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Abstract: Estrus is crucial for cow fertility in modern dairy farms, but almost 50% of cows do not
show the behavioral signs of estrus due to silent estrus and lack of suitable and high-accuracy
methods to detect estrus. MiRNA and exosomes play essential roles in reproductive function and
may be developed as novel biomarkers in estrus detection. Thus, we analyzed the miRNA expression
patterns in milk exosomes during estrus and the effect of milk exosomes on hormone secretion in
cultured bovine granulosa cells in vitro. We found that the number of exosomes and the exosome
protein concentration in estrous cow milk were significantly lower than in non-estrous cow milk.
Moreover, 133 differentially expressed exosomal miRNAs were identified in estrous cow milk vs.
non-estrous cow milk. Functional enrichment analyses indicated that exosomal miRNAs were
involved in reproduction and hormone-synthesis-related pathways, such as cholesterol metabolism,
FoxO signaling pathway, Hippo signaling pathway, mTOR signaling pathway, steroid hormone
biosynthesis, Wnt signaling pathway and GnRH signaling pathway. Consistent with the enrichment
signaling pathways, exosomes derived from estrous and non-estrous cow milk both could promote
the secretion of estradiol and progesterone in cultured bovine granulosa cells. Furthermore, genes
related to hormonal synthesis (CYP19A1, CYP11A1, HSD3B1 and RUNX2) were up-regulated after
exosome treatment, while exosomes inhibited the expression of StAR. Moreover, estrous and non-
estrous cow-milk-derived exosomes both could increase the expression of bcl2 and decrease the
expression of p53, and did not influence the expression of caspase-3. To our knowledge, this is the first
study to investigate exosomal miRNA expression patterns during dairy cow estrus and the role of
exosomes in hormone secretion by bovine granulosa cells. Our findings provide a theoretical basis
for further investigating milk-derived exosomes and exosomal miRNA effects on ovary function and
reproduction. Moreover, bovine milk exosomes may have effects on the ovaries of human consumers
of pasteurized cow milk. These differential miRNAs might provide candidate biomarkers for the
diagnosis of dairy cow estrus and will assist in developing new therapeutic targets for cow infertility.
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1. Introduction

With the development of cow heritage improvement, milk production has significantly
increased. Conversely, reduced reproductive performance has been reported, including an
extended an estrus after partus, less pronounced estrous behavior and silent estruses [1-3],
although artificial insemination has been widely used. Cow estrus is crucial for fertility
and the profitability of modern dairy farms, and it affects milk production and the dairy
farm economic benefit. Hence, monitoring cow estrus is important for successful artificial
insemination and pregnancy. In spite of widely used artificial insemination, the pregnancy
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rate is still below 50% [4]. Reproductive hormones are the most viable option to induce
estrus followed by artificial insemination [5]. However, this method still needs to be im-
proved, and 5-30% of cows are not in estrus when they are inseminated [6]. Although many
estrus-detection methods have been used to monitor dairy cow estrus, these methods have
proven to be time-consuming, with higher cost and lower usefulness and effectiveness. Au-
tomated estrus-detection aids have been developed to take advantage of pressure-sensitive
devices, pedometers, activity monitors, radiotelemetric devices, temperature detectors,
neck-mounted activity tags and video systems [5,7,8], but these automated technologies
require special equipment and management, resulting in increased financial investments.

Milk is abundant and readily available, and many researchers have paid more at-
tention to monitor cow estrus by using the milk [2]. Moreover, collecting milk sample is
noninvasive and does not require additional handling of live animals [9]. During estrus,
the concentrations of fatty acids are greater in the urine of estrous cows than non-estrous
cows [10]. Furthermore, the concentrations of some milk fatty acids change during estrus
and non-estrus in lactating dairy cows; for example, the concentrations of acetic acid,
valeric acid, caproic acid and myristoleic acid are greater in estrous compared to non-
estrous cows [11]. Therefore, estrus could induce changes in the specific milk fatty acid
profiles [12,13]. In addition, Du et al. [14] reported that estrus had a significant effect on
milk production, including fat, protein, urea, total solids, and solid not fat, whose contents
increased in estrous compared to non-estrous cows. Moreover, estrus also could change
some of the wavenumbers in the water-absorption regions by mid-infrared spectroscopy
detected on the days before and on the day of estrus. Therefore, changes in milk and milk
components can be used as a potential means for detecting estrus expression.

Milk exosomes have attracted much attention by researchers and may be used as
biomarkers for detection [15]. Exosomes are membrane vesicles that are derived from
multiple cells and range in size from 30 to 150 nm in diameter. Moreover, exosomes contain
functional components including proteins, microRNA and messenger RNA [16]. Impor-
tantly, membranes of exosomes can protect the cargo from degradation by extracellular
proteases [17]. Evidence has shown that exosomes can be absorbed by the recipient cells
and then act as regulators to alter the recipient cell function through the transfer of their
cargo [18]. Recent studies have supported that exosomes play an important role in cell-to-
cell communication, cellular trafficking, immune function and reproduction [17,19,20]. In
addition, the cross talk between exosomal miRNAs and reproductive regulation is well
established, including steroid hormone secretion [21,22] and embryo implantation and
development [23,24]. However, to our knowledge, there is no related research on the
difference in milk exosomes derived from estrous and non-estrous dairy cows. Therefore,
the objective of this study was to investigate the miRNA expression profile and identify
estrus-associated miRNAs in milk-derived exosomes from estrous and non-estrous dairy
cows. Specifically, we explored the role of milk-derived exosomes in hormone secretion by
bovine granulosa cells.

2. Results
2.1. Identification of Exosomes Isolated from Cow Milk

The morphology and size of exosomes extracted from cow milk were first observed by
TEM. Cup-shaped, lipid-layer structures up to 200 nm in diameter were found (Figure 1A).
In addition, the expression of exosomal markers was detected via Western blotting, and
the results showed that the isolated milk exosomes abundantly contained the exosomal
markers CD63 and CD81 (Figure 1B), suggesting that exosomes were successfully isolated
from cow milk and could be used for further research.
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Figure 1. Identification of the exosomes isolated from cow milk after ultracentrifugation. (A) Trans-
mission electron microscopic (TEM) image of exosomes in milk. (B) Western blot of known exosome
markers (CD63 and CD81).

2.2. Characterization of Exosomes Derived from Estrous and Non-Estrous Cow Milk

To investigate the characteristics of the exosomes derived from estrous and non-estrous
cow milk, nanoparticle size distribution was used to examine the size of the exosomes. We
found that the mean size of estrous and non-estrous cow-milk-derived exosomes was 74.05
and 72.53 nm in diameter, respectively, and there was no significant difference between
them (Figure 2A, p > 0.05). Nano-flow cytometry analysis indicated fewer exosomes and
lower exosome protein concentration in estrous cow milk compared to non-estrous milk
(Figure 2B,C, p < 0.05). These data indicated that estrus can influence exosome secretion
and its function.
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Figure 2. Characterization of exosomes derived from estrous and non-estrous cow milk. (A) Na
no-flow cytometry analysis showing particle size distribution in exosomes derived from estrous and
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non-estrous cow milk. (B) Nano-flow cytometry showing the concentration of exosomes isolated
from estrous and non-estrous cow milk. (C) Concentration of exosome proteins isolated from estrous
and non-estrous cow milk. ns represents non-significant (p > 0.05), * p < 0.05. Data are presented as
the mean + standard deviation (SD).

2.3. Summary of Data Quality

Exosomal miRNAs were found to serve as biomarkers for diagnosis. Herein, RNA-seq
was preformed to reveal the function of exosomes in estrous and non-estrous cow milk.
After processing the raw sequencing data, clean reads were obtained from estrous and
non-estrous cow milk exosomes, and >91.26% of the reads were successfully coordinated to
the Bos taurus reference genome (ARS-UCD1.2, Supplementary Table S1). Further analysis
of identified miRNAs indicated that the length was mostly distributed on 21-23 nt. MiRNA
with size length of 22 nt accounted for the highest number, followed by 21 nt and 23 nt
(Figure 3, Supplementary Table S2).
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Figure 3. Length distribution of small RNA from BGISEQ-500 platform sequencing of milk exosome
samples (nt = nucleotides). Day0 and Day -3 represent estrous and non-estrous milk exosome
samples, respectively.

2.4. Identification of Differentially Expressed miRNAs

A total of 133 differentially expressed miRNAs were identified, including 70 known
miRNAs and 63 novel miRNAs (Supplementary Table S3). Among them, 52 miRNAs were
significantly upregulated in the exosomes derived from estrous compared with non-estrous
cow milk, and 81 miRNAs were significantly downregulated (Figure 4A). In addition, a
hierarchical clustering heatmap showed the expression pattern of differentially expressed
miRNAs between the estrous and non-estrous cow milk exosomes (Figure 4B).

2.5. miRNA Target Analysis

To further investigate the interaction between miRNA and mRNA /IncRNA, we
used databases, including RNAhybrid, miRanda and TargetScan, to predict target genes
of miRNAs. According to the identified differentially expressed miRNAs, a miRNA-
mRNA /IncRNA regulation network was built based on miRNA-mRNA /IncRNA interac-
tions (Figure 5, Supplementary Table 54).
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Figure 4. Identification of differential miRNAs in estrous and non-estrous cow milk exosomes.
(A) Volcano plots of milk exosomal differentially expressed miRNAs between estrous and non-estrous
cows. X-axis denotes fold change (log2); Y-axis refers to the q value (—log10). DEGS represents
differentially expressed miRNAs. (B) Hierarchical clustering of differential miRNAs.
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Figure 5. Prediction of miRNA-target interactions and construction of a miRNA-mRNA /IncRNA
regulatory network.
2.6. GO and KEGG Analysis of Differentially Expressed miRNA

GO enrichment analysis of the target genes of differentially expressed miRNA was
performed. The results showed that the target genes were mainly involved in biological pro-
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cesses, including cellular processes, biological regulation, metabolic processes, regulation
of biological processes, developmental processes, reproduction, reproduction processes and
signaling (Figure 6A, Supplementary Table S5). Moreover, the target genes related to the
cellular components were mainly associated with cells, cell parts, organelles, membranes,
protein-containing complexes and membrane-enclosed lumens. The target genes involved
in molecular functions mainly included binding, catalytic activity, molecular function regu-
lator, transcription regulator activity and transporter activity. The differentially expressed
miRNA may be beneficial for exosomes involved in regulating communication.
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Figure 6. Gene ontology (GO) and KEGG enrichment analysis. (A) GO enrichment analysis of
differentially expressed miRNAs. (B) KEGG enrichment analysis of differentially expressed miRNAs.
(C) KEGG enrichment analysis of the top 20 differentially expressed miRNAs.

According to KEGG enrichment analyses, signal transduction, signaling molecules and
interaction, transport and catabolism, lipid metabolism, endocrine system, development
and regeneration were closely connected to the exosome function and found to contain
higher numbers of the target miRNA genes (Figure 6B, Supplementary Table S6). The
top 20 pathways were identified based on the KEGG pathway analysis. Thyroid hor-
mone synthesis, parathyroid hormone synthesis and secretion, neuroactive ligand-receptor
interaction and steroid biosynthesis were among these pathways (Figure 6C).

2.7. Validation of miRNA Expression by qPCR

To evaluate the accuracy of sequencing, we selected ten differentially expressed miR-
NAs to verify the RNA-seq sequencing data by qPCR (Figure 7). The results of qPCR were
similar to the miRNA-sequencing in estrous and non-estrous cow-milk-derived exosomes,
which supported the reliability of the miRNA-sequencing.

2.8. The Effect of Exosomes on Hormone Secretion and Endocrine-Related Gene Expression

The level of estradiol and progesterone was measured 24 h after exosome treatment in
bovine granulosa cells. The results indicated 100 and 200 pg/mL exosomes derived from estrous
and non-estrous cow milk both could promote the production of progesterone and estradiol
compared to control (p < 0.05), and there was no significant difference between estrous and
non-estrous cow milk exosomes (p > 0.05, Supplementary Table S7). In addition, there was
no significant difference between 100 and 200 pg/mL exosomes in promoting the secretion of
estradiol and progesterone in granulosa cells (Figures 8D and 94, p > 0.05), suggesting that
milk-derived exosomes can induce the production of estradiol and progesterone.
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Figure 7. Quantitative verification results of miRNA. The relative expressions of 10 miRNAs in
estrous and non-estrous milk exosome samples were verified. * p < 0.05.
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Figure 8. Effects of milk exosome supplementation on progesterone secretion and endocrine-related
gene expression (CYP11A1, StAR and HSD3p1). The mRNA levels of CYP11A1 (A), HSD3p1 (B) and
StAR (C) were examined by real-time PCR in granulosa cells at 24 h after exosome supplementation
derived from estrous and non-estrous cow milk. The quantity of mRNA was normalized to that
of B-actin. Abundance of progesterone (D) was measured at 24 h in granulosa cell medium after
exosome supplementation derived from estrous and non-estrous cow milk. Statistical differences
were evaluated using one-way ANOVA. ns represents non-significant (p > 0.05), * p < 0.05. The
experiment was repeated three times independently.
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Figure 9. Effects of milk exosome supplementation on estradiol secretion and endocrine related gene
expression (CYP19A1 and RUNX2). Abundance of estradiol (A) was measured at 24 h in granulosa
cells medium after exosome supplementation derived from estrous and non-estrous cow milk. The
mRNA levels of CYP19A1 (B) and RUNX2 (C) were examined by real-time PCR in granulosa cells at
24 h after exosome supplementation derived from estrous and non-estrous cow milk. The quantity
of mRNA was normalized to that of B-actin. Statistical differences were evaluated using one-way
ANOVA. ns represents non-significant (p > 0.05), * p < 0.05. The experiment was repeated three
times independently.

To further confirm the effects of milk-derived exosomes on endocrine secretion, we
investigated the expression of several hormone-related genes (StAR, CYP19A1, CYP11A1,
RUNX2 and HSD3p1) by real-time PCR using 100 pg/mL exosomes (Supplementary
Table S7). The results showed that 100 ng/mL exosomes derived from estrous and non-
estrous cow milk significantly upregulated the expression of CYP19A1 and CYP11A1,
which encode the rate-limiting step for estradiol and progesterone synthesis, respectively
(Figure 8, p < 0.05). Moreover, the expression of RUNX2 and HSD31 involved in estradiol
and progesterone synthesis was significantly increased after exosome treatment, respec-
tively (Figures 8 and 9, p <0.05). The expression of StAR, an important regulator of
progesterone synthesis, was significantly inhibited after exosome treatment (Figure 8C,
p <0.05). Furthermore, there was no significant difference in the expression of StAR,
CYP19A1, CYP11A1 and HSD3B1 between estrous and non-estrous cow milk exosomes
(Figures 8 and 9, p > 0.05). However, the expression of RUNX2 was significantly higher in
exosomes derived from non-estrous cow milk than in exosomes derived from estrous cow
milk (Figure 9C, p < 0.05).

2.9. The Effect of Exosomes on Apoptosis-Related Gene Expression

To further reveal the effects of exosomes on bovine granulosa cell apoptosis, the ex-
pression of bcl2, caspase-3 and p53 were measured after exosome treatment. Estrous and non-
estrous cow milk exosomes both could promote the expression of bcl2 (Figure 10, p < 0.05),
while inhibiting the expression of p53 (Figure 10, p < 0.05, Supplementary Table S7), and
there was no difference between the estrous and non-estrous cow milk exosomes (Figure 10,
p > 0.05). In addition, exosomes derived from estrous and non-estrous cow milk did not
affect the expression of caspase-3 (Figure 10, p > 0.05). Therefore, milk exosomes could
inhibit bovine granulosa cell apoptosis.
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Figure 10. Effects of milk exosome supplementation on apoptosis-related gene expression (bcl2, p53
and caspase-3). The mRNA levels of bci2 (A), p53 (B) and caspase-3 (C) were examined by real-time
PCR in granulosa cells at 24 h after exosome supplementation derived from estrous and non-estrous
cow milk. The quantity of mRNA was normalized to that of $-actin. Statistical differences were
evaluated using one-way ANOVA. ns represents non-significant (p > 0.05), * p < 0.05. The experiment
was repeated three times.

3. Discussion

Estrus is important for optimizing the reproductive performance of dairy cows and
consequently improve farm profitability [25], but about 50% of cows ovulate without
expressing behavioral signs of estrus. Although there are many developed methods to
monitor cow estrus, how to use milk to detect estrus in cows is still a subject worthy of
consideration. Cow milk is a widely available source and contains many biomolecules,
including cytokines, chemokines, hormones and exosomes [15,26], and milk exosomes
play a role in reproduction. However, related research on how estrus affects the milk
exosome secretion is still lacking, especially exosomal miRNA expression and the role of
milk exosomes in the secretion of estradiol and progesterone in cultured bovine granulosa
cells. Therefore, in the present research, we investigated the difference in milk exosomal
miRNA expression between estrous and non-estrous dairy cows. We also explored the
effect of milk exosomes in regulating hormone secretion and related gene expression in
bovine granulosa cells. The results showed that estrus can indeed affect the milk exosomal
miRNA expression and the concentration of exosomes derived from milk, and exosomes
could influence the secretion of estradiol and progesterone as well as the related gene
expression. The findings of this research provide a theoretical basis to further evaluate the
role of milk exosomes and exosomal miRNAs in cow estrus.

Milk contains a variety of nutrients and bioactive agents, which are beneficial for
consumers [27]. How to use milk to monitor the state of cow estrus is still worthy of in-
vestigation. Indeed, numerous studies have assessed the relationship between the estrous
cycle and the consumption of milk and milk physical properties, and milk profiles could
potentially be taken into account for monitoring cows showing estrus [12]. Changes in milk
components, including urea content, somatic cell score, freezing point, pH and homogeniza-
tion index, indicate variation associated with the hormonal and behavioral changes of cows
undergoing estrus [13]. There are greater concentrations of fatty acids in milk on the day
of estrus compared days of non-estrus [10,11]. In addition to the above milk components,
exosomes and their miRNAs are emerging as novel functional components of milk [15,28].
To our knowledge, this is the first investigation where differences in milk exosomes on
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the days before and on the day of estrus have been reported. In the present research, we
found that the number of exosomes and protein concentration were significantly lower in
estrous cow milk than in non-estrous cow milk. Lopez et al. reported less time resting and
eating, more time walking and a reduction in milk yield in cows standing during estrus [29].
Therefore, estrus affects physical measures and milk yield, which may cause changes in
exosome number and protein concentration derived from milk.

Estrus in high-producing cows is negatively associated with milk production [30].
Hence, reproductive efficiency is a particular concern, making estrus detection a priority [6].
Numerous studies have evaluated methods to detect estrus expression, including milk
progesterone, milk profiles, heat mount detectors, activity monitors and wavenumbers in
the water-absorption regions of milk [12,14,31,32]. However, these methods need special
equipment and management, and about 20% of estrus expression is still not detected; thus,
the accuracy needs to improve [31]. There is growing interest in exploring methods for
estrus detection. The change in miRNAs has been investigated in follicles and plasma
during estrus. Ioannidis & Donadeu [33] revealed the dynamic nature of plasma miRNAs
during the estrous cycle and provide evidence of the feasibility of using circulating miRNAs
as biomarkers of reproductive function in livestock in the future. The ovarian stroma and
follicles exhibit differential expression miRNAs during estrus in goats [34,35]. Moreover,
Gad et al. [36] revealed that heifers with divergent responses to ovarian superstimulation
exhibited differential abundance of plasma extracellular vesicle miRNAs, which may be
used as a potential biomarker to predict individual animal responses. Previous research on
the characteristics of miRNAs mainly focused on ovaries, follicles and blood during estrus.
Exosomal miRNAs have been widely investigated and considered as potential biomarkers
for indicating mammals under normal or pathological conditions. In the present study,
potential miRNA biomarkers of the response to estrus were identified in cow milk exosomes.
We found that estrus could induce the differential expression of exosomal miRNAs, and
133 differentially expressed miRNAs were identified between the estrous and non-estrous
cow milk exosomes. Among them, bta-let-7a-3p, bta-miR-26a, bta-miR-199a-3p, bta-miR-
138, bta-miR-193a-3p and bta-miR-383 were involved in reproduction regulation. Let-7
family and miR-26a are considered the most abundant miRNAs in ovaries and follicles with
a potential role in ovarian function [37,38]. miR-383 has stimulatory effects on estradiol
production by mouse granulosa cells [39]. Consistent with the present study, plasma
extracellular vesicle miRNA profiles show that miR-199a-3p is commonly up-regulated
after superstimulation in both high- and low-responding heifers. Similarly, the expression
of miR-199a-3p is increased in dominant follicles compared to subordinate follicles on
day 7 of the estrous cycle in cattle [40]. Furthermore, miRNA contents of small follicular
extracellular vesicles are modified depending on the estrous cycle stage and are associated
with follicular P4 concentration [22]. The present results give more insights into potential
biomarkers to predict individual animal responses to estrus. However, the mechanism of
how estrus affects the expression of exosomal miRNAs in milk is still unknown.

Although milk exosomes are mainly secreted by the mammary glands [41], there
are no known published studies related to the source of milk exosomes. The mammary
blood flow volume is huge, about 30 L/min for the whole udder, while producing about
31.2 kg/d during lactation in dairy cows [42]. In addition, exosomes have been identified
in blood, and the number of exosomes is about 3.5 x 10'° [23]. In the present study, the
number of exosomes derived from milk (about 2 x 10'2) is significantly higher than the
exosomes in blood. This higher concentration of exosomes in milk may be due to circulating
exosomes existing in the huge mammary blood flow volume. It has been shown that blood
circulating exosome concentrations and abundance of exosomal miRNAs change during
pregnancy [23,43] and ovarian superstimulation [36], respectively.

Estradiol and progesterone are the main steroid hormones secreted by granulosa
cells and play an important role in regulating follicle development [44]. The level of
estradiol and progesterone in the follicle also reflects the stage of follicle development;
for instance, higher estradiol concentrations were found in dominant follicles compared
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with those destined for atresia [45,46], and the greatest progesterone concentration was
found in the largest follicles and related to the size of the follicles [47]. Moreover, the
decreased duration of estrus has been related to the reduced systemic concentrations
of estradiol and progesterone in high-producing lactating dairy cows [48]. Therefore,
the hormones secreted by granulosa cells are closely related to follicle development and
ovulatory capacity [44,49]. In the present research, we found that exosomes derived from
estrous and non-estrous dairy cow milk both could induce the production of estradiol
and progesterone in bovine granulosa cells. In addition, exosome treatment altering the
granulosa cell transcriptome showed that the main differential genes affecting estradiol and
progesterone synthesis were CYP19A1, CYP11A1, HSD3B1 and RUNX2. Consistent with the
present results, Yuan et al. [21] found that exosomes derived from follicular fluid promote
progesterone synthesis as well as CYP11A1 and HSD3f1 genes in porcine granulosa cells.
Curiously, contrary to promoting progesterone production, the expression of StAR was
significantly inhibited in granulosa cells by exosome treatment both in estrous and non-
estrous cow milk. Consistent with our study, the expression of StAR has a decreasing
expression pattern, despite an increase in progesterone level [22,50-52]. A possible reason
is that the high concentration of progesterone secreted by granulosa cells acts as a negative
feedback regulator of StAR levels [22,51-53]. The main reason is that StAR may be inhibited
from translocating cholesterol from outer to the inner mitochondrial membrane, with a
decreasing expression pattern as a rapid response to higher progesterone synthesis [51-53].
Hung et al. [54] also reported similar results that follicular fluid exosomes promoted
bovine granulosa cell proliferation. Similarly, extracellular vesicles obtained from small
follicles are associated with a large number of upregulated genes that modulate biological
processes involved in reproduction in cumulus cells [22]. Consistent with promoting
the secretion of steroid hormones, milk exosomal miRNA KEGG analysis indicated that
they were involved in cholesterol metabolism, FoxO signaling pathway, Hippo signaling
pathway, MAPK signaling pathway, mTOR signaling pathway, PI3K-Akt signaling pathway,
steroid hormone biosynthesis, TGF-beta signaling pathway, Wnt signaling pathway and
GnRH signaling pathway, which are relevant and important for follicle development and
oocyte maturation by regulating the biological processes, for instance, proliferation, cell
differentiation and steroid hormone biosynthesis [21,22,49,55-59]. Thus, these results
suggest that exosomes derived from milk could modulate estradiol and progesterone
synthesis in cultured granulosa cells, and then impact the ovary functions, especially
follicular development and oocyte maturation. However, the detailed mechanism is still
unknown and requires further study in the future.

In addition to the estradiol and progesterone mentioned above, the stage of granulosa
cells is also important and dictates follicular development and oocyte maturation [44].
Folliculogenesis is a dynamic process, from follicles to primary follicles, subsequently
into secondary follicles and eventually reaching the preovulatory stage, during which
99% of follicles undergo atresia [60,61]. Researches have shown that follicular atresia
can be initiated by granulosa cell apoptosis [60,62]. In the present study, we found that
exosomes derived from estrous and non-estrous cow milk both could promote bcl2 and
inhibit p53 gene expression. It is well known that bcl2 and p53 are involved in inhibiting
or inducing cell apoptosis, respectively [23,63]. Moreover, estradiol and progesterone can
also inhibit granulosa cell apoptosis [64,65]. A similar regulatory relationship is reported
in porcine granulosa cells and intestinal epithelial cells, wherein follicular fluid exosomes
and yak-milk-derived exosomes may inhibit cell apoptosis via the involvement of bcl2
and p53 [21,66,67]. Therefore, milk exosomes regulate granulosa cell function not only
through promoting estradiol and progesterone secretion but also by inhibiting granulosa
cell apoptosis.

One of the major characteristics is that the synthesis of estradiol by granulosa cells is
related to follicle development, oocyte maturation, ovulation and inhibiting granulosa cell
apoptosis [64,68]. Interestingly, the present results showed that milk-derived exosomes
could promote the secretion of estradiol and progesterone in bovine granulosa cells. How-
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ever, it is still worth studying whether milk exosomes regulate the hormone secretion of
human granulosa cells due to increasing cow milk consumption. Abundant milk miRNAs
are packaged into exosomes [41], and these miRNAs may then be involved in regulating the
granulosa cell function. Accumulated evidence has shown that miRNAs play an essential
role in regulating estradiol synthesis in granulosa cells. miR-383, miR-133b and miR-132
enhance estradiol release from mouse ovarian granulosa cells [39,69,70]. miR-21, miR-20b
and miR-31 repress their target gene expression in porcine granulosa cells to potentially
promote estradiol production [71,72]. Moreover, miR-21 carried by human mesenchymal
stem-cell-derived exosomes ultimately promotes estrogen secretion in ovarian granulosa
cells (KGN and SVOG cells) [73]. Follicular fluid exosome-carried miR-31-5p promotes the
proliferation of granulosa cells and progesterone synthesis in porcine granulosa cells [21].
Notably, milk exosomes reach the systemic circulation and accumulate in tissues following
suckling, oral gavage and intravenous administration in mice, pigs and humans [74,75]. In
addition, bovine milk exosomes and their miRNA cargo are bioavailable and accumulate in
the placenta and embryo in mice. Of importance, bovine milk exosome-dependent changes
in gene expression appear to promote embryonic growth and survival [76]. Therefore,
bovine milk exosomes may have effects on the ovaries of human consumers of pasteurized
cow ‘s milk. However, the mechanisms of the bovine milk exosomes how to regulate the
reproduction function require further study. Although milk exosomes exhibit beneficial
effects on granulosa cells, there is no evidence that milk exosomes reach the maternal circu-
lation. The structure of the blood-milk barrier and tight junctions in the entire mammary
gland might be involved in preventing an unhindered exchange from mammary gland to
blood [77]. However, this needs to be further investigated in the future.

4. Materials and Methods
4.1. Milk Samples

Milk samples (n = 10) were collected from a commercial dairy farm in Hebei province of
China. Lactating Holstein dairy cows with 1 parity were used in the present study. Feeding
and management of cows were performed as previously described [14]. In brief, the cows
were provided with a total mixed ration at 08:00, 16:00, and 24:00 h. Moreover, the cows
were milked in a milk carousel with 80 milk stalls at 07:00, 15:00, and 23:00 h. After 21 days
post-partum, the cows were synchronized with a Presynch-Ovsynch protocol as follows:
prostaglandin F2x (PGF2«, Sansheng Biological Technology Co., Ltd. Zhejiang, China);
14 days later, PGF2«; 7 days later, gonadotropin-releasing hormone (GnRH, Sansheng
Biological Technology Co., Ltd. Zhejiang, China); 7 days later, PGF2«; 3 days later, GnRH;
7 days later, GnRH; 7 days later, PGF2«; 24 h later, PGF2«; 32 h later, GnRH; and 14 h
later, timed artificial insemination. Additionally, the day of timed artificial insemination
was considered as day 0, and the pregnancy diagnosis was performed by an experienced
veterinarian using both rectal palpation and ultrasound examination 5 weeks after timed
artificial insemination. Milk samples were collected on day -3 and day 0 from the same
cow. The cow is considered estrous on day 0 when the pregnancy diagnosis is positive, and
non-estrous on day -3 before artificial insemination. About 40 mL of milk was sampled
during the morning milking. Samples were immediately sent back to the laboratory on dry
ice and kept at —80 °C until use.

4.2. Exosome Preparation

Milk collected from estrous (n = 5) and non-estrous (n =5) cows was used. The exosome
was isolated as described previously [66,78,79]. Briefly, 15 mL milk was centrifuged at
5000 g for 30 min at 4 °C to remove fat, large debris and cells. The supernatant was
centrifuged again at 12,000 x g for 30 min to eliminate residual fat and cell debris. Then,
an equal volume of 0.25 M EDTA (Sigma, St Louis, MO, USA, pH 7) was added to the
defatted supernatant, which was then incubated for 15 min on ice to precipitate casein and
exosomes coated with casein as described by Kusuma et al. [80]. The clear supernatant
was then passed through 0.45 um and 0.22 um filters to remove residual cell debris and
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ultracentrifuged at 120,000 g for 90 min at 4 °C (Beckman, SW41T rotor, Brea, CA, USA).
The pelleted exosomes were resuspended in PBS and then ultracentrifuged at 120,000 g
for 90 min at 4 °C for washing. Finally, the exosomes were resuspended in PBS and then
stored at —80 °C until use.

4.3. Transmission Electron Microscopy

The exosomes were placed on a 200 mesh copper grid for 2 min. Subsequently, excess
liquid was removed with filter paper, and the grid was negatively stained with 2% uranyl
acetate (Beijing Zhongjingkeyi Technology Co., Ltd., Beijing, China) for 1 min. The grid was
washed by moving it onto several drops of double-distilled water. The grid was air dried
and then observed by a transmission electron microscope at 100 kv (H-7650, HITACHI,
Tokyo, Japan).

4.4. Exosome Protein Quantification

The total protein concentrations of exosomes collected from estrous (n = 5) and non-
estrous cow milk (n = 5) were measured with the BCA Protein Assay Kit using bovine serum
albumin (BSA) as the standard according to the manufacturer’s instructions (Beyotime,
Shanghai, China). All samples were tested 3 times.

4.5. Exosome Characterization and Quantification

The concentration and size distribution of exosomes derived from estrous (n = 5)
and non-estrous cow milk (n = 5) were analyzed using nFCM (Nano-flow cytometry,
Xiamen, China) according to reported protocols [81,82]. Briefly, two single-photon counting
avalanche photodiodes (APDs) were used for the simultaneous detection of side scatter
(SSC) and fluorescence of individual particles. The instrument was calibrated for particle
concentration using 200 nm PE and AF488 fluorophore conjugated polystyrene beads
and for size distribution using Silica Nanosphere Cocktail (Cat. S16M-Exo, NanoFCM
Inc., Xiamen, China). Any particles that passed by the detector during a 1 min interval
were recorded in each test. All samples were diluted to attain a particle count within the
optimal range of 2000-12,000/min. Using the calibration curve, the flow rate and side
scattering intensity were converted into corresponding vesicle concentration and size on
the NanoFCM software (NanoFCM Profession V1.0).

4.6. Western Blot Analysis

The total protein extracted from exosomes was loaded onto gels and separated by
12% polyacrylamide gel electrophoresis, and then transferred to polyvinylidene fluoride
membrane (Millipore, Bedford, MA, USA). First, the blots were blocked and incubated
overnight with primary mouse monoclonal antibodies (CD63, sc-5275 and CD81, sc-23962,
Santa Cruz, Dallas, TX, USA) at 4 °C. Subsequently, the blots were incubated with HRP-
labeled anti-mouse secondary antibody (SC-2005, 1:5000; Santa Cruz, Dallas, TX, USA).
Finally, a ClarityWestern ECL kit was used for detection (Bio-Rad Laboratories, Hercules,
CA, USA), and the bands were exposed using a ChemiDocXRS chemiluminescent imaging
system (Bio-Rad, Hercules, CA, USA).

4.7. Small RNA Sequencing

Total RNA was isolated from milk exosomes derived from estrous (n = 3) and non-
estrous cow milk (n = 3) using QIAzol Lysis Reagent (QIAGEN, Valencia, CA, USA).
MiRNA regions of 18-30 nt were isolated and purified using a 15% urea PAGE gel. Sub-
sequently, these purified miRNAs were combined with 3’ Adapter and 5 Adapter. Then,
the adapter-ligated miRNA underwent a reverse transcript reaction using SuperScript
II Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA), followed by 15 cycles of PCR
amplification to enrich the cDNA fragments. The second size selection was carried out,
and 100-120 bp fragments were selected from the gel and purified using the QIAquick
Gel Extraction Kit (QIAGEN, Valencia, CA, USA). The distribution of the fragment sizes
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obtained was checked by an Agilent 2100 bioanalyzer (Thermo Fisher Scientific, Waltham,
MA, USA). Single-stranded PCR products were produced via denaturation, which gave the
final miRNA library. miRNA profiling was accomplished using the BGISEQ-500 platform
(BGI, Wuhan, China).

4.8. MiRNA Analysis

Clean tags were obtained by processing the raw sequencing data as follows: removing
low-quality tags, tags with 5’ primer contaminants and without 3’ primer; tags without
insertions, tags with poly A and tags shorter than 15 nt. After filtering, the clean tags
were mapped to the Bos taurus reference genome (ARS-UCD1.2) and other sRNA databases
including miRbase, siRNA, piRNA and snoRNA with Bowtie2 [83]. The miRNA expression
level was calculated by counting absolute numbers of molecules using unique molecu-
lar identifiers [84]. Differential expression analysis was performed using the DESeq [85]
on the Dr. Tom Multi-omics Data Mining System (https:/ /biosys.bgi.com (accessed on
22 November 2021). Q value < 0.05 and [1og2FC| > 1 was used to consider the signifi-
cance of expression differences. For target gene prediction, we applied RNAhybrid [86],
miRanda [87] and TargetScan [88] to predict target genes of miRNAs. For annotation, all
target genes were aligned against the Kyoto Encyclopedia of Genes (KEGG) and Gene
Ontology database and performed using phyper, a function of R on the Dr. Tom Multi-
omics Data Mining System (https:/ /biosys.bgi.com (accessed on 22 November 2021). A
p-value < 0.05 was defined as indicating significantly enriched terms.

4.9. Bovine Granulosa Cell Culture and Treatment with Exosomes

Granulosa cell isolation followed our previously described protocol [89-91]. Bovine
ovaries were obtained from the local abattoir and sent back to the laboratory in a thermos
cup. About 80 bovine ovaries were collected by washing three times using 70% alcohol,
and then the ovaries were washed three times in sterile 0.9% NaCl to remove alcohol. The
follicular fluid was obtained from follicles with a diameter of 5-8 mm and was centrifugated
at 1500 rpm for 5 min. The collected cell pellets were digested by 0.25% trypsin with 0.025%
EDTA (Gibco, Grand Island, NY, USA) for 5 min. After being digested, the cell pellets were
centrifugated again and dispersed in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco,
Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS; Hyclone, UT,
USA) and antibiotics including streptomyecin (50 pg/mL), penicillin (50 IU/mL) (Pen-Strep,
Invitrogen, Carlsbad, CA, USA) and plasmocin (25 pg/mL; Invivogen, San Diego, USA).
The granulosa cells were finally cultured in an incubator at 37 °C and containing 5% CO,.
In this study, the experimental protocols were reviewed and approved by the Huazhong
Agriculture University Institutional Committee on Animal Care and Use. For cell treatment,
exosomes at a concentration of 100 pg/mL were added after the granulosa cells and
reached 70-80% confluency. The granulosa cells and culture medium were collected for
further research.

4.10. Detection of Expression of miRNAs and Genes by Real-Time PCR

Granulosa cells were harvested after treatment for 24 h with cow-milk-derived exo-
somes. The total RNA was extracted using an RNAprep Pure Cell Kit (Tiangen, Beijing,
China), and then the first strand cDNA was synthesized with oligo (dT) using a cDNA
Synthesis Kit (Thermo Scientific, Waltham, MA, USA) with DNasel. Briefly, quantitative
real-time PCR was performed on a LightCycler 480 II Real-Time PCR System (Roche,
Penzberg, Germany) containing LightCycler 480 SYBR Green I Master Mix (5 uL), specific
primer (0.5 pM for each primer), reverse transcribed cDNA (1 pL), and RNase and DNase-
free ddH,O (3 pL). Amplification was performed as follows: 95 °C for 5 min, 40 cycles at
95 °C for 20 s, corresponding annealing temperatures for 20 s, 72 °C for 20 s; and a melting
curve analysis was performed from 65 °C to 95 °C to confirm specific PCR products. The
milk-derived exosome miRNAs and granulosa cell genes were detected according to the
protocol of the miRcute Plus miRNA First Strand cDNA Kit and qPCR Kit (Tiangen, Beijing,
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China). The primers designed for detecting mRNA and miRNAs are listed in Table 1.
Finally, the relative expression of mRNAs and miRNA was normalized to 3-actin or U6
levels, and the expression levels were analyzed using the 2~ *4¢T method [92].

Table 1. Sequences of primer pairs for quantitative real-time PCR.

Gene Forward Primer Sequence (5'—3') Reverse Primer Sequence (5'—3')
CYP11A1 ATGCTGGAGGAGACAGTGAACC GCAGTAGAGGATGCCTGGGTAA
CYP19A1 CACCCATCTTTGCCAGGTAGTC ACCCACAGGAGGTAAGCCTATAAA

StAR GTG GAT TTT GCC AAT CACCT TTATTG AAA ACG TGC CAC CA

RUNX2 AAGGCAAGGCTAGGTGGAAT AGAGGGGCACAGACTTITGAA
HSD-33 TGCCACAATCTGACCGCATC CTCCACCAACAGGCAGATGA
Bcl-2 CGCATCGTGGCCTTCTTTGAGTT GCCGGTTCAGGTACTCAGTCAT
p53 CCTCCCAGAAGACCTACCCT CTCCGTCATGTGCTCCAACT
Caspase-3 CAGACAGTGGTGCTGAGGATGA GCTACCTTTCGGTTAACCCGA
[-actin CATCGGCAATGAGCGGTTCC CCGTGTTGGCGTAGAGGTCC
bta-miR-3141 AACAATGAGGGCGGGTGGA

bta-miR-154a
bta-miR-432
bta-miR-339b
bta-let-7a-3p

bta-miR-1777a
bta-miR-29¢
bta-miR-502b
bta-miR-664a
bta-miR-409b

U6

ACCACCGTAGGTTATCCGTGT
AACCGGTCTTGGAGTAGGTCA
AACAAGTCCCTGTCCTCCAGG

CTATACAATCTACTGTCTTTC
ATTAATTGGGGGCGGTGGG
GGGTAGCACCATTTGAAAT

AACCATGAATCCACCTGGGC

AACGATACAGGCTGGGGTGT

AACAATGGGGTTCACCGAGC

GCTTCGGCAGCACATATACTAAAAT

4.11. Endocrine Secretion Detection

The hormone level was assessed in granulosa cells treated with exosomes derived
from milk. The culture medium was collected 24 h after the granulosa cell treatment
with exosomes. The cell culture medium was collected and centrifuged at 1000x g for
15 min. Finally, the culture medium was frozen at —80 °C until use. The measurement of
progesterone and estradiol were carried out according to the manufacturer’s protocols of
the bovine enzyme-linked immunosorbent assay (ELISA) kits (Shanghai Bogoo Biological
Technology Co., Ltd., Shanghai, China). The sensitivity of estradiol was 1.0 pg/mL, and
that of progesterone was 0.1 ng/mL.

4.12. Statistical Analysis

The data are presented as the mean =+ standard deviation (SD) of three replicates.
Significant differences were determined using one-way ANOVA with SPSS V17, and
treatment means were compared using Tukey’s test for post-hoc multiple comparisons in
SPSS V17 software. A t-test was used to determine the significance of differences between
two groups. p < 0.05 was considered to indicate a significant difference.

5. Conclusions

This study first demonstrated the character of exosomes derived from estrous and
non-estrous cow milk and the differentially expressed exosomal miRNAs. The results
indicated that cow estrus could affect the milk exosome secretion and the expression of
exosomal miRNAs, and the differentially expressed exosomal miRNAs were involved in
reproduction and steroid hormone biosynthesis signaling pathways. Importantly, estrous
and non-estrous cow-milk-derived exosomes both could promote the secretion of estradiol
and progesterone in bovine granulosa cells. In addition, we found that milk exosomes
could inhibit bovine granulosa cell apoptosis-related gene expression. This basic research
also provides a basis for further investigating milk-derived exosomes and exosomal miRNA
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effects on ovary function and reproduction. However, more research is required to explore
the role of exosomes in improving reproductive efficiency in an in vivo model.
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