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Abstract: The rapid growth of genomics techniques has revolutionized and impacted, greatly and
positively, the knowledge of toxicology, ushering it into a “new era”: the era of genomic technology
(GT). This great advance permits us to analyze the whole genome, to know the gene response to
toxicants and environmental stressors, and to determine the specific profiles of gene expression, among
many other approaches. The aim of this work was to compile and narrate the recent research on GT
during the last 2 years (2020–2022). A literature search was managed using the PubMed and Medscape
interfaces on the Medline database. Relevant articles published in peer-reviewed journals were
retrieved and their main results and conclusions are mentioned briefly. It is quite important to form
a multidisciplinary taskforce on GT with the aim of designing and implementing a comprehensive,
collaborative, and a strategic work plan, prioritizing and assessing the most relevant diseases, so as to
decrease human morbimortality due to exposure to environmental chemicals and stressors.
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1. Introduction

The rapid growth of genomic techniques has revolutionized and impacted the knowl-
edge in medical science considerably and positively, and toxicology has ushered it into a
“new era”: the era of GT (Figure 1).
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Figure 1. Appropriate application for GT.

Indeed, with the use of the omics technologies, toxicology has evolved impressively,
and it is now possible to analyze the whole genome, elucidate the toxicant pathways, know
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the modes of action of toxicants, recognize the association between toxic stressors and
disease susceptibility, identify early biomarkers of disease, exposure, and risk, determine
drug targets, evaluate exposure assessment, hazard screening, cross-species extrapolation,
the dose–response relationship, developmental exposure, and the gene response to toxicants
and environmental stressors, and to determine specific profiles of gene expression through
various tools [1] (Figure 2).
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The incredible amounts of information generated using these omics approaches alone
or conjointly (Table 1) can be employed to design integral health programs with the aim
of decreasing human morbimortality due to the side effects of exposure to environmental
chemicals and stressors.
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Table 1. Relevant studies on GT in toxicology.

Omics
Field Matrix Aim Comment Omics Assessment Omics Database Author

Proteomics Rat spleen.
To evaluate iron oxide
nanoparticles toxicity

mechanism.

197 upregulated and 75 downregulated proteins,
the AKT/mTOR/TFEB in splenic macrophages, a

signaling route promoted autophagy and
lysosomal activation.

Tandem mass
tag-labeled quantitative

proteomics.

Uniprot,
geneontology.org,

genome.jp.

Han et al.,
2022 [2]

Proteomics Bothrops atrox
venom.

To measure changes in the
plasma proteome of a model

of envenomated mice.

B. atrox pathophysiology is caused by direct venom
toxicity and indirect mechanisms derived from the

tissue inflammatory response to envenomation,
such as thromboinflammatory changes in fat

metabolism and disturbances in the cell caused by
oxidative stress and effects on pathways that

regulate gene expression, survival, and cell cycle.

Shotgun proteomics
analysis, LC-MS/MS,

nanoelectrospray
ionization.

UniProtKB/Swiss-Prot,
PatternLab, DAVID.

Cavalcante
et al., 2022 [3]

Proteomics Adolescent rat
amygdala.

To measure changes in the
plasma proteome of a model

of envenomated mice.

B. atrox pathophysiology is caused by direct venom
toxicity and indirect mechanisms derived from the

tissue inflammatory response to envenomation,
such as thromboinflammatory changes in fat

metabolism and disturbances in the cell caused by
oxidative stress and effects on pathways that

regulate gene expression, survival, and cell cycle.

LC–MS/MS analysis,
electrospray ionization.

Thermo Proteome
Discoverer, DAVID.

Alugubelly
et al., 2021 [4]

TranscriptomicsRat testis and liver.

To generate apical, hormone,
and liver and testis
toxicogenomic data

following a short-term (14
day) exposure to

myclobutanil to compare
points of departure from

regulatory guideline studies.

Biological effects point of departure from a 14-day
study was sensitive apical POD across regulatory

guideline studies

Testis and liver
transcriptomic as RNA

sequencing.
TG-GATES. LaRocca et al.,

2020 [5]

Metabolomics Knockout Ahr−/−
mice.

To analyze AHR
contributions to metabolism
across multiple scales from
the organ to the organelle.

AHR interacts in the regulation of 290 metabolites
of biochemical pathways from fatty acids,

antioxidants, to uremic toxins, which demonstrates
different metabolic functions that AHR performs

throughout the body.

Global metabolic
profiling analysis.

Pubchem, ChemRICH,
Gene Expression

Omnibus.

Granados
et al., 2022 [6]
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Table 1. Cont.

Omics
Field Matrix Aim Comment Omics Assessment Omics Database Author

Metabolomics Mice liver.
To evaluate the combinate

toxicity of hexaconazole and
Arsenic (As).

As modifies amino-acid-related pathways and
metabolites linked to nerve disease, an insufficient
supply of energy, and a functional disorder of the

liver.

UPLC-MS/MS,
electrospray ion,

untargeted
metabolomics.

BiotreeDB. Sun et al.,
2021 [7]

Metabolomics Human plasma.

To identify plasma
metabolite changes under

conditions of high Pb
concentration and low

cognition.

20 dysregulated metabolites were found, and GO
analysis revealed their significance for both normal

brain function and the development of
neurodegenerative illnesses such as Parkinson’s

disease.

LC-MS, untargeted
metabolomic analysis.

Online Human
Metabolome Database.

Wang et al.,
2022 [8]

Epigenomics
Buccal and

peripheral blood
mononuclear cells.

To standardize
preprocessing data pipelines

and statistical methods to
detect As related DNAm

signatures.

As exposure has DNA methylation signatures in
individual regions and pathways also mechanisms

related to As toxicity.

850 k and 450 k
microarray,

epigenome-wide
association studies.

Kyoto Encyclopedia of
Genes and Genomes.

Bozack et al.,
2021 [9]

Epigenomics
Brain tissue of

C57BL/6 wild-type
and APP/PS mice.

To evaluate the As
epigenomic alterations in
pathophysiological neural

changes, in particular
histone methylation profile

manifesting as cognitive
decline.

Developmental As exposure affects histone
modifications in the brain that persist into

adulthood. A potential mechanism of As exposure
influencing cognitive function suppressing

biological processes related to neuronal
development.

Chromatin
immunoprecipitation

and sequencing.

Database for Annotation,
Visualization and

Integrated Discovery
(DAVID).

Fitz et al.,
2022 [10]

Epigenomics
Adult whole-blood-

derived
DNA.

To evaluate potential DNA
methylation processes and
correlations between heavy
metals and impairment of

activities of daily living
(ADL).

In older people, a higher incidence of ADL
impairment was linked to higher exposures to

manganese, copper, arsenic, and cadmium.
Possible DNA methylation pathways for various

heavy metals and possible biomarkers of ADL
were revealed by epigenome-wide associations.

Human methylation
EPIC bead chip array,

EWAS.

Kyoto Encyclopedia of
Genes and Genomes.

Xiao et al.,
2022 [11]

Transcriptomic
Human colon

mucosal epithelial
cells (NCM460).

To examine possible
outcomes and underlying
processes of exposure to

bisphenol S (BPS) on human
colon mucosal epithelial

cells (NCM460).

The gut–brain axis may become out of balance as a
result of exposure to BPS, which could cause the

NCM460 cells to produce inflammatory cytokines
and the destruction of tight junctions.

A multiomics study. Ao et al., 2021
[12]
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Table 1. Cont.

Omics
Field Matrix Aim Comment Omics Assessment Omics Database Author

Transcriptomic

The hTERT-
immortalized

human urothelial
cell line

(TRT-HU1).

To identify and validate
potential candidate

biomarkers for the detection,
prognosis, and treatment of

bladder cancer by
demonstrating the

gene-expression patterns
and transformative changes.

Stem cell activators may be crucial in helping
arsenic-exposed cells obtain a survival edge,

allowing healthy epithelial cells to reprogram into
a cancer stem cell phenotype, and ultimately

resulting in malignant transformation.

For high-quality
mapping reads to the

reference genome,
spliced transcripts were

aligned to a reference
(STAR version 2.7)

software.

STAR version 2.7 is free
open-source software

distributed under GPLv3
license and can be
downloaded from

http://code.google.
com/p/rna-star/

(accessed on 25 April
2023).

Shukla et al.,
2022 [13]

Proteomic

Parotid,
submandibular
(SM) sublingual

(SL) glands of rat.

To identify and validate
potential candidate

biomarkers for the detection,
prognosis, and treatment of

bladder cancer by
demonstrating the

gene-expression patterns
and transformative changes.

Stem cell activators may be crucial in helping
arsenic-exposed cells obtain a survival edge,

allowing healthy epithelial cells to reprogram into
a cancer stem cell phenotype, and ultimately

resulting in malignant transformation.

Mass spectrometry. networkanalyst.ca.

Cunha
Nascimento
et al., 2021

[14]

Proteomic
Blood of zebrafish
adults (Danio rerio,

AB-wild type).

To research multiplexed
quantitative proteomics for

zebrafish liver proteome
profiling using isobaric tags.

Aldehyde dehydrogenase expression was
downregulated, which caused a buildup of

aldehydes, which decreased the expression of
glyceraldehyde 3-phosphate dehydrogenase and

disrupted glucose homeostasis.

Liquid chromatography
mass spectrometry.

Gene Ontology (GO)
annotation dataset was
derived from DAVID

(https:
//david.ncifcrf.gov).

Gao et al.,
2022 [15]

Metabolomic

BEAS-2B
noncancerous

human bronchial
epithelial cells.

To treat human bronchial
epithelial cells with As for 6

to 24 weeks and assess
spatiotemporal metabolic
patterns of biomolecules,
cofactors, and xenobiotics
through global untargeted

metabolic analysis.

In the cells treated with As3+ for 6 to 13 weeks, a
significant suppression of all metabolites in the

mitochondrial tricarboxylic acid (TCA) cycle was
observed. This thorough metabolomics

investigation offers fresh perspectives on the
metabolic disruption caused by As and may result

in more precise evidence of its role in molecular
carcinogenesis.

584 molecules with
known identities are

included in the
metabolomics collection

and are referred to as
“biochemicals”.

UCSC genome browser. Fu et al., 2022
[16]

http://code.google.com/p/rna-star/
http://code.google.com/p/rna-star/
https://david.ncifcrf.gov
https://david.ncifcrf.gov
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In GT, the most common omics and frequently used are transcriptomics, proteomics,
and metabonomics or metabolomics. Transcriptomics is utilized to elucidate the mechanism
of action. Proteomics measures proteins expressed in the presence or absence of toxicity
to show the affected signaling pathways in order to determine possible biomarkers and to
evaluate toxicity after exposure; it is also used for the monitoring of disease development, early
diagnosis, and prognosis [2]. Metabolomics is related to the study of the metabolites present
in cells, tissues, organisms, and fluids that may establish variations in the levels of small
endogenous molecules as changes in a sequence of key metabolic events, such as “metabolite
fingerprints”, which will help to diagnose and define the ways in which specific chemicals,
environmental exposures, or stressors cause diseases [17]. Another interesting omics approach
is epigenetics, which plays a key role in individual development and in the appearance of
diseases through the regulation of gene expression, including the inhibition of transposon,
affecting promoters, and regulating chromatin states. The majority of studies on epigenetic
modification includes DNA methylation, histone modification, and noncoding RNA [18].
However, the application of metabolomic technologies is somewhat restricted worldwide, due
to speed, cost, and data quality [19]. In addition to omics technologies, machine learning (ML)
and artificial intelligence (AI) approaches are increasingly applied in different subject areas of
toxicology, and their applications are employed mainly for the prediction and evaluation of
the chemical, toxicokinetic, and toxicity properties of xenobiotics.

The aim of this work was to compile and narrate the recent research on GT during the
last 2 years.

2. Methods

According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [20], a review of the published literature were performed. Reviewed
papers were grouped according to their main research area and results are mentioned
concisely and briefly. A search of the literature was conducted using PubMed (https://
pubmed.ncbi.nlm.nih.gov) and Medscape (https://www.medscape.com) databases filtered
by publication date from 15 January 2020 to 5 September 2022. Keywords for searching
were, omics, GT, and toxicology. Relevant articles were published in peer-reviewed journals.
Selected articles were recent, and original and updated systematic reviews only if described
topics related to molecular technology applied in toxicology. Selected articles were reviewed
for all authors, including toxicants as metals, environmental pollutants, and hazardous
chemicals where gene techniques were used. Two hundred and ten articles were found
and only eighty-nine were included in this work.

3. Developmental and/or Reproductive Toxicity

Exposure to xenobiotics during pregnancy may cause developmental and/or reproduc-
tive toxicity; therefore, it is most important to identify those chemicals of high toxicity. Tung
et al. [21] proposed a genetic-algorithm-based method to develop a weight-of-evidence
(WoE) model and the authors identified 26 chemicals of concern with high toxicity, among
which 13 chemicals have been reported to be developmentally or reproductively toxic.

Spontaneous abortion or miscarriage is defined as the loss of a pregnancy of a gestation
of less than 20 weeks. The American College of Obstetricians and Gynecologists estimates
that this is the most common form of loss of pregnancy. It is estimated that as many as 26% of
all pregnancies and up to 10% of clinically recognized pregnancies end in miscarriage [22].
Risk factors for miscarriage are poorly studied. Harris et al. [23] utilized miscarriage (MeSH:
D000022) and chemical gene lists from the CTD in human, mouse, and rat. The authors ob-
served that several chemical gene sets (parathion, cadmium, naphthalene, carbon tetrachloride,
arsenic, lead, dieldrin, and atrazine) were highly enriched for miscarriage genes.

Testes are sensitive to tissue disruption, as they contain multiple cell types under con-
stant division and/or maturation, and it has been reported that 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD) exposure may increase the susceptibility. Haimbaugh et al. [24] compared
the results and conditions of two methods of transcriptomic examination on adult zebrafish

https://pubmed.ncbi.nlm.nih.gov
https://pubmed.ncbi.nlm.nih.gov
https://www.medscape.com
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testes exposed to TCDD during sexual differentiation. The results of these authors revealed
that TCDD-related genes may be overlooked by scRNA-Seq; however, this underdetection
effect is not mediated by exposure to this compound.

Phthalates or phthalate esters are esters of phthalic acid. They are mainly used as
plasticizers, to make plastics more durable. Chronic exposure to phthalates will adversely
influence the endocrine system and the functioning of multiple organs, involving negative
long-term impacts on the success of pregnancy, child growth and development, and repro-
ductive systems in the early stages of human life in men [25]. Baralić et al. [26] determined
and compared the capacity of bis (2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP),
bisphenol A (BPA), and their mixture to produce testicular toxicity. The authors found
effects on metabolism, the AhR pathway, apoptosis, and oxidative stress (OS) being singled
out as the most probable mechanisms involved in the subacute DEHP–DBP–BPA mixture of
testicular harm, while the effect on OS parameters was confirmed by an in vivo experiment.

Arsenic (As) poisoning and its possible reproductive functional damage comprise
a global environmental interest. Recent studies showed that spermiogenesis tends to
be a major target process in arsenic-induced male infertility; however, the underlying
mechanisms of this are not fully understood [27]. Some environmental pollutants give rise
to OS and DNA damage by inducing epigenetic alterations [28]. Lu et al. [29] studied the
impact of paternal exposure to arsenic on the human sperm DNA methylation status of
imprinting genes. The authors found that paternal nonoccupational exposure to arsenic
induces the altered DNA methylation status of Meg3 in human sperm DNA. These findings
would implicate the sensitivity of the sperm epigenome in terms of environmental pollution.

Polycystic ovary syndrome (PCOS) is the major endocrinopathy among reproductive-
aged women. It affects 4–20% of women of reproductive age worldwide, and it has been
associated with exposure to different contaminants [30,31]. Zeng et al. [32] downloaded,
from the Gene Expression Omnibus database, the RNA or miRNA expression-profile
datasets of patients with PCOS. These authors demonstrated that the protein–protein
interaction network revealed that MAP3K14 and TXNIP could keep interacting with both
hub genes PLK1 (degree = 21) and TLR1 (degree = 18), respectively.

Endocrine-disrupting compounds (EDC), metals, and metalloids are a persistent threat
to humans and wildlife due to their ability to interfere with endocrine signaling pathways.
To improve the identification of EDC hazards employing GT data, Sakhteman et al. [33]
developed a genomic-oriented data space for profiling the molecular activity of EDC in
silico and for creating predictive models that recognize and prioritize EDC.

4. Cancer

Cancer is a complicated disease in which cancer cells express epigenetic and transcrip-
tomic mechanisms to commence tumor initiation, progression, and survival. Characterizing
the interaction of the epigenome and the transcriptome is essential for understanding cancer
cell line behavior, but also for future disease treatment and drug development [34]. Breast,
cervical, and ovarian cancers are the three most common malignancies in women. Gong
et al. [35] identified the associations between chemical exposure and the aberrant expres-
sion, repression, or mutation of genes related with the more frequent cancers in women.
The authors identified five chemicals (NSC668394, glafenine, methylnitronitrosoguanidine,
fenofibrate, and methylparaben) that were associated with the incidence of breast cancer
and cervical cancer. Liu et al. [36] studied the differently expressed RNA binding proteins
between four subtypes of breast cancer and normal tissues. These authors concluded that
MRPL12, MRPL13, and POP1 might act as oncogenes in maintaining cellular viability and
stimulating the metastasis of breast cancer cells, involving the possibility of their being
designed as biomarkers and/or therapeutic targets for breast cancer.

Renal cell carcinoma (RCC) accounts for more than 400,000 new cases diagnosed
and about 180,000 deaths worldwide in 2020 [37]. High blood levels of heavy metals
have been associated with a variety of diseases, including cancer. Panaiyadiyan et al. [38]
discovered a notably higher concentration of As, Cu, Mn, Cd, Pb, and Hg in the blood
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of patients with RCC. Meng et al. [39] investigated the role of chromatin accessibility in
the development and progression of clear cell renal cell carcinoma (ccRCC). The authors
discovered five predictors (FSCN1, SLC17A9, ANKRD13B, ADCY2, and MAPT), and a
prognostic model based on these genes through the least-absolute-shrinkage and selection
operator–proportional hazards model (LASSO–Cox) analysis. These authors highlight the
important role of chromatin accessibility in ccRCC.

5. Cancer Cell Lines in GT

Cancer cell lines are the most used models for studying cancer biology, for validating
cancer targets, and for defining drug efficacy. Liu et al. [40] assessed whether transcriptomic
data can be utilized to support the assessment of toxicity by means of the comparison of
transcriptomic profiles from three cancer lines (HL60, MCF7, and PC3). The authors con-
cluded that the repurposing of existing cancer-related transcript-profiling data entertains
great potential for toxicity assessment, particularly in predicting limited-to-drug-induced
liver injury.

Schyman et al. [41] noted the expression of several common genes, including SPP1,
TNSF18, SERPINE1, CLDN4, TIMP1, CD44, and LGALS3, the activation of injury-specific
KEGG pathways, and the alteration of plasma metabolites involved in amino acid and bile
acid metabolism. The latter are some of the important molecular processes that changed
early after thioacetamide exposure and may have a significant impact on the onset of acute
liver injury.

HepaRG™ cells are mature hepatocyte-like cells that are metabolically competent cells
that express phase I and phase II metabolic enzymes, making them perfect for toxicity
testing. In order to identify DNA-damage-inducing (DDI) substances in human HepaRG™
cells, Buick et al. [42] evaluated the efficacy of the flow cytometry in vitro micronucleus
(MN) test and the GT-DNA-damage-inducing transcriptomic biomarker. According to
these authors, pairing the test techniques allowed for the accurate classification of all five
DDI and five non-DDI agents as genotoxic/nongenotoxic and DDI/non-DDI, respectively.

The majority of ToxCast in vitro screening lacks integrated physiological functionality
(such as receptor signaling, metabolism). Franzosa et al. [43], in an attempt to integrate this,
evaluated, in differentiated HepaRGTM cells, the expression of 93 gene transcripts by qPCR
arrays in response to 1060 chemicals. These authors used six transcription factors, including
the aryl hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, farnesoid
X receptor, and androgen receptor, as well as peroxisome-proliferator-activated receptor alpha,
to quantitatively model chemically induced changes in gene expression.

Different in vitro cell models have been utilized for the study of xenobiotic metabolism;
however, human in vitro liver-cell models may yield different results when employed in
human liver tissue. Similarly, but now in rat liver tissues, Luijten et al. [44] showed that a
relatively small number of matches observed in vitro were also observed in vivo. Human
HepaRG hepatocarcinoma cells that had been exposed to several genotoxins were used
by Kreuzer et al. [45] to compare transcriptome data, finding that a significant variance
was seen in the quantities and identities of differentially expressed genes, even when
similar-acting drugs were used in the same cell line. In addition to the previous data,
Gupta et al. [46] used RNA-Seq to analyze in vitro liver cell models in comparison with
human liver tissue (HepG2, HepaRG 3D iPSC-HLC, PHH, and 3D liver microtissues).
These authors found that 3D liver microtissues exhibited a high similarity with in vivo
liver, that HepG2 cells had the lowest similarity with human liver tissue, and that HepaRG
models, that is, iPSC-HLC and hPCLiS, had a range clearly behind that of the microtissues
and PHH, but that revealed a higher similarity to human liver tissue than HepG2 cells.

Tris (2-ethylhexyl) phosphate (TEHP) is a suspected hepatocarcinogen and an organophos-
phate flame retardant. Saquib et al. [47] used HepG2 cells treated with TEHP to evaluate
84 genes by qPCR array. The authors found 10 upregulated genes and four downregulated
genes belonging to a human cancer pathway. Perkins et al. [48] developed a causal subnetwork
of 28 nodes that represents the key event of regenerative proliferation. These authors found
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that Cyclin D1 was overexpressed after exposures to carbon tetrachloride, Aflatoxin B1, and
Thioacetamide, but not in exposures to Diazepam and Simvastatin.

6. Hazardous Chemicals

The IARC has categorized formaldehyde (FA) as a Group-I human carcinogen. It is
unknown how many individual genes, metabolic pathways, and FA-activating processes
work in human cells. Mohanty et al. [49] investigated the toxicogenomic and proteomic
alterations in liver of rats fed with FA. Gene Ontology analysis showed that binding,
catalysis, and signal transduction were affected in FA-fed rats. Pathway analysis revealed
that the formaldehyde exposure activated the PI3K-AKT pathway, leading to the inhibition
of caspase activity, and that FA could be less toxic and nontumorigenic at low concentrations.
Furthermore, Zhao et al. [50] used genome-wide CRISPR screening for loss-of-function
to find modulators of FA toxicity in the human hematopoietic K562 cell line. The authors
identified several potential genes that, when disrupted, enhanced sensitivity to FA (such
as ADH5, ESD, and the FANC family) or resistance (such as FASN and KDM6A). Kang
et al. [51] studied the toxic effects of inhaled formaldehyde and identified six upregulated
hub genes (AREG, CXCL2, HMOX1, PLAUR, PTGS2, and TIMP1).

U.S. law limits the use of active ingredients in pesticides or biocides for certain major
modes of action (MoA) in environmental nontarget organisms. Utilizing the zebrafish
embryo model, six nerve- and muscle-targeting insecticides with various MoAs were ex-
posed to a variety of sublethal doses, which Reinwald et al. [52] described as transcriptome
responses. There were 222 early responsive genes found, many of which were associated
with the following three main processes: (1) the formation and operation of cardiac muscle
cells; (2) oxygen transport and hypoxic stress; and (3) the growth and plasticity of neurons.
Chlorpyrifos and greater levels of abamectin both elevated the thyroid-related gene dio3b
and downregulated it. The most commonly differentially expressed genes were those
involved in the regulation of heart muscle (tcap) and forebrain development (npas4a) across
all insecticidal treatments. Alugubelly et al. [4] evaluated chlorpyrifos-methyl, which is an
organophosphate pesticide used to control insects on fruits, vegetables, and cereal plants,
and observed changes in protein expression and in the associated neurotransmitter systems
in the adolescent brain that are altered by early developmental exposure to chlorpyrifos; in
addition, even at low levels of chlorpyrifos, it inhibits fatty acid amide hydrolase, but not
acetylcholinesterase.

Another dangerous substance is nitrotoluene, which is widely used in photography
production and in colorant chemicals; additionally, it is explosive. Gust et al. [53] channeled
the adverse outcome pathways (AOP) concept to test the hypothesis that the inhibition of
PPARα signaling in nitrotoluene exposures impacted lipid metabolic processes. These au-
thors found the inhibition of nuclear transactivation for genes controlling lipid metabolism
and ketogenesis, the inhibition of fatty acid beta-oxidation and ketogenesis dynamics, and
a negative energy budget.

Exposure to bisphenol A (BPA) has been related to adverse effects on the repro-
ductive system and during development. Li et al. [54] evaluated BPA’s possible mode
of action (MOA) in terms of reproductive/developmental toxicity, neurological toxicity,
and proliferative effects on the mammary gland and the prostate that may be associated
with carcinogenesis. Based on their findings, it is possible that target genes for estrogen
receptor 1, estrogen receptor 2, mitogen-activated protein kinase 1 (MAPK1), MAPK3,
BCL2 (an apoptosis regulator), caspase 3, BAX, and androgen receptor, as well as AKT
serine/threonine kinase 1, are all related. The common phenotypes with various target
organs may include apoptosis, cell proliferation, the biosynthesis of testosterone, and the
biosynthesis of estrogen. The estrogen signaling pathway and cancer-related pathways
may also be involved in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
of the BPA-induced activity.

Among the main pollutants found in the air are the organic pollutants denominated
as polycyclic aromatic compounds (PACs), which are associated with cardiovascular-,
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immune-, and reproductive-system toxicity. Halappanavar et al. [55] revealed that nitrated
and oxygenated polycyclic aromatic hydrocarbons (PAHs) drive the response at lower con-
centrations, while specific PAHs drive the response at the highest concentration tested. On
the other hand, Kim et al. [56] employed primary human nasal epithelial cells (PHNEC) to
identify signaling changes brought on by exposure to diesel exhaust particles (DEP). Major
signaling changes in PHNEC brought on by DEP exposure were predicted to stimulate
pathways associated to inflammation and immune response that are mediated by TNF. Key
hub genes in the anticipated pathway, including CSF3, CXCL8, MMP1, and VEGFA, have
been identified.

In addition, Ðukić-Ćosić et al. [57] investigated the connection between the main air
pollutants (sulfur dioxide (SO), carbon monoxide (CO), particulate matter (PMx), nitrogen
dioxide (NO2), and ozone (O3)) and COVID-19 and discovered that SO2, CO, PMx, NO2,
and O3 interacted with 6, 6, 18, 9, and 12 COVID-19-related genes, respectively. This
is because it has been suggested that air pollution may have an impact on COVID-19
transmission, severity, and death rate. IL-10, IL-6, IL-1B, and TNF are present in all
pollutants involved in the majority (77.64%) of physical interactions.

The risk assessment of mixtures requires the efficient integration of in vivo, in vitro,
and in silico data with the data of epidemiology and human studies. Ruiz et al. [58] studied
toluene, ethylbenzene, and xylene (TEX) gene–disease associations utilizing CTD pathway
analysis, and the authors published microarray data from human gene-expression changes.
The results of these authors reveal that 236 of the genes expressed were common between
short- and long-term exposures. These genes could be central for the interconnecting
biological pathways potentially stimulated by TEX exposure, likely related to respiratory
and neurological diseases.

Graphene comprises a monolayer of carbon atoms tightly bound in a hexagonal lattice,
and it commands a wide use in industry. Poulsen et al. [59] explored the transcriptomic
differences in female C57BL/6 mouse lung and liver after pulmonary exposure to two
graphene-based materials (GBM). The most significant alterations were seen in the acute-
phase response and hepatic lipid homeostasis, both of which were highly stimulated by
graphene oxide exposure. In contrast to both GBM, exposure to graphene-oxide also
specifically caused changes in the transcriptome linked to fibrosis. These changes were
attributed to the generation of reactive oxygen species (ROS) and genotoxicity.

Dihydroxyacetone (DHA) is a skin-coloring agent, and it is used as a treatment for
patients with vitiligo. After its contact with the epidermis, it penetrates beyond the stratum
corneum to the keratinocytes; and its toxic effects have not yet been elucidated. Striz
et al. [60] exposed Normal Human Epidermal Keratinocyte (NHEK) cells to DHA, discover-
ing that primary keratinocytes are cytotoxic to DHA above 25 mM. Genotoxicity was only
found at cytotoxic concentrations, probably due to DNA damage that is not biologically
relevant, whereas subtoxic dosages caused alterations in gene expression and glycation.

Carboxylic acids are found widespread in nature, often combined with other func-
tional groups. Some carboxylic acids, such as valproic acid (VPA), which is used to treat
some forms of seizures in rats, are known to produce hepatic steatosis and significant birth
abnormalities, particularly damaging the brain and spinal cord. Vrijenhoek et al. [61] exam-
ined the transcriptome responses of primary human hepatocytes (PHH) to 18 structurally
different VPA analogs. According to the authors, active carboxylic acids influence the
regulation of free fatty acid production and stress pathway responses.

7. Metals

Cadmium (Cd) is a toxic metal that induces the dysregulation of divalent ion home-
ostasis, and the mechanisms of its recognized human carcinogenicity remain under in-
vestigation. Oldani et al. [62] isolated and characterized Cd-transformed differentially
expressed genes (DEGs) by whole genome microarray and bioinformatics analysis. These
authors reported that only 34 genes in common DEGs are found in cells from all foci, and
among these, only four genes are jointly upregulated (Ccl2, Ccl5, IL6, and Spp1), all of
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these responsible for cytokine/chemokine coding. On the other hand, Forcella et al. [63]
searched for any nonspecific molecular fingerprints using transcriptome data from cell
models that represented the three main Cd targets: lung (A549), hepatic (HepG2), and
neuronal (SH-SY-5Y) cells. The authors discovered dysregulated genes associated with
metabolic and detoxifying processes (as determined by gene ontology and KEGG).

To discriminate between metal and nonmetal toxicants, we can create prediction
models by identifying and using sensitive and specific gene markers. Yu et al. [64] proposed
that employing a microarray classifier analysis can not only uncover significant biomarkers
to understand the common and underlying harmful processes generated by metals, but
also construct diagnostic classifiers for identifying an exact metal contaminant.

Rehman et al. [65] developed a comprehensive genome-wide investigation to examine
the effects of many significant single nucleotide polymorphisms related to As exposure
on the methylome in order to comprehend how exposure to As modifies gene expression
through epigenetic alterations. The hypermethylation of CSE1L and TRRAP revealed a
distinct route (direct P53 effector) linked to the individual DNMT1a polymorphism and
provided the first proof of As-associated DNA methylation in connection to the expression
of the ATR, ATF7IP, TPM3, and UBE2J2 genes. Fu et al. [16] discovered that cells treated
with As3 had a significant suppression of all metabolites in the mitochondrial tricarboxylic
acid cycle. These findings could lead to more accurate descriptions of the role of As in
molecular carcinogenesis. With respect to malignant cell transformation by As, Shukla
et al. [13] reported that stem cell activators may be crucial in enabling As-exposed cells to
obtain a survival edge and reprogramming healthy epithelial cells into a cancer stem cell
phenotype. Rehman et al. [66] performed whole-genome gene-expression analysis in the
blood of subjects exposed to arsenic (As) using microarrays. Their findings validated crucial
signaling, growth factor, cancer, and other disease-related pathways that have been linked to
elevated levels of As exposure. The genes NDUFV3, IKBKB, IL6R, ADIPOR1, PPARA, OGT,
and FOXO1 looked to be highly downregulated, which further appeared to dramatically
increase the risk of NAFLD and diabetes. The combined toxicity of hexaconazole and
As was assessed by Sun et al. [7], and these authors concluded that As mainly altered
amino-acid-related metabolites and pathways related to nerve disease, energy deficiency,
and liver functional disorder.

Furthermore, As toxicity may result from epigenetic dysregulation, which includes
alterations in DNA methylation (DNAm). Combining the results from four EWAS using a
harmonized data processing and analysis pipeline and performing a meta-analysis, Bozack
et al. [9] found that lysosome, autophagy, and mTOR signaling, AMPK signaling, and one
carbon pool by folate were among the KEGG pathways associated with As, concluding that
standardizing analytical pipelines can help in identifying biologically meaningful signals.
Cognitive decline may result from As epigenomic changes in pathophysiological neural
changes, including histone–methylation profile.

Age-related impairment of activities of daily living (ADL) and disability have been
linked to higher exposures to manganese, copper, arsenic, and cadmium. Potential mech-
anisms of DNA methylation for various heavy metals and potential biomarkers of ADL
were highlighted by the epigenome-wide association of DNA methylation [11].

Parkinson disease (PD) is a movement disorder defined by the gradual degeneration
of dopaminergic neurons in the substantia nigra pars compacta, leading to dopamine
insufficiency in the striatum. A number of genetic changes have also been connected
to heavy metal exposure, even though the majority of PD cases are sporadic. Wang
et al. [8] found a significant reduction in docosahexaenoic acid, glycoursodeoxycholic acid,
and arachidonic acid, and a significant induction of p-cresol sulfate and phenylacetyl-l-
glutamine. In addition, through Gene Ontology (GO) analysis, these authors highlighted
the role in brain functions and neurodegenerative diseases such as Parkinson disease and
low cognition in subjects with high plasma Pb levels. In order to measure metal-induced
cognitive impairment, the authors of this paper offer unique insights into the utilization of
plasma metabolites. Cunha Nascimento et al. [14] assessed the effects of maternal MeHg
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exposure on the modulation of protein biomarkers in the parotid (PA), submandibular
(SM), and sublingual (SL) glands of offspring rats. The results showed significant changes
in the proteomic profiles of the PA, SM, and SL glands, the latter of which are linked to
cytoskeletal components, tissue morphogenesis, and response to stimulus and stress.

The toxicological profile of lanthanides, a metal widely used in multiple industries
such as optoelectronics and healthcare, has been incompletely characterized. Pallares
et al. [67] assessed the potential toxicity mechanisms in the lanthanide series utilizing a
functional GT approach in baker’s yeast. The protein–protein network analysis indicated
that a yeast response to lanthanides that relied on proteins that participate in regulatory
paths used for calcium and lanthanide toxicity included the disruption of biosynthetic
pathways by enzyme inhibition.

8. Plasticizers and Phthalates

Plastics are composed of many additives, such as plasticizers, stabilizers, antioxidants,
flame retardants, and others, which can affect the human health. Various genes are affected
by plastic additives and are related to apoptosis, cell death, proliferation, differentiation,
immunity, and insulin-related processes, and are mainly associated with cancer, mental
disorders, diabetes mellitus type II, and obesity. Sendra et al. [68] employed an integrative
approach in an attempt to identify the genes, biological processes, molecular functions,
and diseases linked with exposure to these compounds and found a strong interconnection
among the top 50 genes modulated by plastic additives.

Acetamide is the simplest amide derived from acetic acid and it is utilized as a
plasticizer, as an industrial solvent, and it has been detected in common foods. It is
classified as a group-2B (possible human carcinogen). Nault et al. [69] identified 1110 and
1814 differentially expressed genes in male and female rats, respectively, concluding that
acetamide is most likely acting through a mitogenic MoA.

Exposure to phthalate and bisphenol A have been associated with asthma and other
diseases. Baralić et al. [26] explored the mechanisms of bis (2-ethylhexyl) phthalate (DEHP),
dibutyl phthalate (DBP), and bisphenol A (BPA) mixture-induced asthma development. A
total of 24 DEHP, DBP, and BPA asthma-related genes were discovered by these researchers,
showing the three most likely mechanisms: apoptosis, inflammation, and oxidative stress,
demonstrating significant redox status alterations in their in vivo experiment. Bisphenol
S (BPS) has been introduced into the industry as a safer alternative to bisphenol A. The
mechanisms underlying BPS toxicity may be related to the chemical properties of BPS in
the human body, including interactions with estrogen receptors and binding to DNA and
some proteins, subsequently including the exertion of OS [70]. Ao et al. [12] investigated
the potential consequences and underlying mechanisms of BPS exposure on human colon
mucosal epithelial cells (NCM460) and they came to the conclusion that BPS may upset the
balance of the gut–brain axis, resulting in the production of inflammatory cytokines and
the destruction of tight junctions in NCM460 cells.

Another hazardous chemical is dibutyl phthalate (DBP), a chemical that is contin-
uously present in many consumer items and is thus present in the general population.
Although DBP predominantly affects the endocrine and reproductive systems, it can also
have an impact on the vasculature system’s functionality. Stanic et al. [71] integrated the
toxicogenomic data of human vascular endothelial cells (ECs) in order to infer pathways,
molecular activities, biological processes, and human diseases related to DBP exposure.
Nine genes, including six members of the integrin family, VCAM1, ICAM1, and MMP2,
were found to be affected by DBP exposure, according to these authors, who concluded
that changes in the DBP-affected genes could affect the extracellular matrix and the binding
of molecules and cells to ECs, changing cell adhesion and migration.

9. Nanomaterials

Omics methods have been used to investigate the toxicity of nanomaterials (NMs)
in order to learn more about their biological impacts. Epigenetic modifications have
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been linked to a number of NMs. The novel omics techniques might help exclude or
reduce the handling of hazardous NMs in the workplace and enable the adoption of
regulations to safeguard human health as researchers seek to understand the molecular
alterations involved in NM toxicity [72]. A sequential lineal adverse outcome pathway
(AOP) landscape is defined by the integrative investigation of the cellular and molecular
processes of nanotoxicity toward the discovery of related adverse consequences. NMs
have distinctive characteristics and particular toxicological problems that may constitute
uncharted AOP environments [73]. Saarimäki et al. [74] curated and reported a collection
of homogenized transcriptomics data from human, mouse, and rat ENM exposures in vitro
and in vivo in an effort to improve the fairness of already existing transcriptomic data
for engineered nanomaterials (ENM) due to the lack of an easily accessible and reusable
transcriptomics data collection for the potential toxicity mechanisms of ENM.

Nickel oxide nanoparticles (NiO-NPs) cause liver damage in both in vitro and in vivo test
models, and they have been employed in a number of consumer items. Using high-throughput
RNA sequencing (RNA-Seq) and microscopic techniques, Saquib et al.’s [75] toxicogenomic
method revealed hepatotoxicity in human hepatocellular carcinoma cells (HepG2). The
authors discovered that a treatment with NiO-NPs at a nontoxic dose resulted in a considerable
shift in the transcriptome at the mRNA and pathway level, as well as upregulation of hypoxia-
inducible transcription factor-1alpha (HIF-1α) and miR-210 microRNA.

Iron oxide nanoparticles (IONPs) could be used in the near future as an alterna-
tive in nanomedicine due to their potential applications in tumor therapy, drug deliv-
ery, or bioimaging; however, many xenobiotics may be recognized by the immune sys-
tem and may induce inflammation, hypersensitivity, or anaphylactic shock [76]. In the
AKT/mTOR/TFEB signaling pathway, Han et al. [2] evaluated the mechanisms of the
toxicity of iron oxide nanoparticles and found 197 upregulated and 75 downregulated
proteins that may promote autophagy and lysosomal activation in splenic macrophages.

10. Computational Biology/Toxicology

The evaluation of drug toxicity is a very important step in the development of novel
drugs. The evaluation of medication safety may be improved in many ways with the appli-
cation of current developments in machine learning techniques and the quick increase in
Big Toxicity Data, including molecular descriptors, toxicogenomics, and high-throughput
bioactivity data. Vo et al. [77] and, more recently, Lin and Chou [78] summarized the
most notable recent applications of machine learning (ML) and artificial intelligence (AI)
techniques in various areas of toxicology, including physiologically based pharmacokinetic
(PBPK) modeling, quantitative structure–activity relationship modeling for toxicity predic-
tion, adverse outcome pathway analysis, high-throughput screening, GT, Big Data, and
toxicological databases.

After considering different ML algorithms applied in two different splitting strategies,
Ochoteco et al. [79] reported that the random forest algorithm can predict proteins in new
samples of transcriptomic data with good accuracy. The authors’ proposed preprocessing
and model-building scripts can be accessed on GitHub.

One of the most important endpoints for the risk evaluation of food contact chemicals
(FCC) is carcinogenicity. Wang et al. [80] suggested a brand-new ML-based weight-of-
evidence (WoE) model for placing chemical carcinogenesis at the top of the list. A total of
44 chemicals with a high concern for carcinogenesis were selected from a list of 1623 FCC
as the top priority.

Recent computational methods have displayed good capacity in the prediction of
toxicity outcomes, have provided content relating to chemical exposure, and have become a
powerful tool that allows for the creation and administration of large genes or proteins [81].
Most gene-set analysis websites do not offer users the chance to modify their gene-set
database. The ToxPanel website was introduced by Schyman et al. [82] and allows users
to conduct gene-set analysis to evaluate liver and kidney injuries using activation scores
based on gene-expression fold-change values. The ToxicoDB, created by Nair et al. [83],
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incorporates information from extensive in vitro toxicogenomic studies, including gene-
expression profiles of primary human and rat hepatocytes treated with 231 potential
toxins. The gathered information can eventually be used in preclinical toxicity studies and
contribute to our growing understanding of negative outcomes.

To clarify connections between exposure to environmental chemicals and their mix-
tures and related health outcomes, effect biomarkers can be used. Zare et al.’s [84] research
highlights the potential of effect biomarkers for monitoring chemical exposures in general
and occupational populations, as well as the role of the adverse outcome pathway (AOP)
framework and physiologically based kinetic and dynamic (PBK/D) modeling. They also
provide an overview of the effect biomarkers that are currently available for this purpose.

Aguirre-Plans et al. [85] used phenotype-gene association data from DisGeNET and a
nonparametric test comparing the gene expression of DILI-Concern and No-DILI-Concern
drugs (per DILIrank definitions) in order to search for gene signatures in the CMap
gene-expression data. These authors came to the conclusion that while combining the
two features did not increase the classifiers’ quality, it did increase their robustness, as
demonstrated by independent holdout tests.

Krewski et al. [86] discussed the development of the vision for toxicity testing in the
twenty-first century and presented a vision for the next generation of risk science, incor-
porating risk-assessment methodologies appropriate for the analysis of new toxicological
and exposure data, toxicity testing, exposure measurement, and risk assessment, leading to
recommendations for human exposure.

Granados et al. [6] researched the aryl hydrocarbon receptor (AHR), a receptor that can
identify xenobiotics and control the expression of the genes responsible for their metabolism.
A total of 290 biochemical pathway metabolites, such as fatty acids, antioxidants, and ure-
mic toxins, are regulated by the AHR through interaction. When AHR expression is
reduced, abnormal aldehyde accumulation occurs. Glyceraldehyde 3-phosphate dehydro-
genase expression is also decreased, which disturbs glucose homeostasis. These effects
are caused by the proteome profiling of zebrafish livers using isobaric tags multiplexed
quantitative proteomics [15].

11. Concluding Remarks

There is no doubt concerning the great advance of knowledge in each of the areas of
toxicology with the use of the new omics methodologies, as well as of the implementation and
use of artificial intelligence and bioinformatics. This great advance, among many others, will
allow for the design of new preventive programs for the early detection of the most frequent,
disabling, and deadly diseases by identifying their biomarkers, and by understanding the
modes of action of xenobiotics and their relationship with the development and evolution of
diseases, as well as the creation of novel, safer, and more effective medications by determining
their specific targets at the genetic and molecular level.

In this new era of GT, many researchers are developing new and more complete and
complex research; however, many of them are working individually in their own areas of
expertise, which brings about a nonlinear and noncollaborative advance in the knowledge of
the most relevant and important diseases in humans. Therefore, it would be very convenient
and most pertinent for institutions, organizations, or international leaders in toxicology to
design and implement a comprehensive and collaborative work plan from the methodological
and analytical point of view, prioritizing the most relevant diseases, to assess and subsequently
invite every expert researcher in each of the areas of GT to collaborate in multidisciplinary
and multi-institutional projects with the aim of acquiring knowledge of the normal molecular
processes and how they can be affected by exposure to xenobiotics and environmental stressors,
in this fashion decreasing morbimortality in humans.
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