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Abstract: Alfalfa (Medicago sativa) is an important leguminous forage, known as the “The Queen of
Forages”. Abiotic stress seriously limits the growth and development of alfalfa, and improving the
yield and quality has become an important research area. However, little is known about the Msr
(methionine sulfoxide reductase) gene family in alfalfa. In this study, 15 Msr genes were identified
through examining the genome of the alfalfa “Xinjiang DaYe”. The MsMsr genes differ in gene
structure and conserved protein motifs. Many cis-acting regulatory elements related to the stress
response were found in the promoter regions of these genes. In addition, a transcriptional analysis
and qRT-PCR (quantitative reverse transcription PCR) showed that MsMsr genes show expression
changes in response to abiotic stress in various tissues. Overall, our results suggest that MsMsr genes
play an important role in the response to abiotic stress for alfalfa.
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1. Introduction

Alfalfa (Medicago sativa) is a nutrient-dense forage crop, providing an abundance of
crude protein, carbohydrates, vitamins B, C, and E, as well as various other micronutri-
ents [1]. With an estimated global planting area of 30 million hectares, alfalfa is the world’s
second-largest leguminous forage crop after soybean (Glycine max) and is widely cultivated
in the Xinjiang, Gansu, and Qinghai provinces of China [2]. However, the degradation
of the ecological environment has limited the efficiency and quality of alfalfa produc-
tion. Fortunately, “Xinjiang Daye” is a homotetraploid cultivar offering a high-quality
chromosome-level assembly with 32 chromosomes, providing an invaluable resource for
selecting key stress-related genes for genetic engineering and enhancing alfalfa’s stress
resistance [3].

Methionine (Met) is one of the most easily oxidized amino acids. Under oxidative
stress, Met is quickly converted to methionine sulfoxide (MetO), which can be reduced back
to Met via methionine sulfoxide reductase (Msr). This process plays an important role in
protecting cells from oxidative damage. [4,5]. Excessive reactive oxygen species (ROS) in
plants causes oxidative damage to proteins, polysaccharides, lipids, DNA, and RNA, and can
even cause plant death [6]. Upon oxidation, methionine is converted into two diastereomers,
methionine-S-sulfoxide (Met-S-SO) and methionine-R-sulfoxide (Met-R-SO). Msr contains
two subfamilies, MsrA (methionine sulfoxide reductase A) and MsrB (methionine sulfoxide
reductase B). MsrA reduces Met-S-SO, while MsrB reduces Met-R-SO, thereby balancing the
content of both oxidized forms in response to oxidative stress [7,8]. In particular, MsrA is
present in all known eukaryotes and prokaryotes as well as most archaea, while MsrB is
present in all eukaryotes [7,9,10]. Studies have demonstrated that Msr proteins play a crucial
role in the response to oxidative stress. In yeast, MsrA confers resistance to H2O2 [11,12]. In
mammalian cells, the expression of Msr decreases in response to aging and disease [13,14].
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MsrA was the first Msr to be isolated [15]. Only one MsrA gene has been detected in animals,
while plants have multiple MsrA genes. The member number and gene function of Msr gene
family have been reported in several plants. The Arabidopsis thaliana genome contains five
MsrAs and nine MsrBs [16]. Rice contains four MsrAs and three MsrBs [17]. Soybean contains
seven MsrAs and five MsrBs, some of which have been characterized [18]. There are three
MsrAs and three MsrBs in maize (Zea mays) [19]. Four MsrAs and eight MsrBs are located in
the wheat genome, and relatively comprehensive functional assays of TaMsrA4, TaMsrB3.1,
and TaMsrB5.2 have been carried out [20–22].

Msrs are multifunctional, and their functions have been partially verified in the model
plant Arabidopsis, such as protecting against oxidative stress from sources including methyl
viologen, ozone, and high light intensity [23]. An MsrA2 Arabidopsis mutant showed slow
growth [24]. Additionally, MSRBs play an important role in enabling tolerance to oxidative
damage and in preserving photosynthesis antennae, a vital factor for sustaining vegetative
growth under environmental constraints [25,26]. Overexpression of both MsrB7 and MsrB8
in Arabidopsis was shown to increase tolerance to the herbicide methyl viridine [27]. Over-
expression of MsrB1 and MsrB2 was found to enhance seed longevity in Arabidopsis [28].
However, relatively little research has been carried out on the Msr gene family in forage
crops. In wheat (Triticum aestivum), TaMsrA4.1 increased seedling tolerance to salt and
drought, and TaMsrA3.1 increased seedling tolerance to osmotic pressure. In soybean
(Glycine soja), the interaction of GsCBRLK and GsMsrB5a improved the tolerance of plants
to salt and alkali. Allogeneic expression of ZmMsrB1 in maize enhanced Arabidopsis salt
stress tolerance [29]. OsMsrB5 increased seed vigor and longevity in rice (Oryza sativa) [30].
In addition to that, there have been increasing reports on Msr genes in fruits and vegetables
in recent years. In particular, in bananas (Musa acuminata), the redox regulation of the
transcription factor MaNAC42 mediated by MaMsrB2 may be involved in the regulation
of banana fruit ripening by controlling the expression of its target genes [31]. MaMsrA4
mediates the redox regulation of the ethylene signaling component MaEIL9 to regulate ba-
nana fruit ripening [32]. In tomato (Solanum lycopersicum), SlMsrB2 plays a role in drought
tolerance and promotes chlorophyll accumulation by regulating ROS accumulation [33]. In
kiwifruit (Actinidia deliciosa), AdMsrB1 plays a role in ethylene synthesis and is involved in
the ripening process [34]. In summary, the Msr gene family has a rich biological function.
Therefore, the Msr gene family has great research potential and value.

Currently, similar bioinformatics analyses have been carried out on the Msr gene
family in Brachypodium distachyon and soybean, which reveal the possible functions of the
Msr gene family in these two species [18,35]. In this study, we used the genomic data of
“Xinjiang DaYe” alfalfa as a foundation to systematically investigate the Msr gene family
in alfalfa. In addition to basic physicochemical and sequence analyses of the Msr gene
family, this study conducted a detailed analysis of the gene duplication relationships and
cis-regulatory elements of the Msr gene family in alfalfa. In the conserved domain analysis,
other conserved domains of gene families were found in the MsMsr gene family, suggesting
the possibility of gene fusion. Furthermore, this study analyzed the expression levels of Msr
genes in roots, stems, and leaves, and analyzed the expression patterns of the MsMsr gene
family under salt, drought, and ABA (abscisic acid) stress using transcriptome and qRT-PCR
(real-time quantitative polymerase chain reaction) analyses. Based on the comprehensive
analysis of the MsMsr gene family, it was found that MsMsrA7 and MsMsrB6 may play
a positive role in responding to abiotic stress. This study provides a systematic analysis
of the Msr gene family in alfalfa and contributes to the exploration of the functions and
molecular breeding of abiotic stress tolerance in this important economic crop.

2. Results
2.1. Identification of MsMsr Family Members

By comparing and deleting redundant data in the alfalfa genome using MsrA and
MsrB hidden Markov models (HMM), a total of 15 MsMsr family members were identified
in the alfalfa genome of “Xinjiang Danye” (Table 1). The length of the coding sequences
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(CDS) of the 15 MsMsrs ranged from 420 bp (MsMsrB4) to 2796 bp (MsMsrB6). Accordingly,
MsMsrB4 had the smallest theoretical molecular weight (15,101.88 Da), and MsMsrB6
had the largest theoretical molecular weight (101,351.14 Da). The isoelectric point (pI) of
MsMsrs ranged from 5.2 (MsMsrA9) to 9.09 (MsMsrB2). Nine MsMsrs had isoelectric points
lower than seven, and six had isoelectric points greater than seven. In addition, this study
also conducted subcellular localization and signal peptide prediction for 15 MsMsr proteins
(Figure S1). The signal peptides of 10 MsMsr proteins were analyzed, and 4 (MsMsrA1,
MsMsrA4, MsMsrB2, and MsMsr5) were found to contain chloroplast transit peptides,
while 2 (MsMsrB1 and MsMsrB3) contained mitochondrial transit peptides, and MsMsrB4
contained a peroxisomal targeting signal. In subcellular localization prediction, five MsMsr
proteins (MsMsrA1, MsMsrA4, MsMsrB2, MsMsrB5, and MsMsrB6) were found to be
located in the plastids, supporting the presence of chloroplast transit peptides. In addition,
four MsMsr proteins (MsMsrA2, MsMsrA3, MsMsrA8, and MsMsrA9) were located in the
cytoplasm, and three MsMsr proteins (MsMsrA5, MsMsrA6, and MsMsrA7) were found in
the endoplasmic reticulum. MsMsrB1 and MsMsrB3 were located in the cytoplasm and
mitochondria, while MsMsrB4 was found in the cytoplasm and peroxisomes.

Table 1. Analysis of the physicochemical properties and subcellular localization prediction results of
the MsMsr gene family.

Name Gene ID CDS (bp) Length (aa) pI MW (Da) Predicted Location
(s) Predicted Signal (s)

MsMsrA1 MS.gene038415 798 265 8.75 29,419.08 Plastid Chloroplast transit
peptide

MsMsrA2 MS.gene027087 609 202 8.20 23,205.85 Cytoplasm None
MsMsrA3 MS.gene29083 585 194 5.48 21,737.02 Cytoplasm None

MsMsrA4 MS.gene017180 834 277 7.53 30,789.65 Plastid Chloroplast transit
peptide

MsMsrA5 MS.gene012096 762 253 5.79 28,908.68 Endoplasmic
reticulum Signal peptide

MsMsrA6 MS.gene44259 624 207 6.42 23,033.94 Endoplasmic
reticulum Signal peptide

MsMsrA7 MS.gene89646 1023 340 6.05 38,010.76 Endoplasmic
reticulum Signal peptide

MsMsrA8 MS.gene022411 498 165 5.34 18,248.1 Cytoplasm None
MsMsrA9 MS.gene78714 459 152 5.2 16,851.51 Cytoplasm None

MsMsrB1 MS.gene032356 537 178 8.48 20,193.22 Cytoplasm,
mitochondrion

Mitochondrial
transit peptide

MsMsrB2 MS.gene38969 615 204 9.09 22,729.57 Plastid Chloroplast transit
peptide

MsMsrB3 MS.gene007821 483 160 6.29 18,119.74 Cytoplasm,
mitochondrion

Mitochondrial
transit peptide

MsMsrB4 MS.gene002820 420 139 6.08 15,101.88 Cytoplasm,
peroxisome

Peroxisomal
targeting signal

MsMsrB5 MS.gene40100 597 198 8.87 21,424.38 Plastid Chloroplast transit
peptide

MsMsrB6 MS.gene053626 2796 931 5.7 101,351.14 Plastid None

2.2. Phylogenetic Analysis of Msrs

A multi-species evolutionary tree of Msr was constructed using the maximum like-
lihood (ML) method in MEGA 7.0, which included four species: M. sativa, M. truncatula,
G. max, and A. thaliana, and their corresponding bootstrap values were listed [36] (Figure 1).
Msr proteins form two subfamilies. Subgroup I (MsrA) contains 22 genes, and subgroup II
(MsrB) contains 25 genes (Table S1).
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Figure 1. Phylogenetic analysis of Msr genes in alfalfa, Arabidopsis, and soybean. I represents the
MsrA subfamily and II represents the MsrB subfamily.

Specifically, in the MsrA subfamily, MsMsrA5, MsMsrA6, MsMsrA7, MtMsrA4, AtM-
srA5, and GmMsrA5 were collected together in the phylogenetic tree, suggesting a close
homology between them. Among them, MtMsrA4, MsMsrA5, MsMsrA6, and MsMsrA7
have a closer homology relationship, followed by GmMsrA5. In addition, MsMsrA3, MsM-
srA8, MsMsrA9, GmMsrA4, and MtMsrA3 were grouped in the same clade, and the results
showed that MsMsrA3, MsMsrA8, MsMsrA9, and MtMsrA3 were more closely homologous.
This indicates that the homology of alfalfa and M. truncatula is higher than that of soybean.

In the MsrB subfamily, the MsrB subfamily has been divided into two branches, in
which GmMsrB1, AtMsrB1, MtMsrB1, MsMsrB3, MsMsrB1, and MsMsrB2 are classified
into the same branch, while genes of other MsrB members are classified into the other
branch. Among them, MsMsrB1 and MsMsrB2 exhibit higher homology, while MtMsrB1
and MsMsrB3 exhibit higher homology. MsMsrB5 and MtMsrB4 have a higher homology.

2.3. Sequence and Structure Analysis of MsMsrs

A domain analysis clearly showed that MsMsrAs had a conserved PMSR (peptide
methionine sulfoxide reductase) domain and that MsMsrBs had a conserved SelR (se-
lenoprotein R) domain (Figure 2). In addition, MsMsrA1, MsMsrA3, and MsMsrA4 had
another identical domain, namely a low-complexity region, as did MsMsrA5, MsMsrA6,
and MsMsrA7, which had the same domain, namely a transmembrane domain. It is worth
mentioning that MsMsrA7 contained not only the conserved domain PMSR and partially
shared domain transmembrane domain, but also had peculiar domain of other family, i.e.,
the rotamase family, and MsMsrA8 together with MsMsrA9 only had the single conserved
domain PMSR. In MsMsrB, in addition to the conserved SelR domain of the MsrB gene
family, MsMsrB2 contains two low-complexity domains, and MsMsrB6 contains conserved
domains of two other families, namely the Na/H exchanger domain and the TrkA-N do-
main. MsMsrB1, MsMsrB3, MsMsrB4, and MsMsrB5 have a single conserved domain SelR.
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In general, PMSR and SelR are highly conservative in the MsMsrA subgroup and MsMsrB
subgroup, respectively.
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A phylogenetic tree of the MsMsrs in alfalfa showed two obvious subgroups: the
MsMsrA subgroup and MsMsrB subgroup. The MsMsrA subgroup contained nine family
members from MsMsrA1 to 9, and the MsMsrB subgroup contained six family members
from MsMsrB1 to 6 (Figure 3A). The homology of the MsMsr was relatively higher among
the following: MsMsrA1, 2, and 4; MsMsrA3, 8, and 9; MsMsrA5 to 7; MsMsrB1 to 3;
MsMsrB4 to 6; additionally, the motif distribution as well as gene structure was more
similar (Figure 3B,C). The results of MEME analysis showed that the MsMsr gene family
members contained different numbers and types of motifs (Table S2). There were more
motifs in members of the MsMsrA subfamily than in the members of the MsMsrB subfamily,
indicating that the two subfamilies had substantial divergence. However, there were no
significant differences in the type and number of motifs in each subfamily, indicating that
the members of the same subfamily had high similarity. There are six common motifs in
the MsMsrA subfamily (motif1, motif2, motif3, motif4, motif6, and motif9). Among them,
MsMsrA1 and MsMsrA4 have the same composition and order of motifs, while MsMsrA3,
MsMsrA8, and MsMsrA9 have the same composition and order of motifs, indicating
that they are more closely related, which is consistent with the analysis results of the
phylogenetic relationship. There are only three common motifs in the MsMsrB subfamily
(motif1, motif2, and motif9). These three motifs are also the only three themes in MsMsrB4,
and the only common themes in the entire MsMsr family. In the MsMsrB subfamily,
MsMsrB1, MsMsrB2, and MsMsrB3 have the same motif composition and sequence, while
MsMsrB5 and MsMsrB6 have the same motif composition and sequence and a change in
the position of motif1 compared to other MsMsrBs, indicating that they are more closely
related, which is consistent with the analysis results of the phylogenetic relationship, and
demonstrates that the MsMsrA and MsMsrB subgroups are highly conserved, respectively.

A gene structure analysis showed that MsMsr family members had a minimum of
2 exons (MsMsrA2, 3, 8, and 9) and 20 exons at most (MsMsrB6) (Figure 3C). Four other
genes had three exons (MsMsrA1 and 4, and MsMsrB4 and 5). Two genes had four exons
(MsMsrA6 and MsMsrB3), three genes had five exons (MsMsrA5, MsMsrB1 and 2), and
MsMsrA7 had seven exons. It is worth noting that the CDS length of MsMsrB6 with 20 exons
was also the longest in the family (i.e., 2796 bp). A gene sequence exceeding 2000 bp has not
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been reported to date in the literature on Msr genes, and MsMsrB6 also had 20 exons. These
findings further indicate that even though Msr genes have been identified and studied
in a variety of plants, the functions of these genes differ among species, emphasizing the
importance of functional assays.
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2.4. Chromosomal Mapping and Collinearity Analysis of MsMsr Genes

MsMsr genes were unevenly distributed across the 12 chromosomes of alfalfa
(Figure 4). Three chromosomes contained two MsMsr genes (chr3.4, chr8.1, and chr8.4) and
nine chromosomes contained one MsMsr gene (chr2.1, chr3.1, chr3.2, chr4.3, chr4.4, chr5.3,
chr5.4, chr8.2, and chr8.3).
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Gene duplication is essential for genome and gene system evolution. In alfalfa,
15 MsMsr family members were involved in gene duplication events (Figure 5). Tandem
duplications were not detected, and all duplication events were segmental duplications,
indicating the expansion mechanism of the MsMsr family in alfalfa and proving that
MsMsrs are highly conserved in alfalfa. In genetics, Ka/Ks represents the ratio between
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rates of nonsynonymous substitutions (Ka) and synonymous substitutions (Ks). Except for
MsMsrA5 and MsMsrA6 gene pairs, the values of other MsMsr genes pairs were all less
than one, consistent with purifying selection (Table S4). However, MsMsrA5 and MsMsrA6
gene pairs showed a ratio greater than one, the signature of positive selection.
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2.5. Cis-Regulatory Elements in MsMsr Gene Promoters

Cis-regulatory elements are specific DNA sequences located upstream of the gene
coding sequence that can bind to regulatory proteins. The promoter regions of the MsMsr
gene family were analyzed using PlantCARE10 and New PLACE together to predict gene
function [37,38]. In addition to the basic TATA box, CAAT box, and light-responsive ele-
ments, we mainly analyzed three cis-regulatory elements in the MsMsr genes promoter
region: hormone-responsive elements, stress-responsive elements, and plant growth and
development elements (Figure 6). It was shown that the promoters of MsMsr genes con-
tained various cis-acting elements with different numbers (Figure 6A and Table S5). The
stress-responsive elements include the wound response element (WUN-motif), defense
and stress-responsiveness (TC-rich repeats, STRE, W-boxes), low-temperature and salt
stresses (DRE core), low-temperature-responsiveness (LTR), damage and defense response
elements (WRE3), and drought-inducibility (MBS) (Figure 6B). The hormone-responsive el-
ements include anaerobic induction (ARE), MeJA-responsiveness (CGTCA-motif, TGACG-
motif), ethylene-responsiveness (ERE), salicylic acid-responsiveness (TCA), abscisic acid-
responsiveness (ABRE), gibberellin-responsiveness (P-box), flavonoid biosynthetic genes
regulation (MBSI), and auxin-responsiveness (TGA, AuxRR-core). Plant growth and devel-
opment elements include the proliferation-activating response (CCGTCC-box).

The results indicate that anaerobic induction-responsive elements are widely dis-
tributed in the promoter regions of the MsMsr gene family, with all 15 members of the family
containing such elements. Most of the MsMsr genes also contain four hormone-responsive
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elements: MeJA-responsiveness, ethylene-responsiveness, salicylic acid-responsiveness,
and abscisic acid-responsiveness. Additionally, 13 of the genes have MeJA-responsiveness
elements, 11 have ethylene response elements, 12 have salicylic acid response elements, and
13 have abscisic acid response elements, with MsMsrA7 having 11 abscisic acid response
elements. Only MsMsrA3 contains hormone-responsive elements involved in the regulation
of flavonoid biosynthesis. As for stress-responsive elements, the promoter regions of most
MsMsr genes contain defense and stress-responsive elements, with some also containing
low-temperature, salt stress, damage, and defense response elements, as well as drought-
inducibility elements. Specifically, 13 genes have defense and stress-responsive elements,
8 have low-temperature response elements, 7 have drought response elements, and 5 have
damage and defense response elements. Only the promoter region of MsMsrA2 contains
low-temperature and salt stress response elements.
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2.6. Expression Analysis of Homologous Genes of 15 MsMsr Genes under Abiotic Stress

To analyze the expression of MsMsr gene family under salt stress, we assembled
and analyzed the transcriptome of alfalfa “Zhongmu No. 1” by referring to the genome
of “Xinjiang Daye”. A total of 15 MsMsr homologues of “Xinjiang Daye” alfalfa were
identified by comparing the transcriptome data treated with “Zhongmu No. 1” alfalfa
salt. The expression levels of these 15 genes in salt-treated leaves were analyzed in blank
group A (Hoagland nutrient solution) and salt group B (100 mM NaCl+ Hoagland nutrient
solution). On this basis, the expression levels of the transcriptome on the first day of blank
treatment, the first day of salt treatment, and the sixth day of salt treatment were used for
expression analysis. The 15 MsMsr genes were divided into 3 groups based on similarities
in the expression patterns of the genes in the transcriptome (Figure 7A). Among them,
seven genes showed an upregulated expression trend on the first and sixth days of salt
treatment (MsMsrA1-A3, MsMsrA5, MsMsrA7, MsMsrA8, and MsMsrB5). The expression
levels of MsMsrB2 and MsMsrB6 increased on the first day and decreased on the sixth
day. Three genes showed upregulation trend only on the sixth day (MsMsrA4, MsMsrA9,
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and MsMsrB4). Three genes showed downregulated expression levels on day 1 and day 6
(MsMsrA6, MsMsrB1, and MsMsrB3).
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2.7. qRT-PCR Analysis of 15 Homologs of MsMsr Genes

To verify the results of RNA-Seq and to more specifically analyze the expression of
MsMsr genes in alfalfa under salt stress, “Zhongmu No. 1” was treated with 100 mM NaCl
on day 25 after germination, and expression levels in alfalfa roots, stems, and leaves were
analyzed at 0 h, 3 h, 6 h, 12 h, 24 h, and on day 6 (Table S7). In addition, this study also
treated alfalfa with 300 mM mannitol and 10 µM ABA and analyzed the expression levels
of the MsMsr genes in the roots, stems, and leaves of alfalfa at 0 h, 3 h, 6 h, 12 h, 24 h,
and the second day for mannitol treatment, and at 0 h, 3 h, 6 h, 12 h, and 24 h for ABA
treatment, in order to enrich the response relationship between the MsMsr gene family and
abiotic stress.

The 15 homologous genes were all expressed in the roots, stems, and leaves of alfalfa.
The expression levels of different genes were different, and the expression levels of the same
genes were also different in different tissues (Figure 7B). Among the 15 genes, 7 genes had
the highest expression level in leaves (MsMsrA1, MsMsrA4, MsMsrA7, MsMsrB1, MsMsrB2,
MsMsrB3, and MsMsrB6). The expression levels of six genes (MsMsrA2, MsMsrA3, MsM-
srA5, MsMsrA8, MsMsrA9, and MsMsrB4) were highest in the roots. These results suggest
that the majority of MsMsr genes have the highest expression levels in both roots and
leaves. Among them, MsMsrB5 is the gene with the highest expression level in roots, and it
is also the gene with the highest expression level in stems, indicating that this gene is the
gene with a relatively prominent expression level among family members. MsMsrA1 was
expressed at the highest level in leaves. For MsMsrA3 and MsMsrA9, the overall expression
levels of the two genes were low in the MsMsr gene family.
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qRT-PCR showed that most of MsMsr genes were induced by salt stress (Figure 8 and
Table S7). All 13 MsMsr genes except MsMsrA6 and MsMsrA8 showed varying degrees of
upregulation in the roots. The expression levels of eight genes in roots under salt stress
reached their peak at 3 h, 6 h or 24 h, and the expression levels of five genes reached their
peak at 6 d. In addition, all the 14 genes except MsMsrA8 showed upregulated expression
in the stem. The expression levels of 10 genes reached their peak at 6 d, and the expression
levels of 4 genes reached their peak at 3 h, 6 h, and 12 h, respectively. These results indicated
that the expression of MsMsr genes in the stem of alfalfa was increasing under salt stress,
and the expression level changed slowly. In leaves, except for MsMsrA6, MsMsrA8, and
MsMsrB2, the expression levels of 12 MsMsr genes were upregulated to varying degrees.
Among them, four genes reached the peak expression level at 3 h, three genes reached
the peak expression level at 24 h, and five genes reached the peak expression level at
6 d. In particular, salt-induced MsMsrA7 expression levels in different tissues increased
significantly and showed a trend of increasing over time. In addition, the expression levels
of MsMsrB1 and MsMsrB3 in the roots were significantly upregulated. MsMsrA2 and
MsMsrA4 were significantly upregulated in stems (p < 0.05). It is worth mentioning that the
salt-induced MsMsr gene expression in leaves was downregulated and then upregulated.
For example, the expression levels of MsMsrB3 and MsMsrB4 were downregulated at 3 h,
6 h, and 12 h, and upregulated at 24 h and 6 d. In addition, MsMsrA1, MsMsrA3, MsMsrA4,
and MsMsrA5 were also expressed similarly. In general, the expression levels of 14 MsMsr
genes except MsMsrA8 showed a certain upward trend under salt induction, indicating that
the MsMsr gene family mainly showed a positive regulatory relationship under salt stress.

In the promoter analysis of the MsMsr gene family, it was found to contain drought-
responsive elements. Therefore, to validate whether the MsMsr gene family responds to
drought stress, this study analyzed the expression patterns of MsMsr under drought stress
(Table S8). Under drought stress, most MsMsr genes showed upregulation in expression
in the roots, stems, and leaves, and the expression levels peaked mainly within 6–24 h
(Figure 9A). Among them, the expression level of MsMsrA3 in roots, stems, and leaves
showed a downward trend within 0–12 h, but an upward trend at 24 h. MsMsrA7 only
showed an upregulation of expression in the leaves, and a downregulation of expression in
the roots and stems. MsMsrB1 and MsMsrB2 exhibited very similar expression patterns
under drought stress, indicating that these two genes are likely to have similar roles in
response to drought stress. These results suggest that the MsMsr gene family is likely to
respond to drought stress to some extent.

ABA is a plant hormone and one of the key signaling molecules that plants use
to respond to stress. Therefore, genes related to the ABA signaling pathway may be
closely related to plant stress adaptation, growth, and development. Considering that the
promoters of the members of the MsMsr gene family contain abundant ABA response
elements, this study also analyzed their expression patterns under ABA stress (Table S9).
Under external ABA treatment, the expression level of stress tolerance genes may be
reduced, but in other situations, it may be increased. Under ABA stress, most MsMsr genes
showed an overall upregulation trend in roots, stems, and leaves, and the expression level
peaked within a short time (3–6 h) (Figure 9B). Unlike most MsMsr genes, the expression
level of MsMsrA3 in roots and stems showed a phenomenon of initial downregulation and
subsequent recovery, while the expression level of MsMsrA7 in roots and stems showed a
downward trend, and the expression level of MsMsrB4 in roots, stems, and leaves showed
a downward trend. In addition, the expression levels of MsMsrB1-3 in roots, stems, and
leaves significantly increased during 3–24 h of ABA stress. Most MsMsr genes showed
different regulatory patterns in roots, stems, and leaves, which may indicate that the
MsMsr gene family responds to ABA stress in different ways, despite different modes of
regulation. Based on the above, the MsMsr gene family responds to ABA stress, which
is consistent with the results of the promoter element analysis of the MsMsr gene family.
This suggests that the MsMsr gene family may play a role in abiotic stress through the
ABA-mediated pathway.
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3. Discussion

In the past, research on alfalfa and abiotic stress has primarily focused on transcription
factors, with relatively limited studies on genes, such as oxidoreductases. Although there
have been reports on Msr in various plants, research on Msr in alfalfa has not been conducted
yet, indicating that genes, such as MsMsrs, hold significant research value and potential.

Several Msr genes have been identified in various plants, including Arabidopsis
(n = 14), soybean (n = 12), rice (n = 7), and maize (n = 8). In this study, 15 MsMsr genes
were identified, which is consistent with previous findings where they were divided into
two subfamilies and had high conservation. The subcellular localization of the MsMsr gene
family proteins was predicted and found to be located in different subcellular structures,
including the plastids, cytoplasm, endoplasmic reticulum, mitochondria, and peroxisomes.
Five MsMsr proteins were located in the plastids, indicating that these proteins may con-
tribute to maintaining normal physiological functions within the plastids, ensuring the
normal growth and development of the entire plant cell. Four MsMsr proteins were located
in the cytoplasm, which may play a role in regulating cellular physiological functions,
promoting the transport and distribution of substances within the cell, and ensuring nor-
mal cell growth, differentiation, and metabolism. Three MsMsr proteins were located in
the endoplasmic reticulum, indicating that these three proteins may ensure that different
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structures and regions within the endoplasmic reticulum can complete their respective
biological functions and are also critical to the cell secretion pathway. In addition, the MsM-
sRB1 and MsMsRB3 proteins were located in the cytoplasm and mitochondria, indicating
that these proteins may ensure that different organelle structures and regions can complete
their respective biological functions and contribute to regulating cellular metabolism and
signal transduction processes. MsMsRB4 was located in the cytoplasm and peroxisomes,
indicating that the MsMsrB4 protein may play a role in regulating the activity of metabolic
pathways to maintain the normal physiological state of the cell and provide protection
against oxidative stress within the cell.

However, it was discovered that in the MsMsr gene family, MsMsrA7 contained
not only the PMSR domain but also the rotamase domain. Similarly, MsMsrB6 not only
contained the SelR domain, but also the Na/H exchanger domain and the TrkA-N domain.
In previous studies, there was no occurrence of other conserved domains from gene
families in the Msr gene family. This phenomenon may be due to gene fusion. New
genes formed by gene fusion can occur between two ancestrally neighboring genes, and
sometimes lead to the evolution of novel complex domain structures [39,40]. Previous
studies have identified gene fusion events in rice, and these genes may play a role in
driving the phenotypic evolution of rice [41]. Rotamase is a type of protein with PPIase
activity, and multiple rotamase-encoding genes have been identified in Arabidopsis, some
of which are members of the ROF (relative of flavonoid biosynthesis) gene family. In the
study of ROF genes, it was found that ROF1 plays a role in extending thermotolerance
by maintaining the levels of small HSPs required for survival at high temperatures [42].
Moreover, AtROF1 and AtROF2 in Arabidopsis played a positive role in resistance to
acid stress [43]. It is interesting to note that MsMsrA7 contains both the PMSR conserved
domain and the conserved domain of the ROF gene family, which suggests that it may
have biological functions similar to those of ROF genes. The presence of a large number of
ABA response elements in the promoter of MsMsrA7 further supports the idea that it may
play an important role in stress resistance, as ABA is known to be involved in regulating
plant responses to abiotic stress. The Na/H exchanger domain and the TrkA-N domain
in MsMsrB6 are not directly connected, and each belongs to a separate gene family. The
TrkA-N domain belongs to the NAD-binding component protein, which is commonly
used for catalyzing redox reactions. The Na/H exchanger domain belongs to the NHX
(Na+/H+ exchanger) gene family. These proteins balance the ion concentrations inside
and outside the cell by transporting H+ from inside the cell to outside and Na+ from
outside to inside the cell, which plays an important role in plant adaptation to stress. In
Arabidopsis, the growth and development of double mutant atnhx1 atnhx2 are restricted,
and the plant is extremely sensitive to external K+ and has reduced salt tolerance [44].
Furthermore, previous studies have shown that overexpression of GhNHX1, AtNHX1,
ScNHX1, and TaNHX1 in Arabidopsis enhances the plant’s tolerance to drought stress [45].
In rice, the expression of HtNHX1 and HtNHX2 improves the plant’s salt tolerance, and the
expression of HtNHX1 increases rice yield under nutrient-limited conditions [43]. These
results suggest that NHX proteins have the characteristics of stress tolerance to abiotic
stress, and the conserved domain of the NHX gene family is present in MsMsrB6. Moreover,
multiple stress-responsive elements are present in the promoter of MsMsrB6, which further
indicates that MsMsrB6 is likely a key gene for resistance to abiotic stress. Therefore,
further studies are needed to verify the gene function and elucidate the gene regulation
mechanism and molecular mechanism of MsMsrA7 and MsMsrB6. Numerous reports have
demonstrated the relevance of the Msr gene in response to abiotic stress. For example,
in maize, ZmMSRA2 was shown to resist osmotic stress by regulating ROS, proline, and
ABA pathways in Arabidopsis, while ZmMSRA5.1 enhanced plant tolerance to salt stress
by reducing ROS accumulation and altering ion transport [46]. Similarly, TaMsrA3.1,
TaMsrA4.1, and TaMsrA5.2 in wheat were found to improve plant tolerance to salt and
drought stress through their catalytic activity and regulatory effects on ROS and ABA
pathways [20–22]. In rice, the expression of OsMSRA4.1 was significantly enhanced under
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salt, drought, low temperature, and high temperature stress, and after ABA treatment.
Overexpression of OsMSRA4.1 reduced ROS levels and enhanced plant tolerance to salt
stress [17]. Moreover, in yeast, overexpression of the soybean GmMSRBs gene improved
yeast tolerance to oxidative stress, and interaction between GsCBRLK and GsMSRB5a
enhanced plant tolerance to alkaline stress [29]. Overexpression of BpPMSR3 in cabbage also
enhanced Arabidopsis tolerance to cadmium [47]. Our findings are consistent with these
results, as it can be inferred from the promoter elements of the MsMsr gene family that its
members may be involved in various stress responses and hormone pathways, particularly
those associated with the widely distributed functional elements within the MsMsr gene
family. In the promoter of the MsMsr genes in alfalfa, we identified a large number
of stress-responsive elements, such as TC-rich repeats, W-boxes, and MBS, suggesting
that it may respond to abiotic stress. Transcriptomics, as a high-throughput analysis
technique, can comprehensively measure all genes in cells or tissues, and is widely used
in various fields, such as basic research, agriculture, medicine, and environmental science.
It has particularly high potential for application in life sciences. For example, previous
studies have used transcriptomic techniques to explore the gene expression patterns of
Arabidopsis under multiple environmental stress conditions and identified the RAP2.4
gene related to the immune response to Botrytis cinerea [48]. In addition, previous studies
have used transcriptome sequencing to reconstruct the transcriptional profiles of organic
pollutant degradation and heavy metal stress responses, evaluating the effectiveness of
a biotechnology strategy [49]. This study analyzed the expression patterns of the MsMsr
gene family under salt stress using transcriptomics and found that the MsMsr gene family
may respond to salt stress. Therefore, this confirmed the direction for further research.

In addition to MsMsrA8 and MsMsrA9, all promoter regions of MsMsr genes contain
ABRE, suggesting that MsMsr genes may respond to ABA and regulate plant abiotic stress
tolerance via this mechanism. To test this hypothesis, we conducted salt, drought, and
ABA stress treatments on alfalfa and found that most MsMsr genes in roots, stems, and
leaves were upregulated under salt and drought stress, with a general trend of upregulation
under ABA stress. Only MsMsrA3 and MsMsrA7 showed downregulation. These results
indicate that MsMsr genes may enhance plant resistance to abiotic stress, possibly mediated
by the ABA signaling pathway. Nevertheless, further molecular experiments are needed
to confirm the role of MsMsr genes in abiotic stress tolerance and to explore their other
biological functions.

Overall, the findings of this study on the MsMsr gene family in alfalfa offer valuable
insights into the role of MSRs in plants, particularly in terms of enhancing resistance to
abiotic stress. By identifying two genes potentially involved in abiotic stress tolerance,
MsMsrA7 and MsMsrB6, this study offers direction for potential breeding or technological
methods to improve the abiotic resistance of crops. This study contributes to the current
understanding of plant biology and can serve as a starting point for further research on the
role of MSR genes in plants.

4. Materials and Methods
4.1. Identification of MsMsr Genes in Alfalfa

The “Xinjiang Daye” genome was used to identify Msr genes in alfalfa, and is
available at https://figshare.com/projects/whole_genome_sequencing_and_assembly_
of_Medicago_sativa/66380 (accessed on 1 October 2022). The alfalfa protein sequence
and genome annotations were downloaded from the Alfalfa Breeder’s Toolbox (Table
S3). Using alfalfa protein sequences as a reference, the hidden Markov model (HMM)
profiles of MsrA (PF01625) and MsrB (PF01641) were downloaded from the Pfam database
(http://pfam.xfam.org) (accessed on 3 October 2022). The Simple HMM Search in TBtools
was used for comparisons [50]. With default parameters, the CD-HIT web server (http:
//www.bioinformatics.org/cd-hit) (accessed on 1 October 2022) was used to delete redun-
dant data. NCBI CD-Search (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)
(accessed on 4 October 2022) was used for bidirectional authentication. To further ana-
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lyze the screened family members, the ExPASy proteomics server was used to predict the
physicochemical properties of each MsMsr protein, including molecular weight (MW) and
theoretical isoelectric point (pI) [51].

4.2. Phylogenetic Analysis, Gene Structure, and Motif Composition of MsMsr Genes

For a comprehensive phylogenetic analysis of the Msr family, protein sequences
of Msr genes were downloaded from the Arabidopsis Information Resource (TAIR9)
(www.arabidopsis.org) (accessed on 6 October 2022) database. The soybean genome and
protein file were downloaded from NCBI (https://ftp.ncbi.nlm.nih.gov/genomes/all/
GCF/000/004/515/GCF_000004515.6_Glycine_max_v4.0) (accessed on 5 October 2022).
The Msr family members of soybean were identified by the same method to identify Msr
family members in alfalfa. MEGA 7.0 (https://www.megasoftware.net) (accessed on 6 Oc-
tober 2022) was used to build a phylogeny based on the protein sequences of 15 MsMsr
genes, 14 AtMsr genes, and 22 GmMsr genes, a phylogenetic tree was constructed using
the maximum likelihood (ML) method. The P-distance model was used with 1000 replica-
tions and pairwise detection. All MsMsr genes were divided into the MsMsrA subgroup
and MsMsrB subgroup according to their evolutionary relationships with Msr genes in
Arabidopsis and soybean. The full-length amino acid sequences of MsMsr genes were com-
pared using MEGA 7.0. By using the genome and gene annotation information of alfalfa,
and using TBtools, the gene structures of 15 MsMsr genes were visualized and analyzed.
MEME (https://meme-suite.org/meme/tools/meme) (accessed on 6 October 2022) was
used to predict the MsMsr protein sequences of conserved motifs [52]. TBtools was used to
visualize the motif distribution.

4.3. Chromosomal Mapping, Gene Duplication, and Collinearity Analysis

Gene Location Visualize from the GTF/GFF function of TBtools was used to visualize
the chromosomal locations according to the genome annotation information. In addition,
to detect gene duplication events, TBtools was used for a collinearity analysis of 15 MsMsr
genes. Based on the results of the collinearity analysis, TBtools was used to calculate the
rates of non-synonymous substitutions (Ka) and synonymous substitutions (Ks) for each
pair of duplicated genes to analyze selection pressure.

4.4. Analysis of Cis-acting Elements in Promoter Regions

Using the genome and annotation information of the “Xinjiang Daye”, 15 upstream
2000 bp promoter sequences of MsMsr genes were extracted via TBtools. In previous
studies, the online program PlantCARE10 (http://bioinformatics.psb.ugent.be/webtools/
plantcare/html) (accessed on 7 October 2022) has been widely used for promoter element
analysis [53,54]. Therefore, we chose PlantCARE10 along with New PLACE (https://www.
dna.affrc.go.jp/PLACE/?action=newplace) (accessed on 8 October 2022) to predict cis-
regulatory elements in the upstream 2000 bp region of the MsMsr genes. The obtained
results were manually analyzed and sorted. TBtools was used to visualize the promoter
elements and draw heat maps of promoter element classification.

4.5. Transcriptome and Functional Enrichment Analyses of MsMsr Genes under Salt Treatment

We have previously carried out RNA-Seq analysis of “Zhongmu No. 1” under salt
stress in alfalfa. As we used the genome of the “Xinjiang Daye” variety, we used the se-
quences of 15 MsMsr genes from that variety as templates and used TBtools to perform Blast
comparisons on the transcriptome sequences. We identified the corresponding 15 MsMsr
genes, and NCBI CD-Search confirmed that all 15 genes belonged to the Msr gene family.
We used the Majorbio online (https://www.majorbio.com) (accessed on 1 October 2022)
platform to generate a heat map of gene expression in alfalfa under salt stress. The primer
sequences used in this study are shown in Table S6.

www.arabidopsis.org
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/004/515/GCF_000004515.6_Glycine_max_v4.0
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https://meme-suite.org/meme/tools/meme
http://bioinformatics.psb.ugent.be/webtools/plantcare/html
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4.6. Plant Materials and Growth Conditions

The “Zhongmu No. 1” seeds were placed in a petri dish with moist filter paper. After
5 days in the dark, we transferred the germinated seedlings to hydroponic nutrient solution
in Hogland’s solution, with the nutrient solution changed every 7 days. The plants were
placed in an artificial climate chamber with a light cycle of 16 h of light and 8 h of darkness,
a day/night temperature cycle of 25 ◦C/22 ◦C, and a relative humidity of 60–70%. After
25 days, alfalfa was subjected to 100 mM NaCl, 300 mM mannitol, and 10 uM ABA stress
treatment based on the Hogland’s nutrient solution. Roots, stems, and leaves were collected
at 0 h, 3 h, 6 h, 12 h, 24 h, and 6 d after salt treatment, and at 0 h, 3 h, 6 h, 12 h, 24 h, and
48 h after drought treatment, and at 0 h, 3 h, 6 h, 12 h, and 24 h after ABA treatment. All
samples were quickly frozen in liquid nitrogen and stored at −80 ◦C until use.

4.7. Quantitative Real-Time PCR Analysis

Fifteen MsMsr genes were selected for qRT-PCR analysis to validate the transcriptome
data of alfalfa under salt stress and to enrich the real-time expression data of the MsMsr
gene family under salt, drought, and ABA stress [55]. We extracted RNA using the FastPure
Plant Total RNA Isolation Kit (Vazyme Biotech Co., Ltd., Nanjing, China) following the
manufacturer’s instructions. We used Thermo Scientific™ NanoDrop™ One Microvolume
UV-Vis Spectrophotometers to quantify RNA samples, and then assessed RNA integrity
through 1% agarose gel electrophoresis. Specifically, we used a 1% agarose gel to visualize
RNA bands under UV light. The RNA was reverse-transcribed into cDNA using the
HiScript III® RT SuperMix for qRT-PCR (+gDNAwiper) (Vazyme Biotech Co., Ltd., Nanjing,
China), with consistent input amounts of RNA. We performed qRT-PCR using ChamQ
SYBR Color qRT-PCR MasterMix (Vazyme Biotech Co., Ltd., Nanjing, China) in the Bio-Rad
CFX96 Touch System, following the manufacturer’s instructions. The qRT-PCR program
consisted of a 30 s reaction at 95 ◦C, followed by 40 cycles of PCR, with each cycle consisting
of a 10 s reaction at 95 ◦C and a 30 s reaction at 60 ◦C. The MsActin gene (AA660796) was
used as the internal reference gene in qRT-PCR [56,57]. This sentence describes a qRT-PCR
analysis of the MsMsr gene family under salt stress. Using the Bio-Rad CFX Maestro
software 1.0 in conjunction with the LinRegPCR program, the amplification efficiency can
be detssermined. The experiment was conducted using biological triplicate samples, and
the data were analyzed using the 2−∆∆CT method. The results of the qRT-PCR analysis
were presented as the mean ± standard deviation (SD) of the expression levels at each time
point under salt stress and were then compared to the expression levels at 0 h. Statistical
significance was determined using Delta Cq data, and the significance is calculated using
Student’s t-test (n = 3, * p< 0.05). The t-test was used to determine the statistical significance
of the expression levels of the three replicates and their standard deviation under salt stress.
Heatmaps were generated to present the expression levels at each time point under drought
and ABA stress, with no clustering of the horizontal and vertical coordinates.

5. Conclusions

This study conducted a systematic and comprehensive bioinformatics analysis of the
MsMsr gene family in alfalfa for the first time. The expression patterns of the MsMsr genes
under salt, drought, and ABA stress were analyzed using transcriptome data and qRT-PCR
technology, enriching our understanding of this gene family and predicting its potential
biological functions in alfalfa.

This study identified 15 MsMsr genes in the “Xinjiang Daye” alfalfa genome. To
investigate the functions of the MsMsr gene family members, we predicted the subcellu-
lar localization of the 15 MsMsr proteins. Our results showed that they were primarily
located in the endoplasmic reticulum and its organelles, suggesting diverse functions. In
addition, to study the evolutionary relationship of the MsMsr gene family, we constructed
phylogenetic trees of multiple and single species and analyzed the MsMsr genes sequences.
Our findings revealed that the MsMsr gene family was divided into two highly conserved
subfamilies, MsMsrA and MsMsrB. Notably, MsMsrA7 and MsMsrB6 contained conserved
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domains from other gene families in addition to the PMSR and SelR domains of the MsrA
and MsrB subfamilies, respectively. In the analysis of promoter elements, the study focused
on stress and hormone-related response elements. The results showed that the MsMsr
gene family contains a variety of hormone-related response elements, such as ABA re-
sponse elements and MeJA response elements. Additionally, the gene family contains
various stress-related response elements, such as drought-inducibility, low-temperature-
responsiveness, and defense and stress-responsiveness elements. These findings indicate
that the MsMsr gene family may have a certain response to non-biological stresses. To
investigate the relationship between the MsMsr gene family and abiotic stress further, this
study used transcriptome data of alfalfa under salt stress. Furthermore, the study validated
the findings using qRT-PCR of alfalfa under salt, drought, and ABA stress. The results
demonstrate that the MsMsr gene family responds to salt, drought, and ABA stress.

In summary, this study provides a theoretical basis for exploring the gene function and
molecular mechanism of MsMsr gene family members, predicts that the MsMsr gene family
may play a key role in responding to abiotic stress, and suggests that further research is
needed to investigate whether the MsMsr genes have biological functions related to stress
resistance and whether it can be used for genetic breeding.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24119638/s1.
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