerides CH3 Deformation of lipids

CH2, CH3 bend of tryptophan
Tryptophan in Lysozyme, lactoferrin, albumin

T cells

1550 1550 1553 1553 υ(CN) and δ(NH) amide II
ν (C=C) tryptophan

1604 1590 1585 1585
phenylalanine, tryptophan, hydroxyproline, hypoxanthine
C=C in-plane bending mode of phenylalanine and tyrosine

Cytosine (NH2)

1690 1690 1680 1680 Amide I of proteins (Lysozyme, lactoferrin, albumin)

2.1.1. The Classification and Prediction Methods for Diagnosis COVID-19 in Saliva Samples

Spectral data are particularly difficult to analyze empirically, especially when there
are subtle differences between them. Thus, chemometric methods can extract that part of
the spectral information which differentiates the analyzed groups.

In the present work, the supervised and classification methods such as PLS-DA,
PCA-LDA, SVMC were used to (i) create and develop a calibration model, (ii) check its
classification abilities (validation stage), and (iii) extract the spectral information that is
indicative of COVID-19 disease. The analyzed biological systems (saliva and nasopha-
ryngeal swabs) are characterized by enormous biochemical complexity and variability
from patient to patient. In addition, the SERS substrates have so-called ‘hot-spots’ that are
responsible for generating the SERS signal. Therefore, different qualitative and quantitative
distribution of the biomolecules at these sites can alter the SERS signal in several ways.
Consequently, the chemometric analysis (creation of the calibration model, the external
validation) was performed and considered at the level of a single spectrum. For each
mentioned method (PLS-DA, PCA-LDA, SVMC), the calibration model was built from
72 CoV(+) and 77 CoV(−) saliva samples, and ten CoV(+) and ten CoV(−) saliva samples
were then used to check classification abilities and mimic real diagnostic conditions. Each
sample was measured in 15-points mapping mode, the total number of 2220 and 300 spectra
were used at the stage of calibration and validation, respectively. Based on the results, im-
portant parameters (accuracy, sensitivity, specificity) that describe every diagnosis method
were also determined according to the following formulas:

Accuracy =
TP + TN

TP + TN + FP + FN
·100%, (1)

Sensitivity =
TP

TP + FN
·100%, (2)
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Speci f icity =
TN

FP + TN
·100%, (3)

where: TP—True positive, FP—false positive, TN—true negative, FN—false negative.

2.1.2. Prediction by Means of PLS-DA Analysis

In the PLS-DA analysis, all spectral information in the range of 500–1900 cm−1 created
the X matrix (explanatory variables), while the corresponding Y matrix values (e.g., ‘1’
stands for CoV(+) and ‘0’ stands for CoV(−)) are response variables. As the threshold
line that effectively separated these two classes equaled 0.5, the predictive values >0.5
mean that the sample belonged to the CoV(+) group, while the value <0.5 means that the
sample belonged to the CoV(−) group. The calibration model was established with the
use of the non-linear iterative partial least square (NIPALS) algorithm and random cross
validation (number of segments equal to 10). All the statistical parameters that describe
the quality of calculations at different stages are gathered in Table S2. Given the enormous
biochemical variation in clinical samples resulting from variety of individual factors, the
model was characterized by a relatively high R2 and low RMSE values for calibration and
cross validation. The calculated number of latent variables indicates that 11 of them can
sufficiently explain the whole spectral variance within the analyzed trained data. The score
plots (Figure 1B) in 2D (above) and 3D dimension (below) for the three most influential
factors show that two classes of CoV(−) and CoV(+) saliva samples were largely separated
from each other to form clusters. The clusters resulted from the differences between the
samples—from the same person it formed smaller clusters, later everything consists of a
larger one, determining CoV(+) and CoV(−). All these variations in Raman spectra, as
was already mentioned, were due to specific immune responses to this particular disorder.
On the other hand, overlapping of these classes to some extent can be elucidated by the
inaccuracy of PCR technique (false negative or false positive results). The first latent
variable (LV1) explained 40% of the variance in the block Y with 22% of the spectral data
(X matrix) while the LV2 explained 5% with 21% of the data within X matrix. The weighted
regression coefficients that summarized the relationship between predictors and responses
calculated for the approximation of three components (F-3, CoV(−) response) is presented
in Figure 1C. This plot revealed variables corresponding to the main Raman bands observed
on the averaged spectra (Figure 1A). A positive value of coefficient shows a positive link
with the response, and a negative coefficient shows a negative link. Hence, saliva variables
such as: 691, 858, 1002, 1047, 1132, 1605, 1785 cm−1 had positive coefficients and 654, 721,
956, 1094, 1238, 1568, 1698, cm−1 had a negative coefficient. The variables that had the
largest value of regression coefficient play a significant role in a regression model and
for saliva, it was 721 cm−1 with 0.05 weight and also 691, 1605 cm−1 (0.03 weight), and
1094 cm−1 (0.02 weight).

The loading plot that can be calculated for particular association and along the specific
factor recognizes variables that affect the separation between the analyzed classes to a
varying degree—those with the highest weight being the most influential.

For the saliva dataset, all the eleven factors presented the contribution of different
variables with different weights (Figure S4a). Factor-1 showed that most information
indicates that the bands with positive values located at 690, 854, 1602 cm−1 were correlated
with the samples on the positive sides of the score plot being recognized as CoV(−) and
these with negative values 1452, 1695 cm−1 were characteristic for CoV(+) samples. For
Factor-2, the most significant variable was 690 cm−1 and 1458 cm−1, and for Factor-3,
721 cm−1 and 1602 cm−1. The rest loading plots revealed the importance of different bands
but at the diminished level of explained information (see Figure S4a).

As was mentioned above, in the step of calibration, we used 149 saliva samples—
77 CoV(−) and 72 CoV(+) and then 20 external data sets—ten CoV(+) and ten CoV(−) were
used to test the predictive abilities of such prepared calibration model. All the diagnostic
parameters were calculated at calibration as well as validation stage and referred to the
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single patient. In order to present the results of the analysis in an explicit way, the calculated
predictive values and standard deviations for each spectrum were averaged within the
sample (validation samples in Table S3). Hence, at the stage of calibration, as most samples
were correctly classified, the parameters were as follows: accuracy 93%, sensitivity 97%, and
specificity 90%. For most of samples, the predictive values were close to 1 or 0 depending
on the origin of the sample (Table S3). For the three samples stated as CoV(−), predictive
values exceeded the threshold line—0.5 meaning that they are more likely to be CoV(+)
rather than CoV(−). Only one CoV(+) sample (number 4) had an incorrect predictive value.
Therefore, the parameters were as follows: accuracy 80%, sensitivity 90%, and specificity
70% (Table 2). For the majority of samples, the values of standard deviation (STD) were in
the range 0.16–0.34.

Table 2. Comparison of a diagnostic parameter (sensitivity, specificity, accuracy) at calibration and
validation stage (C—calibration, V—validation) of PLS-DA, PCA-LDA, and SVMC for saliva and
nasopharyngeal swabs.

Type of Sample Numerical
Analysis

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Number of
Samples

Saliva

PLS-DA
C: 97.0 90.0 93.0 149

V: 90.0 70.0 80.0 20

PCA-LDA
C: 97.0 79.0 88.0 149

V: 100.0 60.0 80.0 20

SVMC
C: 100.0 100.0 100.0 149

V: 100.0 80.0 90.0 20

Nasopharyngeal
swabs

PLS-DA
C: 100.0 96.0 98.0 104

V: 63.0 75.0 69.0 16

PCA-LDA
C: 96.0 83.0 89.0 104

V: 63.0 75.0 69.0 16

SVMC
C: 100.0 100.0 100.0 104

V: 88.0 63.0 75.0 16

2.1.3. Classification Results of PCA-LDA and SVMC Analysis

The PCA-LDA analysis was preceded by the PCA calculation to reduce the dimen-
sionality of spectral data. The first 12 principal components explaining 98% of spectral
variance were used as input data for future LDA investigations. Figure S5a demonstrates
the PCA-LDA discrimination plot for the CoV(+) and CoV(−) classes of the calibrated
model. All samples are displayed and color-coded by class where red dots and blue dots
represents CoV(+) and CoV(−) samples, respectively. These two exes relate to both groups
and samples that belong to a given class were found to lie close to the value of zero of a
given class. The quadratic algorithm that best described the spectral differences among
trained data gave an 89% accuracy at the level of single spectrum. The determination
of diagnostic parameters was carried out in the stage of calibration and in the stage of
validation (with a special care that they refer to a single patient, not a single spectrum).
The decision on assigning an appropriate sample to a particular class was made based on
majority of spectra assigned to the particular class, so according to the formula X = n + 1
(where n is the number of spectra belonging to the particular class). Consequently, the
created PCA-LDA calibration model provided an accuracy of 88%, a sensitivity of 97%, and
a specificity of 79%, with respect to the total of 149 saliva samples (Table 2). The validation
with the use of external samples was aimed at determining how such a prepared model
would work in real diagnostic conditions. In order to deviate from suggestions and provide
conditions that were as close to the real ones as possible, all information about the origin of
a sample was delivered after measurements. The results of classification at the level of a
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single spectrum and the final response are summarized in Table S4. PCA-LDA classified
ten out of ten CoV(+) and six out of ten CoV(−) saliva samples, giving the accuracy 80%,
sensitivity 100%, and specificity 60%.

SVMC calculations were performed with the use of Polynomial Kernel function with
degree of three and cross validation with ten segments. The parameters were selected in
such a way as to ensure the best accuracy of the calibrated model and, thus, to prevent
overfitting. Hence, under the conditions of C = 0.1, γ = 0.1, the model provided 100% of
the training and validation accuracy calculated at the level of a single spectrum. Therefore,
the diagnostic parameters for the analysis of a single patient were: 100% sensitivity, 100%
specificity, and 100% accuracy. At the stage of external validation, SVMC successfully recog-
nized more samples than PLS-DA and only two of ten CoV(−) samples were misclassified
(accuracy 90%, sensitivity 100%, and specificity 80%).

The obtained results demonstrate that SERS, supported by all considered methods,
is promising and can be successfully applied for discrimination between CoV(+) and
CoV(−) saliva. Taking into consideration the values of diagnostic parameters (see Table 2
for comparison), SVMC seems to be the best suitable method, as it provides the highest
sensitivity, specificity and accuracy at the stage of calibration and validation. While creating
calibration model, PLS-DA also correctly recognized a huge number of samples that is
indicated by values accuracy 93%, sensitivity 97%, specificity 90%. Comparing PCA-LDA
vs. PLS-DA at the stage of classification external samples, PCA-LDA can provide higher
sensitivity and lower specificity while the accuracy of both methods remains the same.
Therefore, based on the presented data, SVMC is more favorable model for saliva CoV(+)
and CoV(−) discrimination.

2.2. Nasopharyngeal SERS Fingerprint of COVID-19

A nasopharyngeal swab is used to diagnose SARS-CoV-2 infection using mainly the
PCR method [73]. The nasopharyngeal swab is a complex mixture of lipids (phosphatidyl-
choline), proteins (mostly surfactant proteins) that derive mainly from submucous glands,
goblet cells, and transepithelial ion and water transport. Cytokines that play a significant
role in airway disease can also make a contribution. The presence of some nonpathogenic
and pathogenic bacteria (S. pneumoniae, H. influenza, or M. catarrhalis) were also proved.
Several different upper and lower respiratory tract viruses (e.g., rhinovirus, adenovirus,
influenza, respiratory syncytial virus (RSV), human parainfluenza viruses (HPIV)) can
be detected through nasopharyngeal swabs [74,75]. However, the nasopharyngeal swab
is less of a chemically complex matrix than saliva; therefore, its applicability as tasting
specimen in label-free configuration of SERS analysis is advisable. The protein amount in
nasopharyngeal swab is lower in comparison to saliva and blood. We expect that quan-
titative and qualitative changes of various proteins in naso-oropharyngeal samples of
SARS-CoV-2-infected patients would likely be related with viral associated proteins that
manage the host antiviral protection system. Clinical and experimental studies indicated
an accumulation of saturated and unsaturated fatty acids and phospholipids and increased
concentration of immune markers such as the IL-6 and CXCL10 cytokines [76,77].

Figure 2A presents the nasopharyngeal swab SERS spectra together with SD analysis
of the whole biochemical pattern of two considered experimental groups: CoV(+) and
CoV(−). We detected a significant spectroscopic pattern in the nasopharyngeal swab of
SARS-CoV-2-positive participants in comparison to SARS-CoV-2-negative participants. In
both CoV(+) and CoV(−), the strong SERS bands located at 724, 1002, 1045, 1330, 1452,
1590, and 1680 cm−1 can be consistently observed. We also observed distinct spectral
differences in the 680–950 cm−1 regions. In the SERS spectra of CoV(+) nasopharyngeal
samples, a new band appeared at 688 cm−1 that can be assigned to neopterin as a marker
band for disease severity; one also observed an increase in the intensity of the band at
925 cm−1 assigned to carboxylates and compounds with proline rings [78,79]. Neopterin is
the pteridine derivative containing 2-amino, 4-oxo, pyrimidyno-pyrazino ring produced
by human monocytes and macrophages after activation by interferon-gamma (IFN-γ).
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Neopterin is known and utilized as the inflammatory marker of the cell-mediated immune
response during viral [80] and bacterial infections [79] and in a variety of diseases [81–83].
Neopterin level usually gradually increases in the beginning of any infections, indicating,
so called, a productive infection. For COVID-19, it was found that neopterin had elevated
concentrations (>10 nmol/L) within 9 days after the onset [84]. In the SERS spectra, the
appearance of a band corresponding to neopterin provides information about the body’s
early immune response to the SARS-CoV-2 virus attack. So far, there are only few reviews
describing the significance of this immunomarker in the macrophage activation syndrome
associated with SARS-CoV-2 infection [78]. The published data [85] indicate the importance
of neopterin level, as it was found that infected patients with high level of neopterin
helps to identifying patients at risk of a severe disease course [86]. Our spectral data
indicate the formation and accretion of neopterin in the viral infected subject manifested
by the appearance of the bands at 688 and 925 cm−1 mentioned above. To the best of
our knowledge, for the first time, we recognized in the SERS spectra the contribution of
vibration modes of this macrophage activation marker as the immunopathological response
to SARS-CoV-2 infection. It is also crucial to understand the difference in neopterin levels
between saliva and nasopharyngeal swabs. However, the immunopathology of COVID-19,
including the role of neopterin, remains uncertain and further studies need to be conducted.
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Figure 2. Averaged SERS spectra of nasopharyngeal swabs with standard deviation SD in the range
of 15–39% (A), and PLS-DA results in the form of score plots (B) and weighted regression coefficients
(C) calculated for 53 CoV(−) and 51 CoV(+) nasopharyngeal swabs. On the score plots, each dot
represents a single spectrum. Green dots refer to CoV(−) samples, while red dots refer to CoV(+).
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In order to analyze the mean intensity of the peaks between the two groups, the
intensities of some bands were analyzed in relation to the intensity of the band at 1330 cm−1

(this band has the constant intensity for CoV(−) and CoV(+) averaged spectra). The
calculated intensity ratio of the bands at 654 cm−1, 724 cm−1and 1445 cm−1 are shown
in Table S5. As can be seen, the relative spectral intensity of the bands at 724 cm−1 to
1455 cm−1 showed efficacy in the classification of the two types of samples: for CoV(+),
the intensity ratio I724/I1455 equaled 1.03 ± 0.05, while for CoV(–) I724/I1455, it equaled
1.23 ± 0.04. All the observed SERS bands and their tentative assignments are presented in
Table 1.

2.2.1. Prediction by Means of PLS-DA Analysis

The calibration model was created from 51 CoV(+) and 53 CoV(−) nasopharyngeal
swabs, while for validation purposes, eight CoV(+) and eight CoV(−) were exploited.
For each sample, 15 single spectra were performed, giving 1560 spectra at the stage of
calibration and 240 spectra at the stage of validation in total. The calibration model was
based on the non-linear iterative partial least square (NIPALS) algorithm with random
10-segments cross validation. All the statistical parameters were comparable with the ones
that were obtained for saliva calibration models (see Table S2 for comparison). The first
thirteen variables that contributed the total of 67% of the variance in block Y and 83% of the
spectral data (X matrix) of cumulative contribution fully describe the variability between
analyzed data sets.

The score plots (Figure 2B) in 2D (above) show that two classes of CoV(−) and CoV(+)
seemed to overlap significantly. However, 3D projections revealed that the data were
grouped, forming CoV(−) and CoV(+) classes. The first latent variable (LV1) explained 27%
of the variance in the block Y with 24% of the spectral data (X matrix), while the second
latent variable (LV2) explained 10% of the Y matrix with 15% of original variance. Figure 2C
demonstrates the weighted regression coefficient that was calculated for Factor-3, CoV(−)
response. The variables at: 654, 749, 1004, 1046, 1210 cm−1, and 1454 cm−1 had a positive
coefficient and 690, 728, 853, 925, 1760 cm−1 had a negative coefficient. The 1094 cm−1

variable with the weight of 0.03 and 690, 853, 925, and 1004 cm−1 with weights greater than
0.02 were the most crucial for calibration model.

The set of thirteen loading plots calculated for this association is presented in
Figure S4b. Factor-1, as the most influential, identified variables located at 689, 1445,
1582, and 1670 cm−1. The loading plot of Factor-2 revealed the importance of 1470 cm−1

and 1697 cm−1 and of F-3—1049, 1469, and 1700 cm−1 and the information was explained
at the level of 8% and 7%. The band that were highlighted by the rest loading plots are
presented on Figure S4b.

The prediction analysis was performed in the same manner as for saliva samples.
Most samples were correctly recognized at the stage on calibration with an accuracy of 98%,
sensitivity of 100%, and specificity of 96%. The predicted values and standard deviations
for samples taken for validation are listed in Table S6. Most of the obtained predictive
values were close to 1 or 0, with the standard deviation ranging between 0.17 and 0.33.
Among these analyzed 16 samples, three CoV(+) and two CoV(−) samples had incorrect
predictive values, giving the values of accuracy, sensitivity, and specificity as 69%, 63%,
and 75%, respectively.

2.2.2. Classification Results of PCA-LDA and SVMC Analysis

The original spectral data were compressed by principal component analysis (PCA)
to 15 principal components and were then, in this form, utilized as input data for LDA
calculations. The calculated discrimination plot for the CoV(+) and CoV(−) classes with
the use of quadratic algorithm provided 89% accuracy at the level of a single spectrum
(Figure S5b). However, it is more reasonable to consider statistical parameters per patient,
and in this respect, the accuracy, sensitivity, and specificity equaled 89%, 96%, and 83%,
respectively. The obtained results indicate that two of 51 CoV(+) and ten of 53 CoV(−)
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samples did not completely match the typical spectral pattern of the majority of samples.
The results of validation for 16 external samples with the particular attention to the number
of spectra assigned to each class are presented in Table S7. Since three out of eight samples
stated as CoV(+) and two out of eight samples stated as CoV(−) were incorrectly classified,
the accuracy, sensitivity, and specificity equaled 69%, 63%, and 75%, respectively (see
Table 2).

In SVMC calculations, the optimal model was established with the Polynomial Ker-
nel function (with degree equal four), 10-segments cross validation, and the parameters
C = 0.01, γ = 0.1 giving all the spectra correctly recognized (training and validation accuracy
100%). From the validation results simulating the real diagnostic conditions, the SVMC
provided an excellent sensitivity of 88% with respect to eight CoV(+) patients. In turn, 63%
of specificity resulted from three of eight misclassified CoV(−) samples and was slightly
lower than in the case of PCA-LDA. The accuracy calculated with respect to the total of
16 patients was 75%. All the detailed results of classification at the level of a single spectrum
are presented in Table S7 and all the diagnostic parameters are set in Table 2 for comparison.

The above results demonstrate that nasopharyngeal swab is also a convenient clinical
material that can reveal the biochemical changes resulted from COVID-19 and, therefore,
enables differentiation between CoV(+) and CoV(−). The SVMC model offers the best
diagnostic parameters at calibration stage among all methods and higher values of sensi-
tivity and accuracy but the lower value of specificity at validation stage (63% vs. 75% for
SVMC and PCA-LDA/PLS-DA, respectively). Comparing PLS-DA and PCA-DA, PLS-DA
ensured a more accurate sample recognition at the calibration stage while maintaining the
same diagnostic parameters at the validation stage.

3. Materials and Methods
3.1. Viral RNA Extraction

The chemagic™ 360 automated extraction platform (PerkinElmer, Waltham, MA, USA)
was used to extract SARS-CoV-2 RNAs from 300 µL of nasopharyngeal. Extraction was
performed according to the manufacturer’s instructions named chemagic Viral DNA/RNA
300 Kit H96 (PerkinElmer, USA). Viral RNA was eluted with 80 µL elution buffer and used
for RT-PCR assay.

3.2. SARS-CoV-2 RNA Detection Using Quantitative Reverse Transcriptase Real-Time
Polymerase Chain Reaction (qRT-PCR)

The presence of SARS-CoV-2 was detected by qRT-PCR amplification of SARS-CoV-2
open reading frame 1ab (ORF1ab), nucleocapsid protein (NP) genes fragments, and a
positive reference gene using DiaPlexQ™ Novel Coronavirus (2019-nCoV) Detection Kit
(SolGent CO, Ltd., Daejeon, Republic of Korea). Conditions for amplifications were 50 ◦C
for 15 min (reverse transcription), 95 ◦C for 15 min (initial PCR activation) followed by
45 cycles of 95 ◦C for 20 s (denaturation) and 60 ◦C for 40 s (annealing/extension). The
result was considered valid only when the cycle threshold (Ct) value of the reference gene
was ≤38. The result was considered positive when the Ct values of both target genes were
≤38, and negative when they were both >38. If only one of the target genes had a Ct value
≤38 and the other >38, it was interpreted as inconclusive.

3.3. SERS Platform Preparation

The SERS-active silicon substrates were prepared with a procedure described in detail
in [50]. Briefly, the procedure of production SERS-active substrates involved three steps.
In a first step, silicon wafer was cut into squares with the desirable dimension 3 × 3 mm
by means of mechanical saw (the thicknesses of diamond grinding wheels 0.1 mm, the
machining speed five mm/s). Second step was the physical modification of the silicon
surface performed using femtosecond laser (λ = 1030 nm) working with the repetition rate
of 300 kHz and pulse width of 300 femtoseconds. Then, to complete the preparation of the
SERS substrate, in the last step, 100 nm layer of silver was sputtered using the PVD device
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(Quorum, Q150T ES, Laughton, UK). The resulting SERS-active platforms were uniformly
covered with 100 nm silver layer, as can be seen on SEM image (Figure S6).

3.4. SERS Measurements

The measurements were performed using Bruker’s BRAVO spectrometer equipped
with Duo LASER™ (700–1100 nm) and CCD camera. The laser power was 100 mW for
both LASERs and the spectral resolution was 2–4 cm−1. Typically, 15 SERS spectra for
each sample were acquired. Each spectrum was measured for 30 s. In these studies, we
measured and presented the data based on 149 samples of saliva and 104 samples of
nasopharyngeal swabs (15 spectra for each sample; total 3795 spectra). Both sets of samples
(saliva and swabs) were from different individuals and were independent of each other. All
experiments with clinical samples were conducted in accordance with relevant institutional
regulations and guidelines and were approved by the Ethics and Bioethics Committee of
Cardinal Stefan Wyszynski University in Warsaw.

3.5. Statistical Analysis

In the present work, the supervised and classification methods such as PLS-DA, PCA-
LDA, and SVMC were applied for establishing classification models for CoV(+) and CoV(−)
samples of saliva as well as nasopharyngeal swabs using the commercial Unscrambler®

software (CAMO software AS, version 10.3, Oslo, Norway). Before multivariate analysis,
the SERS data were processed using the OPUS 7.2 software (Bruker Optic GmbH, 2012
version, Leipzig, Germany). For this purpose, the following manipulations were applied:
smoothing (Savitzky Golay Filter: five points), baseline correction (concave rubberband cor-
rection; six iterations, six baseline points), cutting (in the range from 600 to 1700 cm−1), and
normalization (Min-Max normalization). For more information about applied chemometric
methods, see Supplementary Materials (Section S1).

4. Conclusions

In the present work, the numerical methods (PLS-DA, PCA-LDA, SVMC) were
adopted to resolve and understand the biochemical changes in nasopharyngeal and saliva
spectral responses resulting from SARS-CoV-2 infection and, therefore, enable differenti-
ation between negative CoV(−) and positive CoV(+) groups of patients. The significant
role of neopterin as the prospective biomarker in the prediction of COVID-19 infection
from nasopharyngeal swab was indicated. In the case of SARS-CoV-2 infected saliva sam-
ples CoV(+), their biochemical composition was outlined by the increased contribution of
methionine, nucleic acids of DNA/RNA and proteins such as ferritin, as well as specific
immunoglobulins. Additionally, based on the multivariate methods and the calculated
sensitivity, specificity, and accuracy, the saliva swabs sample was the more suitable, ade-
quate, and reliable specimen for the SERS-based prediction of COVID-19 disease than the
nasopharyngeal swabs sample.

The developed method is a promising alternative for rapid point of care diagnosis
during the worldwide ongoing COVID-19 pandemic. However, it should be highlighted
that in order to develop a reliable SERS-based diagnostic system for fast detection of
COVID-19, a strictly defined methodology and protocol at each stage of the procedure
including: preparation of clinical samples for SERS measurements (type of SERS-active
support, time of sampling, collection, and processing of clinical subjects), defining of the
spectral data acquisition (type and power of excitation laser, time of acquisition), and their
exploration (chemometric analysis, machine learning, deep learning) should be applied
and respected.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms24119706/s1. References [87–97] are cited in the
supplementary materials.
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Platform Made via Femtosecond Laser Micromachining for Biomedical Applications. J. Mater. Res. Technol. 2021, 12, 1496–1507.
[CrossRef]

51. Cao, G.; Chen, M.; Chen, Y.; Huang, Z.; Lin, J.; Lin, J.; Xu, Z.; Wu, S.; Huang, W.; Weng, G.; et al. A Potential Method for
Non-Invasive Acute Myocardial Infarction Detection Based on Saliva Raman Spectroscopy and Multivariate Analysis. Laser Phys.
Lett. 2015, 12, 125702. [CrossRef]

52. Baghizadeh Fini, M. Oral Saliva and COVID-19. Oral Oncol. 2020, 108, 104821. [CrossRef]
53. Isho, B.; Abe, K.T.; Zuo, M.; Jamal, A.J.; Rathod, B.; Wang, J.H.; Li, Z.; Chao, G.; Rojas, O.L.; Bang, Y.M.; et al. Persistence of Serum

and Saliva Antibody Responses to SARS-CoV-2 Spike Antigens in COVID-19 Patients. Sci. Immunol. 2020, 5, eabe5511. [CrossRef]
[PubMed]

54. Torreggiani, A.; Barata-Vallejo, S.; Chatgilialoglu, C. Combined Raman and IR Spectroscopic Study on the Radical-Based
Modifications of Methionine. Anal. Bioanal. Chem. 2011, 401, 1231–1239. [CrossRef] [PubMed]

55. Huang, N.; Pérez, P.; Kato, T.; Mikami, Y.; Okuda, K.; Gilmorre, R.C.; Conde, C.D.; Gasmi, B.; Stein, S.; Beach, M.; et al.
SARS-CoV-2 Infection of the Oral Cavity and Saliva. Nat. Med. 2021, 27, 892–903. [CrossRef] [PubMed]

56. Koziorowska, J.; Mazurowa, N.; Tautt, J. Methionine Dependence of Virus-Infected Cells. Exp. Cell Res. 1990, 190, 290–293.
[CrossRef] [PubMed]

57. Jagannathan, N.; Thiruvengadam, C.; Ramani, P.; Premkumar, P.; Natesan, A.; Sherlin, H.J. Salivary Ferritin as a Predictive Marker
of Iron Deficiency Anemia in Children. J. Clin. Pediatr. Dent. 2012, 37, 25–30. [CrossRef]

58. Franco-Martínez, L.; Cerón, J.J.; Vicente-Romero, M.R.; Bernal, E.; Cantero, A.T.; Tecles, F.; Resalt, C.S.; Martínez, M.; Tvarijonavi-
ciute, A.; Martínez-Subiela, S. Salivary Ferritin Changes in Patients with COVID-19. Int. J. Environ. Res. Public Health 2021, 19, 41.
[CrossRef]

59. Giuca, M.R.; Pasini, M.; Tecco, S.; Giuca, G.; Marzo, G. Levels of Salivary Immunoglobulins and Periodontal Evaluation in
Smoking Patients. BMC Immunol. 2014, 15, 5. [CrossRef]

60. Ashton, L.; Brewster, V.L.; Correa, E.; Goodacre, R. Detection of Glycosylation and Iron-Binding Protein Modifications Using
Raman Spectroscopy. Analyst 2017, 142, 808–814. [CrossRef]

61. Ettah, I.; Ashton, L. Engaging with Raman Spectroscopy to Investigate Antibody Aggregation. Antibodies 2018, 7, 24. [CrossRef]
62. Lin, X.; Lin, D.; Ge, X.; Qiu, S.; Feng, S.; Chen, R. Noninvasive Detection of Nasopharyngeal Carcinoma Based on Saliva Proteins

Using Surface-Enhanced Raman Spectroscopy. J. Biomed. Opt. 2017, 22, 105004. [CrossRef]
63. Li, X.; Yang, T.; Lin, J. Spectral Analysis of Human Saliva for Detection of Lung Cancer Using Surface-Enhanced Raman

Spectroscopy. J. Biomed. Opt. 2012, 17, 037003. [CrossRef] [PubMed]
64. Talari, A.C.S.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2015, 50,

46–111. [CrossRef]
65. Austin, L.A.; Osseiran, S.; Evans, C.L. Raman Technologies in Cancer Diagnostics. Analyst 2016, 141, 476–503. [CrossRef]

[PubMed]
66. Muro, C.K.; Doty, K.C.; de Souza Fernandes, L.; Lednev, I.K. Forensic Body Fluid Identification and Differentiation by Raman

Spectroscopy. Forensic Chem. 2016, 1, 31–38. [CrossRef]
67. Oliveira, E.M.; Rogero, M.; Ferreira, E.C.; Gomes Neto, J.A. Simultaneous Determination of Phosphite and Phosphate in Fertilizers

by Raman Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 246, 119025. [CrossRef]
68. Virkler, K.; Lednev, I.K. Raman Spectroscopy Offers Great Potential for the Nondestructive Confirmatory Identification of Body

Fluids. Forensic Sci. Int. 2008, 181, e1–e5. [CrossRef]
69. Hu, P.; Zheng, X.S.; Zong, C.; Li, M.H.; Zhang, L.Y.; Li, W.; Ren, B. Drop-Coating Deposition and Surface-Enhanced Raman

Spectroscopies (DCDRS and SERS) Provide Complementary Information of Whole Human Tears. J. Raman Spectrosc. 2014, 45,
565–573. [CrossRef]

70. Virkler, K.; Lednev, I.K. Forensic Body Fluid Identification: The Raman Spectroscopic Signature of Saliva. Analyst 2010, 135,
512–517. [CrossRef]

71. Wang, Y.; Sun, Y.; Li, M.; Xiong, L.; Xu, X.; Ji, N.; Dai, L.; Sun, Q. The Formation of a Protein Corona and the Interaction with
α-Amylase by Chitin Nanowhiskers in Simulated Saliva Fluid. Food Hydrocoll. 2020, 102, 105615. [CrossRef]

72. Zamora-Mendoza, B.N.; Espinosa-Tanguma, R.; Ramírez-Elías, M.G.; Cabrera-Alonso, R.; Montero-Moran, G.; Portales-Pérez, D.;
Rosales-Romo, J.A.; Gonzalez, J.F.; Gonzalez, C. Surface-Enhanced Raman Spectroscopy: A Non Invasive Alternative Procedure
for Early Detection in Childhood Asthma Biomarkers in Saliva. Photodiagnosis Photodyn. Ther. 2019, 27, 85–91. [CrossRef]

73. Wang, H.; Liu, Q.; Hu, J.; Zhou, M.; Yu, M.Q.; Li, K.Y.; Xu, D.; Xiao, Y.; Yang, J.Y.; Lu, Y.J.; et al. Nasopharyngeal Swabs Are More
Sensitive Than Oropharyngeal Swabs for COVID-19 Diagnosis and Monitoring the SARS-CoV-2 Load. Front. Med. 2020, 7, 334.
[CrossRef] [PubMed]

https://doi.org/10.1016/j.scijus.2019.08.002
https://doi.org/10.1016/j.mechmachtheory.2013.10.006
https://doi.org/10.1001/jama.2020.3786
https://doi.org/10.1016/j.jmrt.2021.03.083
https://doi.org/10.1088/1612-2011/12/12/125702
https://doi.org/10.1016/j.oraloncology.2020.104821
https://doi.org/10.1126/sciimmunol.abe5511
https://www.ncbi.nlm.nih.gov/pubmed/33033173
https://doi.org/10.1007/s00216-011-5203-0
https://www.ncbi.nlm.nih.gov/pubmed/21761110
https://doi.org/10.1038/s41591-021-01296-8
https://www.ncbi.nlm.nih.gov/pubmed/33767405
https://doi.org/10.1016/0014-4827(90)90199-K
https://www.ncbi.nlm.nih.gov/pubmed/2170157
https://doi.org/10.17796/jcpd.37.1.ap20543762015370
https://doi.org/10.3390/ijerph19010041
https://doi.org/10.1186/1471-2172-15-5
https://doi.org/10.1039/C6AN02516A
https://doi.org/10.3390/antib7030024
https://doi.org/10.1117/1.JBO.22.10.105004
https://doi.org/10.1117/1.JBO.17.3.037003
https://www.ncbi.nlm.nih.gov/pubmed/22502575
https://doi.org/10.1080/05704928.2014.923902
https://doi.org/10.1039/C5AN01786F
https://www.ncbi.nlm.nih.gov/pubmed/26539569
https://doi.org/10.1016/j.forc.2016.06.003
https://doi.org/10.1016/j.saa.2020.119025
https://doi.org/10.1016/j.forsciint.2008.08.004
https://doi.org/10.1002/jrs.4499
https://doi.org/10.1039/B919393F
https://doi.org/10.1016/j.foodhyd.2019.105615
https://doi.org/10.1016/j.pdpdt.2019.05.009
https://doi.org/10.3389/fmed.2020.00334
https://www.ncbi.nlm.nih.gov/pubmed/32626720


Int. J. Mol. Sci. 2023, 24, 9706 18 of 18

74. Rawlings, B.A.; Higgins, T.S.; Han, J.K. Bacterial Pathogens in the Nasopharynx, Nasal Cavity, and Osteomeatal Complex during
Wellness and Viral Infection. Am. J. Rhinol. Allergy 2013, 27, 39–42. [CrossRef] [PubMed]

75. Sam, S.S.; Caliendo, A.M.; Ingersoll, J.; Abdul-Ali, D.; Hill, C.E.; Kraft, C.S. Evaluation of Performance Characteristics of Panther
Fusion Assays for Detection of Respiratory Viruses from Nasopharyngeal and Lower Respiratory Tract Specimens. J. Clin.
Microbiol. 2018, 56. [CrossRef]

76. Silva, M.J.A.; Ribeiro, L.R.; Gouveia, M.I.M.; Marcelino, B.D.R.; Santos, C.S.D.; Lima, K.V.B.; Lima, L.N.G.C. Hyperinflammatory
Response in COVID-19: A Systematic Review. Viruses 2023, 15, 553. [CrossRef] [PubMed]

77. Gudowska-Sawczuk, M.; Mroczko, B. What Is Currently Known about the Role of CXCL10 in SARS-CoV-2 Infection? Int. J. Mol.
Sci. 2022, 23, 3673. [CrossRef] [PubMed]

78. Hailemichael, W.; Kiros, M.; Akelew, Y.; Getu, S.; Andualem, H. Neopterin: A Promising Candidate Biomarker for Severe
COVID-19. J. Inflamm. Res. 2021, 14, 245. [CrossRef] [PubMed]
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