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Abstract: Retinoids are a frequently used class of drugs in the treatment of inflammatory as well
as malignant skin diseases. Retinoids have differential affinity for the retinoic acid receptor (RAR)
and/or the retinoid X receptor (RXR). The endogenous dual RAR and RXR agonist alitretinoin
(9-cis retinoic acid) demonstrated remarkable efficacy in the treatment of chronic hand eczema
(CHE) patients; however, detailed information on the mechanisms of action remains elusive. Here,
we used CHE as a model disease to unravel immunomodulatory pathways following retinoid
receptor signaling. Transcriptome analyses of skin specimens from alitretinoin-responder CHE
patients identified 231 significantly regulated genes. Bioinformatic analyses indicated keratinocytes
as well as antigen presenting cells as cellular targets of alitretinoin. In keratinocytes, alitretinoin
interfered with inflammation-associated barrier gene dysregulation as well as antimicrobial peptide
induction while markedly inducing hyaluronan synthases without affecting hyaluronidase expression.
In monocyte-derived dendritic cells, alitretinoin induced distinct morphological and phenotypic
characteristics with low co-stimulatory molecule expression (CD80 and CD86), the increased secretion
of IL-10 and the upregulation of the ecto-5′-nucleotidase CD73 mimicking immunomodulatory or
tolerogenic dendritic cells. Indeed, alitretinoin-treated dendritic cells demonstrated a significantly
reduced capacity to activate T cells in mixed leukocyte reactions. In a direct comparison, alitretinoin-
mediated effects were significantly stronger than those observed for the RAR agonist acitretin.
Moreover, longitudinal monitoring of alitretinoin-responder CHE patients could confirm in vitro
findings. Taken together, we demonstrate that the dual RAR and RXR agonist alitretinoin targets
epidermal dysregulation and demonstrates strong immunomodulatory effects on antigen presenting
cell functions.

Keywords: alitretinoin; retinoids; chronic hand eczema; RAR; RXR; dendritic cells; human primary
keratinocytes; 9-cis RA

1. Introduction

In the early 20th century, vitamin A and its derivatives (retinoids) were discovered to
be essential for mammalian health and survival [1]. The active form of vitamin A, retinol,
is oxidized by alcohol dehydrogenases and retinal dehydrogenases in vivo to yield retinoic
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acid (RA) [2]. Retinol, the active form of vitamin A, is oxidized by alcohol dehydrogenases
and retinal dehydrogenases in vivo to yield retinoic acid (RA) [2]. RAs exist in several
isoforms but the predominant one is all-trans retinoic acid (ATRA) [3]. These naturally
occurring RAs belong to the group of so-called retinoids, which also include synthetic
compounds with structural or biological similarities to retinol [4]. Retinoids can be divided
into three subgroups: 1st generation retinoids: natural or endogenous, including all-trans
RA (ATRA), 9-cis RA (alitretinoin) and 13-cis RA (isotretinoin) [2]; 2nd generation retinoids:
synthetic monoaromatic with acitretin and etretinate and 3rd generation retinoids: synthetic
polyaromatic, including bexarotene, tazarotene and adapalene [5]. Retinoid signaling
proceeds via binding to the ubiquitously expressed intracellular retinoic acid receptor
(RAR) and/or retinoid X receptor (RXR) and thus mediates transcription or repression of
downstream target genes [5,6]. While 13-cis RA (isotretinoin) as well as acitretin primarily
bind to the RAR and bexarotene to the RXR, 9-cis RA (alitretinoin) shows affinity for
both receptors and thus represents an endogenous dual retinoid receptor agonist [7].
Intracellular receptors as therapeutic targets are experiencing a renaissance in dermatology.
Among these, retinoid receptors represent a well-known class, exerting effects not only
on embryonic development, immunity and inflammation, but also on cell differentiation
and wound healing [4,8–10]. Although their therapeutic use in numerous dermatoses,
such as severe acne, psoriasis pustulosa, ichthyosis or cutaneous T-cell lymphoma, has
proven successful [5,7,11,12], our understanding of the underlying mechanisms of action
remains largely elusive. Chronic hand eczema (CHE) is a common inflammatory skin
condition, occurring in up to 10% of the population and affecting the quality of life and
work performance, especially in severe cases [13]. While topical therapeutics are the most
common first-line option, a high percentage of cases require systemic treatment [14,15].
Since the endogenous dual retinoid receptor agonist 9-cis RA (alitretinoin) has been shown
to be effective in treating severe CHE [16], we targeted this chronic inflammatory skin
disease to obtain further insights into the role of RAR and RXR signaling in cutaneous
homeostasis and inflammation.

2. Results
2.1. CHE as a Model Disease to Investigate the Effects of Alitretinoin (9-cis RA) on Skin
Homeostasis and Inflammation

In patients treated with alitretinoin, we used the modified Total Lesion Symptom
Score (mTLSS) to assess the therapeutic efficacy on CHE. Twenty-three of twenty-nine CHE
patients (79%) of the alitretinoin-treated patients showed a response of ≥50% in the mTLSS
and were considered responders (Figure 1). Characteristics of the responder group are
listed in supplementary Table S6. Among the selected alitretinoin-responders, a significant
reduction of the mTLSS from 10.48 ± 3.37 before to 2.23 ± 1.82 after 12 weeks of treatment
was observed (p < 0.001). This corresponded to an average reduction of the mTLSS by
78.63% (Figure 1).

2.2. Effects of Alitretinoin (9-cis RA) on Gene Expression in CHE and Cultured Human
Primary Keratinocytes

As a first step, we selected skin specimens of alitretinoin-responder CHE patients
and performed transcriptome analyses. Using cDNA microarray analysis of skin biopsies
of lesional CHE skin before and week 12 of alitretinoin treatment (n = 3), we detected
a significant regulation of 231 genes with adjusted p-value < 0.05, log fold-change >1 in
skin biopsies (Supplementary Table S1). Interestingly, gene expression patterns not only
highlight down- and upregulated clusters (n = 95 and n = 136, respectively) but specific
gene groups spanning a wide range of inflammatory, tissue remodeling, as well as barrier-
related pathways. Downregulated genes include general inflammatory markers such as
serum amyloid A1 (SAA1) and indoleamine 2,3-dioxygenase (IDO1) alongside chemokines
CXCL9 and CXCL10 but also disease-specific markers such as CCL18 and CCL13. Levels
of antimicrobial peptides (AMPs) typically upregulated during inflammation, such as
peptidase inhibitor 3 (PI3/SKALP) or late cornified envelope genes LCE3A and LCE3C, are
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also normalized during treatment, similarly to matrix metalloproteinase 12 (MMP12). On
the other hand, barrier function-related genes such as filaggrin 2 (FLG2), betacellulin (BTC)
or Wnt inhibitory factor 1 (WIF1) are upregulated. Dermcidin, an AMP often suppressed
in eczema, also shows a similar pattern (Figure 2, Supplementary Table S1). Interestingly,
barrier function was not overrepresented among regulated genes, as compared to inflamma-
tory processes or matrix remodeling. Functional enrichment analyses using two separate
databases, Gene Ontology (GO) and the Bioplanet pathway resource, both point to sig-
nificant enrichment in “extracellular matrix organization”, “IL1/TGF-beta regulation of
extracellular matrix”, “Inhibition of matrix metalloproteinases” and “lymphocyte chemo-
taxis” (Supplementary Table S1). Furthermore, a functional network of top regulated genes
was generated based on the expression and GO terms shared among genes, where distinct
clusters highlight the above-mentioned regulated pathways (Supplementary Figure S4).
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Figure 1. Treatment of CHE with alitretinoin (9-cis RA). (A) Representative clinical pictures of a 41-
year-old patient with CHE before (PRE) and after 12 weeks (Wk12) of treatment with alitretinoin. 
(B) Representative dermatohistopathology of lesional palmar skin of a patient before treatment 
(Original magnification: 100×; hematoxylin and eosin). (C) Modified total lesion symptom score 
(mTLSS) of patients with CHE before and during treatment with alitretinoin (30 mg/d). Values rep-
resent the mean +/− SD of 23 patients (responders). Student’s t-test (*** p < 0.001). 
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Figure 1. Treatment of CHE with alitretinoin (9-cis RA). (A) Representative clinical pictures of a
41-year-old patient with CHE before (PRE) and after 12 weeks (Wk12) of treatment with alitretinoin.
(B) Representative dermatohistopathology of lesional palmar skin of a patient before treatment
(Original magnification: 100×; hematoxylin and eosin). (C) Modified total lesion symptom score
(mTLSS) of patients with CHE before and during treatment with alitretinoin (30 mg/d). Values
represent the mean +/− SD of 23 patients (responders). Student’s t-test (*** p < 0.001).

To gain further insights through the gene expression dataset, the FANTOM5 database
was mined to extract cell types that are major sources of the above-mentioned genes
(Supplementary Table S2). As expected, a remarkable number of the regulated genes are
expressed in keratinocytes, identifying this cell subset as a major target for alitretinoin. In
barrier defect-associated inflammation, IL-1β and TNF-α play a major role [17,18]. Thus,
we simulated barrier defect-associated inflammation by stimulating cultured human pri-
mary keratinocytes with IL-1β and TNF-α in the presence or absence of alitretinoin or
acitretin. The RAR agonist acitretin was selected as a comparator for the biological ef-
fects of the endogenous dual (RAR/RXR) agonist alitretinoin (9-cis RA). In addition, we
also used key mediators of type 2 (IL-4) or type 1 (IFN-γ) inflammation to investigate
the retinoid signaling driven effects on these conditions. A selection of genes based on
both microarray data and previous findings was analyzed via qPCR, representing the
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main categories of AMPs, barrier function and tissue regeneration-related genes (Figure 3,
Supplementary Figures S1–S3). Interestingly, under proinflammatory conditions with TNF-
α and IL-1β, alitretinoin reduces the expression of top regulated genes small proline rich
protein 3 (SPRR3) and serine protease inhibitor of Kazal type 6 (SPINK6). In turn, the
opposite effect is observed at low doses of the sole RAR agonist acitretin. Furthermore,
significant upregulation occurs in betacellulin (BTC) and hyaluronic acid synthase 2 (HAS2)
under both retinoid treatments; however, the effect on HAS2 is found to be highly specific
to alitretinoin across all conditions (Supplementary Figure S2). Regarding AMPs, defensin
beta 4A and defensin beta 103B, which are often co-regulated with PI3 in inflammation,
display extreme fold upregulation in stimulated keratinocytes under inflammatory con-
ditions. However, even low doses of retinoids decrease the expression of these genes,
and this effect is stronger with high dosages (Figure 3). On the other hand, RNASE7,
S100A7 or hornerin (HRNR) do not show marked regulation under induced inflamma-
tory conditions (Supplementary Figure S2). Drawing from the proinflammatory signature
observed in vivo, a selected set of chemokines was also investigated in primary human
keratinocytes under the above-mentioned conditions. The significant downregulation
of CCL5, CCL20 and CXCL14 further supports the notion that 9-cis RA (alitretinoin) di-
rectly and indirectly regulates chemokine expression and thereby leukocyte recruitment
(Supplementary Figure S5).
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Figure 2. Significantly differentially expressed genes in skin biopsies of alitretinoin (9-cis RA)-treated
patients. (A) Top 50 up- and downregulated genes between pre-treatment (top red bar, left column)
and week 12 of treatment (top green bar, right column) as determined by cDNA microarray screening.
Blue-red coloring indicates relative expression per individual gene (row-wise normalization), while
the white-to-dark gray sidebar shows normalized mean expression across genes. (B) Boxplot of
microarray gene expression values for selected pro-inflammatory genes and barrier components,
indicating decreased inflammation and restoration of barrier function during treatment. Error bars:
mean +/− SEM, black dots: individual samples. Generalized linear modeling of gene expression,
adjusted p-value (* p < 0.05).
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Figure 3. 9-cis RA-treated keratinocytes show normalized expression of selected antimicrobial
peptides following stimulation with TNF-α and IL-1β. Human primary keratinocytes were incubated
either with or without alitretinoin (n = 7, independent donors) or acitretin (n = 4, independent donors)
for 24 h and then harvested. Extracted RNA levels were measured by qPCR (normalized to 18S
ribosomal RNA expression). (A) unstimulated controls. (B) human primary keratinocytes incubated
either with or without alitretinoin (n = 7, independent donors) or acitretin (n = 4, independent donors)
in the presence of TNF-α+IL-1β or IL-4 or IFN-γ for 24 h. Colored bars show mean + SEM of change
compared with untreated controls without cytokine treatment. Mann–Whitney U test (* p < 0.05,
** p < 0.01, *** p < 0.001).

2.3. Morphology, Phenotype and Function of ‘Retinoid-DCs’ Generated from Isolated
CD14+ Monocytes

The FANTOM5 analysis also indicated that monocyte-derived cells are another promi-
nent cell type that is targeted by alitretinoin (9-cis RA) (Supplementary Table S2). This is in
good concordance with data previously published on all-trans retinoic acid (ATRA) [19–21].
Hence, we directed our focus on antigen presenting cells and dendritic cell functions. For
this purpose, CD14+ monocytes were isolated from healthy donors and stimulated with
GM-CSF and IL-4 to generate monocyte-derived dendritic cells (MoDC). After 6 days,
these cells were matured with TNF-α (mMoDC) or left untreated to maintain an immature
phenotype (iMoDC). These procedures were performed either with the cytokines alone
or in the presence of 9-cis RA (alitretinoin) (‘9-cis RA-DCs’) or acitretin (‘Acitretin-DCs’).
Upon treatment with 9-cis RA, a marked change in the morphology of dendritic cells was
observed. Compared to untreated MoDC, ‘9-cis RA-DC’ exhibited an elongated shape with
dense cell-to-cell connections (Figure 4).

Given the profound morphological changes in ‘9-cis RA-DC’, we performed a tran-
scriptomic screening comparing pooled RNA of six independent donors each of iMoDC,
mMoDC and ‘9-cis RA DCs’ (Supplementary Figure S8, Supplementary Table S7). Con-
sidering the pooling strategy, only the top most robustly regulated genes were taken into
account in downstream analysis. Of these, functional network clustering according to
GO terms and fold regulation resulted in clusters enriched for: 1, antigen processing
presentation (including CD80, CD83, TRAF and CTSD), 2, chemokine mediated signal-
ing (CXCR5, CCL7 and CCL17) 3, negative regulation of cell proliferation (IL12B, OSM
and EGR1) and 4, extracellular matrix regulation (including collagen and integrin family
members as well as MMP12). Furthermore, qPCR analyses of a selected panel of cell type-
relevant genes also confirmed 9-cis RA-specific transcriptomic changes in dendritic cells
(Supplementary Figure S6). Since pathway analyses of transcriptomic changes induced
by 9-cis RA in dendritic cells pointed towards antigen processing and presentation, we
further investigated the phenotype of ‘9-cis RA-DC’ using flow cytometry. To assess the
maturation status of ‘9-cis RA-DC’, we analyzed the surface expression of co-stimulatory
molecules such as CD80, CD83 and CD86. Following maturation with TNF-α, an increased
expression of CD80, CD83 and CD86 was observed (Figure 5, Supplementary Table S3). In
contrast, cells matured in the presence of either 9-cis RA or acitretin showed decreased ex-
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pression of these maturation markers. At equimolar doses, 9-cis RA was significantly more
potent to maintain an immature phenotype and inhibit the cytokine-driven maturation
process (Figure 5).
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Figure 4. Morphological and maturation changes of 9-cis RA-treated monocyte-derived dendritic
cells (MoDCs). (A) Representative microscopic images of immature monocyte-derived DC (iMoDC),
maturated (mMoDC) and 9-cis RA [100 nM] treated TNF-a maturated cell (“9-cis RA-DC”) cultures
after 9 days. Phase contrast light microscopy, magnification: 200×. (B) Representative half offset
histograms of one donor show the expression of surface markers CD83 and CD86 and the corre-
sponding isotype controls (light gray) on immature (iMoDC, dark gray), TNF-a maturated (mMoDC,
black) and “9-cis RA-DCs” (blue) after 9 days of culture. 9-cis RA strongly downregulates CD83 and
CD86 compared to mMoDCs. (C) Percentage of gated, positive cells for the maturation marker CD83
(n = 11–28 independent donors), co-stimulatory molecules CD80 (n = 11–12 independent donors)
and CD86 (n = 11–25 independent donors). Fold changes are shown as mean + SEM of the percent-
age of gated cells positive for CD83, CD80 and CD86. Unpaired two-tailed Mann–Whitney U-test
(* p < 0.05, ** p < 0.01, *** p < 0.001).
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Figure 5. 9-cis RA exerts immunoregulatory functions through inducing CD73 in dendritic
cells and secretion of CCL5, IL-10 and CCL20 in the supernatants. (A) Expression of CD73
(n = 7–22 independent donors). Fold changes show mean + SEM of the percentage of gated, CD73-
positive cells (B) CD73 enzyme activity of MoDCs. Data are expressed as a “fold change” consid-
ering mature MoDCs (mMoDC) of each individual donor (value = 1) (C) ELISA was performed
to detect IL-10 (n = 6–12), CCL5 (n = 3) and CCL20 (n = 3). Mann–Whitney U test (* p < 0.05,
** p < 0.01, *** p < 0.001).

2.4. ‘9-cis RA-DC’ Show Functionally Active Expression of the Ecto-5’-Nucleotidase
CD73 In Vitro

Immature dendritic cells are known to promote tolerance through the generation
of regulatory T cells and a lack of T cell activation. Here, we show for the first time
that retinoids upregulate the expression of the ecto-5′-nucleotidase CD73 in vitro and
demonstrate that it is enzymatically active (Figure 5). CD73 produces adenosine from
adenosine monophosphate, which can exert immunomodulatory functions on T cells
via adenosine receptors, suggesting a possible mechanism of action of 9-cis RA [22–26].
Maturation had no effect on mMoDCs as opposed to iMoDCs. The addition of 100 and
1000 nM 9-cis RA or 100 nM acitretin significantly upregulated the expression of CD73
(n = 7–22 independent donors) on the cell surface of MoDCs (Figure 5). To test the enzyme
activity of CD73, etheno-AMP degradation to etheno-adenosine was measured. CD73 was
not only expressed on the cell surface but also active with enzymatic activity increasing with
addition of 100 nM 9-cis RA by 1.75-fold and with 1000 nM 9-cis RA (p = 0.0286) by 4.3-fold
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compared to mMoDCs (Figure 5). Using a cytokine array, we also examined the expression
of various cytokines and chemokines in the cell supernatant (Supplementary Figure S7) and
verified this by ELISA for selected cytokines. After stimulation with alitretinoin, dendritic
cells showed a marked secretion of IL-10, an immunoinhibitory cytokine, and an increased
secretion of CCL5 and CCL20 was shown. The effect of alitretinoin is more pronounced
than for acitretin (Figure 5).

2.5. Reduction of Proliferative Response of Allogenic Stimulated CD3+ T Cells by Retinoids

In view of the altered maturation markers, the higher expression of CD73 as well
as the release of IL-10, the question arose whether retinoid-treated dendritic cells have
an immunomodulatory effect on other cell types such as T cells. iMoDCs, mMoDCs and
concentration-dependent matured “Alitretinoin- and Acitretin-DCs” were co-cultured with
allogenic T cells at a ratio of 1:200. Proliferation was measured by BrdU incorporation after
6–7 days (Figure 6). Interestingly, after maturation in the presence of retinoids, DCs showed
a significantly lower potential to lead to T cell proliferation, which also underlines the
immunomodulatory functional significance of retinoids. In equimolar doses, alitretinoin is
significantly more effective than acitretin (Figure 6). To confirm the inhibitory effect on T
cell proliferation of 9-cis RA treated immune cells in vivo, PBMCs from patients suffering
from CHE before and after week four, eight and twelve of treatment with 9-cis RA were
isolated and cultivated with allogenic T cells isolated from healthy donors. At day six, the
proliferation rate of leukocytes was measured by BrdU-incorporation. BrdU incorporation
was analyzed with one-tailed paired Student’s t-test. 9-cis RA treatment significantly
decreased T cell proliferation following allogenic stimulation after week eight (p = 0.0285)
and week twelve (p = 0.0346) when compared with T cell proliferation rates before the
treatment (Figure 6). In addition, the effect of alitretinoin treatment was assessed on the
phenotype of CD14+ monocytes in patient samples, where the percentage of CD14+CD86+

monocytes was significantly reduced after 12 weeks of treatment with oral 9-cis to baseline
(p = 0.027). Moreover, CD14+CD73+ cells were upregulated during treatment at week four
(p = 0.0043) and week twelve (p = 0.016) (Supplementary Figure S9).
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iMoDCs, mMoDCs and retinoid DCs. Retinoid DCs were treated with different concentrations of
alitretinoin and acitretin. Cells were then incubated with allogeneic T cells. Detection was performed
after 6–7 days. The MoDC: T cell ratio was 1:200. Results are expressed as mean + SEM, data constitute
optical density (OD) of 6–28 independent donors. Means differed significantly by unpaired two-tailed
Mann–Whitney U test (* p < 0.05, ** p < 0.01, *** p < 0.001). (B) PBMCs of 9-cis RA-treated CHE patients
were co-cultivated with allogenic T cells from healthy donors. Graph shows BrdU-incorporation as
extinction coefficient [450 nm] as box and whiskers. The whisker lines indicate 10% and 90% values;
the black vertical lines represent median values; the outliers are represented as filled circles. The
means were significantly different for week eight (p = 0.0285) and week twelve (p = 0.0346) compared
to baseline proliferation using a one-tailed paired Student’s t-test (* p < 0.05).

3. Discussion

Here, we present a detailed characterization of immunomodulatory effects of the
dual retinoid receptor agonist alitretinoin in the context of CHE. Microarray data collected
during the course of 12-week treatment provided a wide perspective on the potential
mechanisms and affected pathways, highlighting targets for downstream in vitro analyses.
Although the effects of retinoids on tissue remodeling pathways and metalloproteinases
are well established, among the top regulated genes we also find hallmark chemokines
CCL18 and CCL13, alongside inflammatory markers SAA1 or IDO1. The normalization in
expression levels of these genes by week 12 is a strong indicator of reduced inflammation,
while also outlining closely co-regulated genes with less clear roles in the pathology.
Notably, AMPs such as PI3 or LCE3A are also downregulated, while DCD, an antimicrobial
component of sweat typically downregulated in eczema [27], shows the opposite direction.
Members of the defensin family were not found among significantly regulated genes
in vivo; however, follow-up experiments on stimulated keratinocytes showed very high
upregulation of DEFB4A and DEFB103A, both well-known players in inflammatory skin
conditions, with remarkable downregulation upon alitretinoin treatment. Similar patterns
were observed for RNASE7 but not hornerin (HRNR), while DCD was even upregulated
upon alitretinoin treatment. This suggests that homeostatic levels of antimicrobial activity
are restored, which aligns well with the clinical observation that alitretinoin treated patients
do not present a significantly increased frequency of infections. Regarding skin structure
and barrier constituents, SPRR family genes also show high levels of regulation and are
increasingly investigated in skin disease [28,29]. Here, the eczema-associated gene SPRR3
shows prominent fold regulation, indicating barrier function-related alterations alongside
FLG2, AQP9 and several keratins in vivo. On the other hand, investigating the expression
of key hyaluronan synthase and hyaluronidase genes, alongside betacellulin, significant
upregulation of synthases, particularly HAS2, is observed under alitretinoin treatment.
Hyaluronidase genes are however not affected by alitretinoin, suggesting a positive effect
towards matrix remodeling and cutaneous regeneration. Moreover, a decrease in the
amount of hyaluronan fragments due to the imbalance of hyaluronan production and lower
degradation may also lead to impaired inflammatory responses and a thickening of the
epidermis, as previously observed [30].

In the analysis of significantly regulated genes using the FANTOM5 database, anti-
gen presenting cells were identified to be the main cellular targets of alitretinoin, besides
keratinocytes. The presented findings indicate that dendritic cells treated with 9-cis RA
(alitretinoin) remain in an immature state with low co-stimulatory molecule expression
(CD80 and CD86). The mMoDC phenotype presented here resembles the “TNF-α/CD40L”
phenotype with an upregulation of key indicator genes previously described [31,32]. ‘9-cis
RA-DCs’ demonstrated a decreased expression of maturation-associated genes CD83, CD80,
CD40, CCL17 and CCL22 in comparison to mMoDCs. Markers such as CD14 or CD163
were upregulated compared to mMoDCs. Altogether, on the transcriptional level, “9-cis
RA-DCs” demonstrated a more iMoDC-like expression pattern and supported the hypothe-
sis that RA-treatment shapes monocytes/DCs into immunomodulatory DCs, which have
the ability to down-modulate T cell responses and control inflammatory processes. These
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observations were further supported by results obtained by flow cytometry of MoDCs
which showed that 9-cis RA (alitretinoin) as well as acitretin have an inhibitory effect on
the differentiation and maturation of DCs. An inhibitory effect on the maturation and
differentiation with ATRA has been previously observed (1 µM and 10 nM). CD80 and
CD86 were downregulated in both concentrations upon GM-CSF + IL-4 stimulation and
additional TNF-α maturing [31]. Additionally, ATRA reduced the percentage of CD83+

HLA-DR+ mature dendritic cells [32–34]. Overall, these results confirmed findings on
other RAs and showed that 9-cis RA inhibited the maturation of dendritic cells by reducing
co-stimulatory molecules CD80 and CD86. Impairment of CD86 and CD80 expression
on macrophages and dendritic cells leads to a reduced activation and a lower cytokine
production of T cells [35,36]. As a result of 9-cis RA (alitretinoin), ‘retinoid-DCs’ have a
lower activation potential and might function as immunomodulatory cells. Further, the
endogenous retinoid alitretinoin (9-cis RA) is not only effective in reducing maturation
of TNF-α stimulated DCs in vitro, but it is more effective than the synthetic RAR ago-
nist acitretin. To evaluate whether soluble factors may also support immunoregulation,
we performed a cytokine array of the supernatants of mMoDCs and ‘9-cis RA-DCs’. We
observed a significantly increased secretion of the anti-inflammatory cytokine IL-10 in
the supernatants of ‘9-cis RA-DCs’. These results were confirmed by ELISA showing a
higher efficacy to release IL-10 in response to alitretinoin when compared with equimolar
doses of acitretin. Hence, transcriptomic, flow cytometric and secretory analyses pointed
towards an immunomodulatory phenotype of 9-cis RA-DC. To further explore this no-
tion, we investigated the adenosinergic pathway. ENTPD1 (CD39) and the downstream
CD73 break down adenosine triphosphate into adenosine monophosphate and finally
into adenosine [37,38]. Enzyme activity was tested, demonstrating not only the presence
of CD73 but also the increased activity of the molecule on the surface of ‘9-cis RA-DCs’.
Findings of the present study demonstrate for the first time that 9-cis RA and acitretin can
induce CD73 on the surface of human moDCs and that the molecule is functionally active.
These findings support the role of CD73 in the regulation of immune functions of DCs, and
findings indicate a new role for retinoid receptor signaling by inducing CD73 and resulting
in an immunomodulatory response [39–41]. To show the direct impact of ‘9-cis RA-DC’, we
demonstrated a significantly reduced allogeneic T-cell response in vitro and confirmed this
inhibitory effect on T cell activation and proliferation using PBMCs of alitretinoin-treated
CHE patient ex vivo. Hence, these findings strongly support that alitretinoin (9-cis RA) is
inducing an immunomodulatory phenotype in dendritic cells in vitro and in vivo. Taken
together, we demonstrate that the dual RAR and RXR agonist alitretinoin targets epidermal
dysregulation and demonstrates strong immunomodulatory effects on antigen presenting
cell functions.

4. Materials and Methods
4.1. Cell Lines and Reagents

Skin samples, serum samples and PBMCs were collected from patients with CHE
(n = 29) as part of routine diagnostic testing. Informed consent was obtained for further
processing of the respective samples. Patients received 30 mg 9-cis RA orally, daily for
12 weeks. One of 29 patients received 10 mg 9-cis RA in the first four weeks of treatment.
Human primary keratinocytes, isolated from healthy donors (breast reduction or fore-
skin), were cultured in keratinocyte medium (GIBCO, Invitrogen, Carlsbad, CA, USA)
containing recombinant EGF (0.1–0. 2 ng/mL), bovine pituitary extract (20–30 µg/mL),
L-glutamate (2 mM, PAA, Pasching, Austria), 1% penicillin (100 U/mL) and streptomycin
(100 µg/mL) (PAA, Pasching, Austria). Human primary monocytes/dendritic cells were
cultured in RPMI 1640 GlutamMax (GIBCO, Invitrogen, Carlsbad, CA, USA) with 10%
fetal calf serum (FCS) (Biochrome AG, Berlin, Germany) and 1% penicillin 100 U/mL,
streptomycin 100 µg/mL) (PAA, Pasching, Austria). Stimulation was performed with
GM-CSF (100 ng/mL) (GenScript, Piscataway, NJ, USA) and interleukin (IL-4) (50 ng/mL)
(R&D Systems, Minneapolis, MN, USA). Cells were incubated at 37 ◦C with 95% humidity
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and 5% CO2 (INCO 2, Memmert, Schwalbach, Germany). Cytokines were reconstituted in
1% BSA/PBS to a final concentration of 100 µg/mL. Alitretinoin stock solution (100 mM)
(Basilea Pharmaceuticals, Basel, Switzerland) and acitretin stock solution (10 mM) (Basilea
Pharmaceuticals, Basel, Switzerland) were diluted in DMSO (Sigma-Aldrich, Saint Louis,
MO, USA). Keratinocytes were pre-treated for 48 h in the presence or absence of alitretinoin
or acitretin (1, 100 nM). Subsequently, cells were treated with rhTNF-α (10 ng/mL) (AbD
Serotec, Oxford, UK) plus rhIL-1β (5 ng/mL) (R&D Systems, Minneapolis, MN, USA),
rhIL-4 (50 ng/mL) (R&D Systems, Minneapolis, MN, USA) or rh Interferon-γ (IFN-γ)
(10 ng/mL) (R&D Systems, Minneapolis, MN, USA) or medium mixed in the presence or
absence of alitretinoin (9-cis retinoic acid) or acitretin (1, 100 nM).

4.2. Isolation of Peripheral Blood Mononuclear Cells (PBMCs), Monocytes and Generation of
Monocyte-Derived Dendritic Cells (MoDCs)

PBMCs were isolated from peripheral blood samples using BD Vacutainer® CPT™
Cell Preparation Tube with Sodium Citrate (BD Biosciences, San Jose, CA, USA) according
to the manufacturer’s protocol. Buffy coats were obtained from the Institute of Hemostasis
and Transfusion Medicine, University Hospital, Düsseldorf, Germany. The buffy coat cell
suspension was diluted 1:2 with RPMI 1640 (GIBCO, Invitrogen, Carlsbad, CA, USA). A
total 37.5 mL of cell suspension was layered on top of 12.5 mL Ficoll-Paque PlusTM solution
(GE Healthcare, Buckinghamshire, UK) and was separated by centrifugation (1150 rpm,
20 min, room temperature (RT)) (Rotina 46 R, Hettich, Bäch, Switzerland) without break.
The interphase was carefully transferred and washed in RPMI 1640 (GIBCO, Invitrogen,
Carlsbad, CA) and centrifuged. Erythrocytes in the pellet were lysed by ammonium chlorid
lysis buffer and incubated at 4 ◦C for 10 min. Remaining cells were washed in PBS. CD14-
positive monocytes were isolated by magnet beads (R&D Systems, Minneapolis, MN, USA)
according to the manufacturer’s protocol. Monocyte separation was performed by using
the MagCellect Magnet (R&D Systems, Minneapolis, MN, USA). To generate MoDCs, CD14-
positive monocytes were cultured in RPMI 1640 (Invitrogen, Carlsbad, CA, USA), 10%
fetal calf serum (FCS) (Biochrome AG, Berlin, Germany) and penicillin/streptavidin (PAA,
Paching, Austria) and stimulated with rhGM-CSF (100 ng/mL) (GenScript, Piscataway, NJ,
USA) and rhIL-4 (50 ng/mL) in the presence or absence of alitretinoin or acitretin (10, 100 or
1000 nM). Medium change was performed after 3 days. At day 6, a half of the medium was
replaced with rhGM-CSF (100 ng/mL) and rhIL-4 (50 ng/mL) and rhTNF-α (100 ng/mL)
in the presence or absence of alitretinoin or acitretin (10, 100 or 1000 nM). Dendritic cells
were harvested at day 9.

4.3. Flow Cytometry Analysis

The lymphocyte subsets were analyzed by using specific antibodies and FACS Calibur
flow cytometer (BD Biosciences, San Jose, CA, USA). At least 50,000 events were counted
in every tube. The specific antibodies are listed in Supplementary Table S4. Analysis was
done by FACScan and CellQuest v5.2 software (Becton Dickinson, Mountain View, CA,
USA) or FlowJo (FLOWJO, LLC, Ashland, OR, USA) and visualized in a histogram plot
(counts over fluorescence).

4.4. RNA Extraction

RNA extraction of the cells was performed using TRIzol® reagent (Invitrogen, Carls-
bad, CA, USA) and addition of 0.2 volume chloroform (Merck, Darmstadt, Germany). The
cell suspension was vortexed and centrifuged (15 min, 12,000 rpm, 4 ◦C), and the super-
natant was transferred to a new tube. RNA precipitation was performed using 0.5 volume
isopropanol (Merck, Darmstadt, Germany). This was followed by incubation at −20 ◦C
overnight. The supernatant was discarded. The RNA pellet was washed in 80% ethanol
(Merck, Darmstadt, Germany) and centrifuged (12,000 rpm, 30 min, 4 ◦C) and dissolved in
H2O. The RNeasy Mini Kit (QIAgen, Hilden, Germany) was used for RNA extraction from
the tissue samples according to the manufacturer’s protocol.
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4.5. cDNA Microarray Analysis

Extracted RNA was hybridized to Agilent G3 Human Gene Expression Microarrays
(G4851C) according to manufacturer protocols. Quality metrics were generated using
ArrayQualityMetrics. Differential gene expression analyses were conducted on RMA-
normalized probe intensity values summarized at the gene level in the R package limma,
considering as cutoffs absolute log-fold change >0.5 and adjusted p-value < 0.05, with
further narrowing down of gene lists for visualization. Functional enrichment analysis
has been carried out using Panther v15. Functional gene networks were visualized in
Cytoscape v3.6.

4.6. Quantitative Real Time (qPCR) Analysis

For qPCR, 18S RNA gene expression was used as an internal standard. Quantitative
PCR was performed using the Applied Biosystems 7000 System/Quantstudio 6 and Power
SYBR® Green PCR Master Mix or TaqMan® Universal PCR Master Mix (Applied Biosystems
Inc., Foster City, CA, USA) according to the manufacturer’s instructions.

4.7. Primer Design

Oligonucleotides for qPCR were either designed on mRNA sequences deduced
from GenBank or obtained as TaqMan® Gene Expression Assays by Applied Biosystems
(Supplementary Table S5).

4.8. ELISA

Cytokine and chemokine concentrations in the supernatants were measured by enzyme-
linked immunosorbent assay (ELISA DuoSet, R&D Systems, Minneapolis, MN, USA) ac-
cording to the manufacturer’s protocols. The optical density of each well was determined
using an ELISA reader (Multiscan Ascent, Thermo Fisher Scientific, Wilmington, DE, USA).
Sample concentrations were calculated against standard curves and with the Graphpad
Prism software (version 5.03, GraphPad Software, La Jolla, CA, USA).

4.9. Cytokine Array

We analyzed the supernatants of monocytic dendritic cells matured with TNF-α with
or without alitretinoin [100 nM] and examined them with the Human Cytokine Array C5
(Ray Biotech, Norcross, GA, USA) according to the manufacturer’s protocol. We performed
the calculations using ImageJ software v1.42 (National Institutes of Health, Bethesda, MD,
USA) against internal standards as a percentage of positive control. We considered a fold
log2 difference of more than 1.5 to be relevant.

4.10. Isolation of T Cells

Isolated PBMCs were resuspended in RPMI 1640. Depletion of monocytes and
macrophages was carried out in 175 cm2 cell culture flasks (Greiner Bio-One GmbH,
Kremsmünster, Austria) at standard cell culture conditions as monocytes and macrophages
will adhere to the wall of the plastic flask. Therefore, the non-adherent cells were suspended
in 20 mL of RPMI 1640, centrifugated as above and resuspended in 4 mL of 1 × column
wash buffer (R&D Systems, Inc., Minneapolis, MN, USA). T cell isolation was performed
by the use of human T cell enrichment columns (R&D Systems, Inc., Minneapolis, MN,
USA) according to the manufacturer’s instructions. Finally, T cells were resuspended in
appropriate medium.

4.11. Mixed Leukocyte Reaction

The influence of 9-cis retinoic acid and acitretin on allogenic stimulation of monocyte-
derived dendritic cells was analyzed. Briefly, 5 × 103 monocyte-derived immature and
mature dendritic cells (DC) pre-treated in the presence or absence of 9-cis RA or ac-
itretin (10, 100 or 1000 nM) and 1 × 105 purified T cells were co-cultured for 6–7 days
in 96-well roundbottom-plates in X-Vivo 15 media (Lonza, Basel, Switzerland). Prolifera-



Int. J. Mol. Sci. 2023, 24, 9654 13 of 15

tion of leukocytes was measured by BrdU-incorporation (Roche, Basel, Switzerland) after
6–7 days in a 96-well plate reader (Multiskan Ascent, Thermo Fisher Scientific, Wilmington,
DE, USA). Some 1 × 105 isolated Patient-PBMCs before and 12 weeks after initiation of
9-cis RA treatment were co-cultured with 1 × 105 enriched T cells for 6 days. Proliferation
was measured by BrdU-incorporation after 6 days in a 96-well plate reader.

4.12. CD73 Enzymatic Activity

Dendritic cells (5 × 104) were incubated in RPMI 1640 GlutaMaxII (Invitrogen, Carls-
bad, CA, USA), 10% fetal calf serum (FCS) (Biochrome AG, Berlin, Germany) and peni-
cillin/streptavidin (PAA, Paching, Austria) and incubated as described previously [42].
Cells were incubated for 1h with or without 50 µM AOPCP (Tocris, Bristol, UK). The reac-
tion was started with 50 µM Etheno-AMP (Biolog, Bremen, Germany). After 10, 20, 30, 40,
50 and 60 min, 15 µL of the supernatant was taken. The reaction was stopped by mixing the
super-natant with the same volume 1 M perchloric acid and stored at −20 ◦C until further
analysis. For HPLC analysis, samples were neutralized with 1 M K3PO4. Etheno-AMP,
and etheno-adenosine amounts were quantified using a 1525 Binary HPLC pump (Waters
GmbH, Eschborn, Germany). Separation of the two analytes was accomplished on an
XTerra MSC18 Column (Waters GmbH, Eschborn, Germany). Solution A contained 6%
(v/v) acetonitrile/5.7 mM tetrabutylammonium bisulfate/30.5 mM KH2PO4, pH 5.8. Solu-
tion B consisted of 66% (v/v) acetonitrile/5.7 mM tetrabutylammonium bisulfate/30.5 mM
KH2PO4, pH 5.8. Areas from the appropriate chromatograms were used for determination
of reaction rate which is given as enzymatic activity per 1× 106 cells by using Waters Breeze
software v1.4 (Waters GmbH, Eschborn, Germany). Samples were measured in triplicate.

4.13. RNA Sequencing

RNA preparations were checked for RNA integrity by Agilent 2100 Bioanalyzer
quality control. Data quality was screened and filtered using FastQC v0.11.9 (Babraham
Bioinformatics group, Cambridge, UK) and the fastx toolkit v0.0.14 (Hannon Lab—Cold
Spring Harbor Laboratory, Cold Spring Harbor, NY, USA), followed by DESeq2 v3.17
analysis [43]. Reduction of spurious fold change estimations due to moderate sample size
was achieved by discarding genes exhibiting the lowest 5% of expression, log2 fold-change
<1 and the false discovery rate > 0.05.

4.14. Statistics

Data were expressed as mean +/− standard deviation (SD) or +/− standard error
of the mean (SEM). Paired or unpaired Student’s t-test or Mann–Whitney-U-test was
performed using Graphpad Prism software (version 5.03, GraphPad Software, La Jolla, CA,
USA). (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). Heatmaps and network figures were generated
in R v.3.5 and Cytoscape v3.6. Methodologies were adapted from the dissertation of author
Dr. Andreas Kislat, the source material of the present publication [44].
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