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Abstract: The proto-oncogenic protein, c-KIT, plays a crucial role in regulating cellular transformation
and differentiation processes, such as proliferation, survival, adhesion, and chemotaxis. The overex-
pression of, and mutations, in c-KIT can lead to its dysregulation and promote various human cancers,
particularly gastrointestinal stromal tumors (GISTs); approximately 80–85% of cases are associated
with oncogenic mutations in the KIT gene. Inhibition of c-KIT has emerged as a promising therapeutic
target for GISTs. However, the currently approved drugs are associated with resistance and significant
side effects, highlighting the urgent need to develop highly selective c-KIT inhibitors that are not
affected by these mutations for GISTs. Herein, the recent research efforts in medicinal chemistry
aimed at developing potent small-molecule c-KIT inhibitors with high kinase selectivity for GISTs
are discussed from a structure–activity relationship perspective. Moreover, the synthetic pathways,
pharmacokinetic properties, and binding patterns of the inhibitors are also discussed to facilitate
future development of more potent and pharmacokinetically stable small-molecule c-KIT inhibitors.

Keywords: c-KIT; GISTs; stem cell growth factor; c-KIT inhibitors; SAR; SCFR

1. Introduction

The majority of mesenchymal neoplasms of the digestive system are gastrointestinal
stromal tumors (GISTs), which develop from interstitial Cajal cells [1,2]. GISTs typically
manifest as a sharply demarcated submucosal or subserosal mass in the small intes-
tine (25%) and stomach (60%), but can also occur less commonly in the colon, rectum,
esophagus, mesentery, and omentum [3,4]. They often have spindled (70%), epithelioid
(20%), or mixed (10%) cytomorphology characteristics. GISTs associated with neurofi-
bromatosis type 1 are typically found in the stomach, have a distinctive multilobular
or plexiform architecture, and exhibit either an epithelioid or mixed morphology, but
almost never a pure spindle-cell morphology [5]. They are also more likely to occur
in multiple locations and to have a spindle-shaped morphology. Anemia, indigestion,
bleeding, and abdominal pain brought on by stressful situations are some of the typical
clinical signs and symptoms of GISTs [6].

The KIT receptor tyrosine kinase gene, which codes for c-KIT (also known as mast/stem
cell growth factor receptor, SCFR, or CD117), has been found to have primary activating
mutations in approximately 90% of GISTs. c-KIT is a type III receptor tyrosine kinase that
is present on the surface of hematopoietic stem cells and other cell types [7,8]. When it
interacts to its cognate ligand stem cell factor (SCF), it becomes activated. A role in the
control of cell survival, proliferation, and differentiation is played by this binding, which
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leads to the production of receptor dimers, which, in turn, phosphorylate and activate
signal transduction molecules in the cell [9–11]. Exon 11, which codes for the JM region
and destroys its autoinhibitory function, is where c-KIT mutations most frequently oc-
cur [12]. This results in continual activation of c-KIT. One of the hotspots of the c-kit gene,
codons 550 and 560, is where the majority of these exon 11 mutations occur as deletions
and clusters [13]. Other, less frequent mutations in exon 9, which codes for the EC region
of c-KIT, include an internal tandem duplication of Ala502-Tyr503, which simulates the
conformational change that occurs when c-KIT dimerizes after binding to SCF [13,14].
With a combined frequency of 1–2% across all GISTs, mutations in exons 13 (encoding
the ATP-binding region of c-KIT) and 17 (encoding the activation loop of the kinase) are
extremely uncommon (Figure 1) [15].
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Cancer stemness, also known as the cancer stem cell (CSC) phenotype, is described as a
subset of cancer cells that have the capacity to self-renew, specialize into specific progenies,
initiate tumor growth, and promote metastasis, recurrence, and therapy resistance [16–18].
In several malignancies, stemness has been connected to c-KIT. Research using spheroid
cultures obtained from tumor cells from patients with colon cancer grown in serum-free
and non-adherent plates—a technique frequently used to study CSCs—have linked c-KIT
expression to cancer stemness, and mounting evidence implies a role of c-KIT in colon
cancer stemness [19,20]. Recent investigations have shown that more differentiated colon
tumor cells release SCF, which affects the proliferation of CSC-like colon tumor cells that
express c-KIT [21]. This suggests the possibility of a paracrine mechanism wherein SCF can
activate CSC-like cells present in colonospheres. Recent research has also shown that c-KIT
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increases CSC characteristics in colorectal cancer cells, including the expression of CD44
and other stem cell markers [22,23].

Imatinib, a c-KIT inhibitor, has been shown to be effective in treating GISTs, but
it has also been linked to primary resistance in some oncogenic mutations, and sec-
ondary resistance has frequently emerged [24,25]. Imatinib therapy has a success rate
of roughly 70% in the treatment of GISTs with main mutations [26]. After an average
of two years, however, acquired resistance is seen in 40–50% of cases [27,28]. Patients
with imatinib-resistant GISTs most frequently have the V654A exon 13 resistance mu-
tation [29]. Sunitinib, regorafenib, and ripretinib, which have been approved for the
treatment of GISTs, only partially target these resistance mutations and do not improve
the overall response rate, as evidenced by their limited therapeutic benefit. Furthermore,
these therapies are associated with significant adverse effects (Figure 2) [30–33]. Thus,
there is a critical need for the creation of effective inhibitors for the resistance mutation
KIT V654A. Herein, small-molecule c-KIT inhibitors that have been reported to be effec-
tive against GISTs are reviewed from a structure–activity relationship (SAR) perspective.
It is important to note that only reported c-kit inhibitors with a sufficient number of
derivatives to derive a SAR were discussed. Moreover, for each discussed series, the
synthetic route as well as the binding pattern (if available) are discussed in detail in an
effort to accelerate the discovery of novel c-KIT inhibitors for the treatment of GISTs. The
synthesis and Schemes S1–S25 for all the compounds are available in the supplementary
information (ref. [34–39]).
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2. c-KIT Inhibitors Targeting GIST

Wang et al. designed and synthesized a novel series of substituted N-(4-methyl-
3-(piperidin-4-yloxy)phenyl) amide derivatives, and the 27 synthesized compounds
were screened for type-II c-KIT inhibition activity for GISTs against the Tel-c-KIT-BaF3,
Parental BaF3, K562 cell lines [40]. EL-c-KIT-BaF3 and parental BaF3 cells were employed
to monitor the activity, while K562 cells were used to monitor BCR-ABL inhibitory
activity. The CF3 group substitution at the meta-position of the benzene as R3 was
selected as a beginning point for the SAR study. Replacement of the aromatic amine
linker of I to a flexible 2-carbon aliphatic ether linker at the R2 fragment (6a and 6b)
showed a 20–25-fold loss of growth inhibitory activity against TEL-c-KIT-BaF3 cells.
After replacement of the aliphatic chain with the piperidine ring (6c), the c-KIT activity
was improved by 3–4-fold compared with compound I (GI50 = 0.11 vs. 0.40 µM) and
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demonstrated good selectivity between TEL-c-KIT-BaF3 and the parental BaF3 cells
(GI50 ≥ 10 µM). In addition, this compound showed moderate BCR-ABL inhibitory
activity (GI50 = 2.94 µM). Relocation of the R1 fragment nitrogen position (6d and 6e)
led to the complete loss of BCR-ABL inhibitory activity but maintained c-KIT inhibitory
activity (GI50 = 0.33 and 0.19 µM, respectively) and selectivity over the parental BaF3 cells
(GI50 ≥ 10 µM). Replacing pyridine with a five-membered heterocyclic group (6f) in R1
drastically improved the BCR-ABL activity (GI50 = 0.16 µM). Loss of c-KIT activity was
observed when the aromatic ring in the R1 fragment was replaced with aliphatic chains,
such as ethyl (6g) and ethylene (6h). The c-KIT inhibitory activity was abolished when
the ether linkage was shifted to the three-position from the four-position of the piperidine
(6i and 6j) in R2, along with the replacement of the methyl group to a hydrogen atom in
R4. Furthermore, a 4–5-fold loss of c-KIT activity (GI50 = 0.49 vs. 0.11 µM) was observed
when the methyl group in R4 of 6c was replaced with a hydrogen atom (6k). When the
methyl group was substituted with an electron-withdrawing group (-Cl), compound
6l displayed a nine-fold loss of activity against c-KIT (GI50 = 0.96 µM), and when it was
substituted with an electron-donating group (-Ome), compound 6m showed complete
loss of c-KIT activity (Table 1).

These results demonstrate that the piperidine ring in the R2 fragment and the methyl
ring in the R4 fragment play important roles in achieving high inhibitory activity. By
keeping intact the ether linked piperidine at R2, the introduction of a methyl group at the
four-position of the benzene ring (6n) led to a six-fold improvement in the c-KIT activity
(GI50 = 0.031 vs. 0.11 µM) through a loss of selectivity against K562 (GI50 = 2.32 µM) and
BaF3 cells (GI50 = 6.39 µM). Replacement of the R1 fragment with other heterocyclic
groups (6o, 6p, and 6q) and the introduction of a –Cl (6r, 6s) or –F (6t) atom at the
five-position of the benzene ring in the R3 fragment led to improved BCR-ABL inhibitory
activity and c-KIT inhibitory activity, respectively. The pyridine ring in R3 (6u and 6v)
resulted in complete loss of activity against c-KIT and BCR-ABL, and the replacement
of the CF3 group in R3 with a methoxy group (10a) led to 15-fold activity loss against
c-KIT compared with 6c (GI50 = 1.48 vs. 0.11 µM). Alteration of the benzene ring in
R3 to a tert-butyl isoxazole moiety (10b) led to three-fold activity loss against c-KIT
(GI50 = 0.34 vs. 0.11 µM), whereas alterations to benzodioxole (10c) and quinolone
(10d) moieties led to a 50-fold loss of c-KIT activity. The introduction of a urea linkage
(13) between the R3 fragment and the linker moiety in place of an amide increased the
BCR-ABL activity and decreased the c-KIT activity (Table 2). Of the tested compounds,
6e displayed selectivity over ABL kinase and showed potent inhibition against c-KIT
kinase. SAR study of this series disclosed that the introduction of a methyl group at the
four-position of the benzene ring and piperidine ring in the R2 position was responsible
for the c-KIT inhibitory activity. In addition, the terminal pyridine moiety is important
to gain selectivity against c-KIT over ABL (Figure 3).

Compound 6e inhibited c-KIT kinase (IC50 = 99 nM) and PDGFRβ (IC50 = 120 nM) in
the ADP-Glo assay and DDR1 kinase (IC50 = 126 nM) and CSF1R (IC50 = 133 nM) in the
Z’lyte assay. In addition, 6e showed a strong inhibition in the growth of KIT-dependent
GIST cancer cells, such as GIST-T1 (GI50 = 0.021 µM) and GIST-882 (GI50 = 0.043 µM).
Surprisingly, it did not show potent inhibitory activity against the c-KIT-independent GIST
cell line GIST48B (GI50 ≥ 10 µM), FLT3 kinase activity, and did not exhibit antiproliferative
activity against BCR-ABL-driven CML cell lines, such as K562 (GI50 ≥ 10 µM), MEG-01
(GI50 = 7.43 µM), and KU812 cells (GI50 = 6.71 µM). Moreover, 6e showed a good safety
profile over normal Chinese hamster ovary cells, CHO and CHL cells, and leukemic cell
lines, such as U937, HL-60, and REC-1 cells. Pharmacokinetics analysis of compound 6e
demonstrated a half-life of 4.11 h and satisfactory bioavailability (F = 36%) when admin-
istered orally. In contrast, 6e exhibited fast clearance (CLz, 4.988 L/h/kg) and a short
half-life (T1/2, 0.45 h) when administered intravenously. The antitumor effectiveness of
6e at 50 and 100 mg/kg doses in a GIST-T1 cell-inoculated xenograft mice model greatly
inhibited tumor development.
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Table 1. SAR exploration of the R1/R2/R4 positions.

Compd. R1 R2 R4 Tel-c-KIT-BaF3
(GI50: µM)

Parental BaF3
(GI50: µM)

K562
(GI50: µM)

I –Me 0.40 >10 0.12

6a –Me 7.94 >10 >10

6b –Me 9.97 >10 >10

6c –Me 0.11 >10 2.94

6d –Me 0.33 >10 >10

6e –Me 0.19 >10 >10

6f –Me 0.22 >10 0.16

6g –Me 1.55 >10 >10

6h –Me 0.62 >10 8.36

6i –H 8.07 8.07 >10

6j –H >10 >10 >10

6k –H 0.49 >10 >10

6l –Cl 0.96 >10 2.8

6m –OMe >10 >10 >10
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Table 2. SAR exploration of the R1/R3 positions.

Compd. R1 R3 Tel-c-KIT-BaF3
(GI50: µM)

Parental BaF3
(GI50: µM)

K562
(GI50: µM)

6n 0.031 6.39 2.32

6o 0.083 5.47 5.85

6p 0.10 >10 5.24

6q 0.065 8.94 1.96

6r 0.16 >10 3.66

6s 0.15 >10 1.95

6t 0.15 >10 4.56

6u >10 >10 >10

6v >10 >10 >10

10a 1.48 >10 >10

10b 0.34 >10 9.92

10c 4.8 >10 >10
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Table 2. Cont.

Compd. R1 R3 Tel-c-KIT-BaF3
(GI50: µM)

Parental BaF3
(GI50: µM)

K562
(GI50: µM)

10d 5.55 >10 >10

13 2.6 3.3 0.78
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Molecular docking of the potent derivative 6e into c-KIT kinase and ABL kinase
revealed that 6e might adopt the DFG-out conformation of c-KIT kinase (PDB ID: 1T46)
with a typical type II binding mode, as well as a similar type II binding mode, in the
ABL kinase (PDB ID: 2HYY). The amide carbonyl linking the terminal pyridine and
piperidine moiety of 6e forms an O-H-N hydrogen bond with the Cys673 at the hinge-
binding region; in contrast, compound I uses the terminal pyridine as a hinge binder.
The amide moiety in the tail section of 6e forms two usual hydrogen bonds with Glu640
and Asp810 (Figure 4A). The hydrogen bond established in the hinge-binding region
of the ABL kinase (PDB ID: 2HYY) is somewhat longer than that of the c-KIT kinase
(3.6 vs. 2.9 Å). Furthermore, the adjacent Tyr253 in the P-loop (3.1 Å to the pyridine
moiety) creates a potential steric hindrance that hinders 6e from binding to the ABL
kinase, which was clearly illustrated when superimposing 6e and I in the X-ray crystal
structure of 1-ABL kinase. The pyridine moiety in I establishes a hydrogen bond with a
distance of 2.9 Å in the hinge-binding region, and this aromatic moiety moves further
away from Tyr253 than the pyridine moiety in 6e, probably to prevent potential steric
hindrance. Tyr253 was replaced by Gly596 in the c-KIT kinase to accommodate the
terminal pyridine (Figure 4).
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Reprinted with permission from Ref. [40].

Li et al. designed and synthesized a series of 6,7-dimethoxy-4-phenoxyquinoline
derivatives, and the 30 synthesized compounds were tested for their kinase inhibitory
activity against c-KIT wt and c-KIT-T670I using BaF3-TEL-c-KIT, BaF3-TEL-c-KIT-T670I,
and parental BaF3 cells [41]. Compound 22a, which contains a urea group instead of the
amide group in compound I, displayed enhanced activity for c-KIT wt (GI50 = 0.12 µM)
and c-KIT-T670I (GI50 = 0.071 µM) and maintained a 12-fold selectivity against parental
BaF3 cells (GI50 = 1.5 µM). However, compound 33, which had a much larger group
(N,N′-dimethylcyclopropane-1,1-dicarboxamide) in place of the amide group, showed
no kinase inhibitory activity (GI50 ≥ 10 µM). The R2 moiety was investigated with
R1 fixed as urea. With the trifluoromethyl group removed, Compound 22b completely
lost activity against c-KIT wt and c-KIT-T670I (GI50 ≥ 10 µM), indicating the importance
of the hydrophobic interaction between the CF3 group and the hydrophobic environment
for binding. In contrast, substituting the phenyl group with a piperidine group (27)
resulted in a significant loss of activity in BaF3-TEL-c-KIT-T670I cells (GI50 ≥ 10 µM)
(Table 3). According to these findings, the (trifluoromethyl)benzyl group at position
R2 and the urea group at position R1 are favored for better activity. They focused on
exploring the R3 position, which is known to enhance the binding affinity and selectivity
for type II inhibitors (Table 4). Shifting the propionyl group to position three (22c) from
position four (22a) decreased activity against BaF3-TEL-c-KIT-T670I cells by 13-fold
(GI50 = 0.92 µM). However, substituting the propionyl group in 22a with an acetyl
group (22d) maintained activity against BaF3-TEL-c-KIT (GI50 = 0.11 µM) and BaF3-
TEL-c-KIT-T670I cells (GI50 = 0.046 µM) with improved selectivity against parental BaF3
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cells (GI50 = 7.1 µM). A ten-fold decreased activity against the c-KIT T670I mutant was
observed for larger group substitutions, such as dimethylbutyl (22e), glycine (22f), and
alanine (22g).

Table 3. SAR exploration of the R1/R2 positions.

Compd. R1 R2 BaF3-TEL-c-KIT
(GI50: µM)

BaF3-TEL-c-KIT-T670I
(GI50: µM)

BaF3
(GI50: µM)

I 0.4 ± 0.011 2.7 ± 0.058 >10

22a 0.12 ± 0.016 0.071 ± 0.0011 1.5 ± 0.17

33 >10 >10 >10

22b >10 >10 >10

27 0.34 ± 0.01 >10 >10

Table 4. SAR of the R3 position.
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22e

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 9 of 45 
 

 

the c-KIT T670I mutant was observed for larger group substitutions, such as dimethyl-
butyl (22e), glycine (22f), and alanine (22g). 

Table 3. SAR exploration of the R1/R2 positions. 

 

Compd. R1 R2 
BaF3-TEL-c-KIT 

(GI50: μM) 
BaF3-TEL-c-KIT-T670I 

(GI50: μM) 
BaF3 

(GI50: μM) 
I   0.4 ± 0.011 2.7 ± 0.058 >10 

22a   0.12 ± 0.016 0.071 ± 0.0011 1.5 ± 0.17 
33   >10 >10 >10 

22b   
>10 >10 >10 

27   0.34 ± 0.01 >10 >10 

Table 4. SAR of the R3 position. 

Compd. R3 
BaF3-TEL-c-KIT 

(GI50: μM) 
BaF3-TEL-c-KIT-T670I 

(GI50: μM) 
BaF3 

(GI50: μM) 
22c  0.28 ± 0.025 0.92 ± 0.04 1.3 ± 0.17 

22d 
 

0.11 ± 0.016 0.046 ± 0.001 7.1 ± 0.38 

22e  0.43 ± 0.01 0.34 ± 0.025 >10 

22f 
 

0.13 ± 0.01 0.58 ± 0.02 5 ± 1.0 

22g 
 

0.12 ± 0.011 0.48 ± 0.011 3 ± 0.15 

22h  0.038 ± 0.001 0.053 ± 0.001 2.9 ± 0.17 

22i 
 

0.76 ± 0.0057 0.76 ± 0.1 1.1 ± 0.47 

22j 
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22k 
 

0.087 ± 0.0015 0.083 ± 0.021 2.9 ± 0.056 
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0.039 ± 0.041 0.087 ± 0.008 1.3 ± 0.11 

22n 
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22q 
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22h
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0.16 ± 0.01 0.081 ± 0.006 1.7 ± 01 

22m 
 

0.039 ± 0.041 0.087 ± 0.008 1.3 ± 0.11 

22n 
 

0.059 ± 0.001 0.23 ± 0.0001 3.4 ± 1.2 

22o 
 

0.13 ± 0.0057 0.12 ± 0.02 0.8 ± 0.084 

22p 
 

0.13 ± 0.001 0.17 ± 0.05 0.51 ± 0.15 

22q 
 

0.46 ± 0.021 0.65 ± 0.076 4.0 ± 0.32 
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0.038 ± 0.001 0.053 ± 0.001 2.9 ± 0.17
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0.76 ± 0.0057 0.76 ± 0.1 1.1 ± 0.47 

22j 
 

0.02 ± 0.001 0.32 ± 0.025 7 ± 0.74 
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0.087 ± 0.0015 0.083 ± 0.021 2.9 ± 0.056 

22l 
 

0.16 ± 0.01 0.081 ± 0.006 1.7 ± 01 

22m 
 

0.039 ± 0.041 0.087 ± 0.008 1.3 ± 0.11 

22n 
 

0.059 ± 0.001 0.23 ± 0.0001 3.4 ± 1.2 

22o 
 

0.13 ± 0.0057 0.12 ± 0.02 0.8 ± 0.084 

22p 
 

0.13 ± 0.001 0.17 ± 0.05 0.51 ± 0.15 

22q 
 

0.46 ± 0.021 0.65 ± 0.076 4.0 ± 0.32 

22r  0.12 ± 0.0001 0.037 ± 0.009 0.48 ± 0.006 
22s  0.33 ± 0.015 0.2 ± 0.011 0.87 ± 0.068 

0.76 ± 0.0057 0.76 ± 0.1 1.1 ± 0.47

22j
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0.76 ± 0.0057 0.76 ± 0.1 1.1 ± 0.47 
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0.02 ± 0.001 0.32 ± 0.025 7 ± 0.74 
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0.087 ± 0.0015 0.083 ± 0.021 2.9 ± 0.056 
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0.16 ± 0.01 0.081 ± 0.006 1.7 ± 01 
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0.039 ± 0.041 0.087 ± 0.008 1.3 ± 0.11 
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0.059 ± 0.001 0.23 ± 0.0001 3.4 ± 1.2 
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0.13 ± 0.0057 0.12 ± 0.02 0.8 ± 0.084 

22p 
 

0.13 ± 0.001 0.17 ± 0.05 0.51 ± 0.15 
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22o 
 

0.13 ± 0.0057 0.12 ± 0.02 0.8 ± 0.084 

22p 
 

0.13 ± 0.001 0.17 ± 0.05 0.51 ± 0.15 

22q 
 

0.46 ± 0.021 0.65 ± 0.076 4.0 ± 0.32 

22r  0.12 ± 0.0001 0.037 ± 0.009 0.48 ± 0.006 
22s  0.33 ± 0.015 0.2 ± 0.011 0.87 ± 0.068 

0.087 ± 0.0015 0.083 ± 0.021 2.9 ± 0.056

22l
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0.13 ± 0.0057 0.12 ± 0.02 0.8 ± 0.084 
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0.13 ± 0.001 0.17 ± 0.05 0.51 ± 0.15 
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0.46 ± 0.021 0.65 ± 0.076 4.0 ± 0.32 
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BaF3 

(GI50: μM) 
I   0.4 ± 0.011 2.7 ± 0.058 >10 

22a   0.12 ± 0.016 0.071 ± 0.0011 1.5 ± 0.17 
33   >10 >10 >10 

22b   
>10 >10 >10 

27   0.34 ± 0.01 >10 >10 

Table 4. SAR of the R3 position. 

Compd. R3 
BaF3-TEL-c-KIT 

(GI50: μM) 
BaF3-TEL-c-KIT-T670I 

(GI50: μM) 
BaF3 

(GI50: μM) 
22c  0.28 ± 0.025 0.92 ± 0.04 1.3 ± 0.17 

22d 
 

0.11 ± 0.016 0.046 ± 0.001 7.1 ± 0.38 

22e  0.43 ± 0.01 0.34 ± 0.025 >10 

22f 
 

0.13 ± 0.01 0.58 ± 0.02 5 ± 1.0 

22g 
 

0.12 ± 0.011 0.48 ± 0.011 3 ± 0.15 

22h  0.038 ± 0.001 0.053 ± 0.001 2.9 ± 0.17 

22i 
 

0.76 ± 0.0057 0.76 ± 0.1 1.1 ± 0.47 

22j 
 

0.02 ± 0.001 0.32 ± 0.025 7 ± 0.74 

22k 
 

0.087 ± 0.0015 0.083 ± 0.021 2.9 ± 0.056 

22l 
 

0.16 ± 0.01 0.081 ± 0.006 1.7 ± 01 

22m 
 

0.039 ± 0.041 0.087 ± 0.008 1.3 ± 0.11 

22n 
 

0.059 ± 0.001 0.23 ± 0.0001 3.4 ± 1.2 

22o 
 

0.13 ± 0.0057 0.12 ± 0.02 0.8 ± 0.084 

22p 
 

0.13 ± 0.001 0.17 ± 0.05 0.51 ± 0.15 

22q 
 

0.46 ± 0.021 0.65 ± 0.076 4.0 ± 0.32 

22r  0.12 ± 0.0001 0.037 ± 0.009 0.48 ± 0.006 
22s  0.33 ± 0.015 0.2 ± 0.011 0.87 ± 0.068 

Compd. R3 BaF3-TEL-c-KIT
(GI50: µM)

BaF3-TEL-c-KIT-T670I
(GI50: µM)

BaF3
(GI50: µM)

22m
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Compd. R1 R2 
BaF3-TEL-c-KIT 

(GI50: μM) 
BaF3-TEL-c-KIT-T670I 

(GI50: μM) 
BaF3 

(GI50: μM) 
I   0.4 ± 0.011 2.7 ± 0.058 >10 

22a   0.12 ± 0.016 0.071 ± 0.0011 1.5 ± 0.17 
33   >10 >10 >10 

22b   
>10 >10 >10 

27   0.34 ± 0.01 >10 >10 

Table 4. SAR of the R3 position. 

Compd. R3 
BaF3-TEL-c-KIT 

(GI50: μM) 
BaF3-TEL-c-KIT-T670I 

(GI50: μM) 
BaF3 

(GI50: μM) 
22c  0.28 ± 0.025 0.92 ± 0.04 1.3 ± 0.17 

22d 
 

0.11 ± 0.016 0.046 ± 0.001 7.1 ± 0.38 

22e  0.43 ± 0.01 0.34 ± 0.025 >10 

22f 
 

0.13 ± 0.01 0.58 ± 0.02 5 ± 1.0 

22g 
 

0.12 ± 0.011 0.48 ± 0.011 3 ± 0.15 

22h  0.038 ± 0.001 0.053 ± 0.001 2.9 ± 0.17 

22i 
 

0.76 ± 0.0057 0.76 ± 0.1 1.1 ± 0.47 

22j 
 

0.02 ± 0.001 0.32 ± 0.025 7 ± 0.74 

22k 
 

0.087 ± 0.0015 0.083 ± 0.021 2.9 ± 0.056 

22l 
 

0.16 ± 0.01 0.081 ± 0.006 1.7 ± 01 

22m 
 

0.039 ± 0.041 0.087 ± 0.008 1.3 ± 0.11 

22n 
 

0.059 ± 0.001 0.23 ± 0.0001 3.4 ± 1.2 

22o 
 

0.13 ± 0.0057 0.12 ± 0.02 0.8 ± 0.084 

22p 
 

0.13 ± 0.001 0.17 ± 0.05 0.51 ± 0.15 

22q 
 

0.46 ± 0.021 0.65 ± 0.076 4.0 ± 0.32 

22r  0.12 ± 0.0001 0.037 ± 0.009 0.48 ± 0.006 
22s  0.33 ± 0.015 0.2 ± 0.011 0.87 ± 0.068 

0.039 ± 0.041 0.087 ± 0.008 1.3 ± 0.11

22n
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(GI50: μM) 
BaF3-TEL-c-KIT-T670I 

(GI50: μM) 
BaF3 

(GI50: μM) 
I   0.4 ± 0.011 2.7 ± 0.058 >10 

22a   0.12 ± 0.016 0.071 ± 0.0011 1.5 ± 0.17 
33   >10 >10 >10 

22b   
>10 >10 >10 

27   0.34 ± 0.01 >10 >10 

Table 4. SAR of the R3 position. 

Compd. R3 
BaF3-TEL-c-KIT 

(GI50: μM) 
BaF3-TEL-c-KIT-T670I 

(GI50: μM) 
BaF3 

(GI50: μM) 
22c  0.28 ± 0.025 0.92 ± 0.04 1.3 ± 0.17 

22d 
 

0.11 ± 0.016 0.046 ± 0.001 7.1 ± 0.38 

22e  0.43 ± 0.01 0.34 ± 0.025 >10 

22f 
 

0.13 ± 0.01 0.58 ± 0.02 5 ± 1.0 

22g 
 

0.12 ± 0.011 0.48 ± 0.011 3 ± 0.15 

22h  0.038 ± 0.001 0.053 ± 0.001 2.9 ± 0.17 

22i 
 

0.76 ± 0.0057 0.76 ± 0.1 1.1 ± 0.47 

22j 
 

0.02 ± 0.001 0.32 ± 0.025 7 ± 0.74 

22k 
 

0.087 ± 0.0015 0.083 ± 0.021 2.9 ± 0.056 

22l 
 

0.16 ± 0.01 0.081 ± 0.006 1.7 ± 01 

22m 
 

0.039 ± 0.041 0.087 ± 0.008 1.3 ± 0.11 

22n 
 

0.059 ± 0.001 0.23 ± 0.0001 3.4 ± 1.2 

22o 
 

0.13 ± 0.0057 0.12 ± 0.02 0.8 ± 0.084 

22p 
 

0.13 ± 0.001 0.17 ± 0.05 0.51 ± 0.15 

22q 
 

0.46 ± 0.021 0.65 ± 0.076 4.0 ± 0.32 

22r  0.12 ± 0.0001 0.037 ± 0.009 0.48 ± 0.006 
22s  0.33 ± 0.015 0.2 ± 0.011 0.87 ± 0.068 

0.059 ± 0.001 0.23 ± 0.0001 3.4 ± 1.2

22o
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the c-KIT T670I mutant was observed for larger group substitutions, such as dimethyl-
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Compd. R1 R2 
BaF3-TEL-c-KIT 

(GI50: μM) 
BaF3-TEL-c-KIT-T670I 

(GI50: μM) 
BaF3 

(GI50: μM) 
I   0.4 ± 0.011 2.7 ± 0.058 >10 

22a   0.12 ± 0.016 0.071 ± 0.0011 1.5 ± 0.17 
33   >10 >10 >10 

22b   
>10 >10 >10 

27   0.34 ± 0.01 >10 >10 

Table 4. SAR of the R3 position. 

Compd. R3 
BaF3-TEL-c-KIT 

(GI50: μM) 
BaF3-TEL-c-KIT-T670I 

(GI50: μM) 
BaF3 

(GI50: μM) 
22c  0.28 ± 0.025 0.92 ± 0.04 1.3 ± 0.17 

22d 
 

0.11 ± 0.016 0.046 ± 0.001 7.1 ± 0.38 

22e  0.43 ± 0.01 0.34 ± 0.025 >10 

22f 
 

0.13 ± 0.01 0.58 ± 0.02 5 ± 1.0 

22g 
 

0.12 ± 0.011 0.48 ± 0.011 3 ± 0.15 

22h  0.038 ± 0.001 0.053 ± 0.001 2.9 ± 0.17 

22i 
 

0.76 ± 0.0057 0.76 ± 0.1 1.1 ± 0.47 

22j 
 

0.02 ± 0.001 0.32 ± 0.025 7 ± 0.74 

22k 
 

0.087 ± 0.0015 0.083 ± 0.021 2.9 ± 0.056 

22l 
 

0.16 ± 0.01 0.081 ± 0.006 1.7 ± 01 

22m 
 

0.039 ± 0.041 0.087 ± 0.008 1.3 ± 0.11 

22n 
 

0.059 ± 0.001 0.23 ± 0.0001 3.4 ± 1.2 

22o 
 

0.13 ± 0.0057 0.12 ± 0.02 0.8 ± 0.084 

22p 
 

0.13 ± 0.001 0.17 ± 0.05 0.51 ± 0.15 

22q 
 

0.46 ± 0.021 0.65 ± 0.076 4.0 ± 0.32 

22r  0.12 ± 0.0001 0.037 ± 0.009 0.48 ± 0.006 
22s  0.33 ± 0.015 0.2 ± 0.011 0.87 ± 0.068 

0.13 ± 0.0057 0.12 ± 0.02 0.8 ± 0.084

22p
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the c-KIT T670I mutant was observed for larger group substitutions, such as dimethyl-
butyl (22e), glycine (22f), and alanine (22g). 

Table 3. SAR exploration of the R1/R2 positions. 

 

Compd. R1 R2 
BaF3-TEL-c-KIT 

(GI50: μM) 
BaF3-TEL-c-KIT-T670I 

(GI50: μM) 
BaF3 

(GI50: μM) 
I   0.4 ± 0.011 2.7 ± 0.058 >10 

22a   0.12 ± 0.016 0.071 ± 0.0011 1.5 ± 0.17 
33   >10 >10 >10 

22b   
>10 >10 >10 

27   0.34 ± 0.01 >10 >10 

Table 4. SAR of the R3 position. 

Compd. R3 
BaF3-TEL-c-KIT 

(GI50: μM) 
BaF3-TEL-c-KIT-T670I 

(GI50: μM) 
BaF3 

(GI50: μM) 
22c  0.28 ± 0.025 0.92 ± 0.04 1.3 ± 0.17 

22d 
 

0.11 ± 0.016 0.046 ± 0.001 7.1 ± 0.38 

22e  0.43 ± 0.01 0.34 ± 0.025 >10 

22f 
 

0.13 ± 0.01 0.58 ± 0.02 5 ± 1.0 

22g 
 

0.12 ± 0.011 0.48 ± 0.011 3 ± 0.15 

22h  0.038 ± 0.001 0.053 ± 0.001 2.9 ± 0.17 

22i 
 

0.76 ± 0.0057 0.76 ± 0.1 1.1 ± 0.47 

22j 
 

0.02 ± 0.001 0.32 ± 0.025 7 ± 0.74 

22k 
 

0.087 ± 0.0015 0.083 ± 0.021 2.9 ± 0.056 

22l 
 

0.16 ± 0.01 0.081 ± 0.006 1.7 ± 01 

22m 
 

0.039 ± 0.041 0.087 ± 0.008 1.3 ± 0.11 

22n 
 

0.059 ± 0.001 0.23 ± 0.0001 3.4 ± 1.2 

22o 
 

0.13 ± 0.0057 0.12 ± 0.02 0.8 ± 0.084 

22p 
 

0.13 ± 0.001 0.17 ± 0.05 0.51 ± 0.15 

22q 
 

0.46 ± 0.021 0.65 ± 0.076 4.0 ± 0.32 

22r  0.12 ± 0.0001 0.037 ± 0.009 0.48 ± 0.006 
22s  0.33 ± 0.015 0.2 ± 0.011 0.87 ± 0.068 

0.13 ± 0.001 0.17 ± 0.05 0.51 ± 0.15

22q
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Compd. R1 R2 
BaF3-TEL-c-KIT 

(GI50: μM) 
BaF3-TEL-c-KIT-T670I 

(GI50: μM) 
BaF3 

(GI50: μM) 
I   0.4 ± 0.011 2.7 ± 0.058 >10 

22a   0.12 ± 0.016 0.071 ± 0.0011 1.5 ± 0.17 
33   >10 >10 >10 

22b   
>10 >10 >10 

27   0.34 ± 0.01 >10 >10 

Table 4. SAR of the R3 position. 

Compd. R3 
BaF3-TEL-c-KIT 

(GI50: μM) 
BaF3-TEL-c-KIT-T670I 

(GI50: μM) 
BaF3 

(GI50: μM) 
22c  0.28 ± 0.025 0.92 ± 0.04 1.3 ± 0.17 

22d 
 

0.11 ± 0.016 0.046 ± 0.001 7.1 ± 0.38 

22e  0.43 ± 0.01 0.34 ± 0.025 >10 

22f 
 

0.13 ± 0.01 0.58 ± 0.02 5 ± 1.0 

22g 
 

0.12 ± 0.011 0.48 ± 0.011 3 ± 0.15 

22h  0.038 ± 0.001 0.053 ± 0.001 2.9 ± 0.17 

22i 
 

0.76 ± 0.0057 0.76 ± 0.1 1.1 ± 0.47 

22j 
 

0.02 ± 0.001 0.32 ± 0.025 7 ± 0.74 

22k 
 

0.087 ± 0.0015 0.083 ± 0.021 2.9 ± 0.056 

22l 
 

0.16 ± 0.01 0.081 ± 0.006 1.7 ± 01 

22m 
 

0.039 ± 0.041 0.087 ± 0.008 1.3 ± 0.11 

22n 
 

0.059 ± 0.001 0.23 ± 0.0001 3.4 ± 1.2 

22o 
 

0.13 ± 0.0057 0.12 ± 0.02 0.8 ± 0.084 

22p 
 

0.13 ± 0.001 0.17 ± 0.05 0.51 ± 0.15 

22q 
 

0.46 ± 0.021 0.65 ± 0.076 4.0 ± 0.32 

22r  0.12 ± 0.0001 0.037 ± 0.009 0.48 ± 0.006 
22s  0.33 ± 0.015 0.2 ± 0.011 0.87 ± 0.068 

0.46 ± 0.021 0.65 ± 0.076 4.0 ± 0.32

22r
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the c-KIT T670I mutant was observed for larger group substitutions, such as dimethyl-
butyl (22e), glycine (22f), and alanine (22g). 

Table 3. SAR exploration of the R1/R2 positions. 

 

Compd. R1 R2 
BaF3-TEL-c-KIT 

(GI50: μM) 
BaF3-TEL-c-KIT-T670I 

(GI50: μM) 
BaF3 

(GI50: μM) 
I   0.4 ± 0.011 2.7 ± 0.058 >10 

22a   0.12 ± 0.016 0.071 ± 0.0011 1.5 ± 0.17 
33   >10 >10 >10 

22b   
>10 >10 >10 

27   0.34 ± 0.01 >10 >10 

Table 4. SAR of the R3 position. 

Compd. R3 
BaF3-TEL-c-KIT 

(GI50: μM) 
BaF3-TEL-c-KIT-T670I 

(GI50: μM) 
BaF3 

(GI50: μM) 
22c  0.28 ± 0.025 0.92 ± 0.04 1.3 ± 0.17 

22d 
 

0.11 ± 0.016 0.046 ± 0.001 7.1 ± 0.38 

22e  0.43 ± 0.01 0.34 ± 0.025 >10 

22f 
 

0.13 ± 0.01 0.58 ± 0.02 5 ± 1.0 

22g 
 

0.12 ± 0.011 0.48 ± 0.011 3 ± 0.15 

22h  0.038 ± 0.001 0.053 ± 0.001 2.9 ± 0.17 

22i 
 

0.76 ± 0.0057 0.76 ± 0.1 1.1 ± 0.47 

22j 
 

0.02 ± 0.001 0.32 ± 0.025 7 ± 0.74 

22k 
 

0.087 ± 0.0015 0.083 ± 0.021 2.9 ± 0.056 

22l 
 

0.16 ± 0.01 0.081 ± 0.006 1.7 ± 01 

22m 
 

0.039 ± 0.041 0.087 ± 0.008 1.3 ± 0.11 

22n 
 

0.059 ± 0.001 0.23 ± 0.0001 3.4 ± 1.2 

22o 
 

0.13 ± 0.0057 0.12 ± 0.02 0.8 ± 0.084 

22p 
 

0.13 ± 0.001 0.17 ± 0.05 0.51 ± 0.15 

22q 
 

0.46 ± 0.021 0.65 ± 0.076 4.0 ± 0.32 

22r  0.12 ± 0.0001 0.037 ± 0.009 0.48 ± 0.006 
22s  0.33 ± 0.015 0.2 ± 0.011 0.87 ± 0.068 

0.12 ± 0.0001 0.037 ± 0.009 0.48 ± 0.006

22s
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the c-KIT T670I mutant was observed for larger group substitutions, such as dimethyl-
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(GI50: μM) 
BaF3-TEL-c-KIT-T670I 

(GI50: μM) 
BaF3 

(GI50: μM) 
I   0.4 ± 0.011 2.7 ± 0.058 >10 

22a   0.12 ± 0.016 0.071 ± 0.0011 1.5 ± 0.17 
33   >10 >10 >10 

22b   
>10 >10 >10 

27   0.34 ± 0.01 >10 >10 

Table 4. SAR of the R3 position. 

Compd. R3 
BaF3-TEL-c-KIT 

(GI50: μM) 
BaF3-TEL-c-KIT-T670I 

(GI50: μM) 
BaF3 

(GI50: μM) 
22c  0.28 ± 0.025 0.92 ± 0.04 1.3 ± 0.17 

22d 
 

0.11 ± 0.016 0.046 ± 0.001 7.1 ± 0.38 

22e  0.43 ± 0.01 0.34 ± 0.025 >10 

22f 
 

0.13 ± 0.01 0.58 ± 0.02 5 ± 1.0 

22g 
 

0.12 ± 0.011 0.48 ± 0.011 3 ± 0.15 

22h  0.038 ± 0.001 0.053 ± 0.001 2.9 ± 0.17 

22i 
 

0.76 ± 0.0057 0.76 ± 0.1 1.1 ± 0.47 

22j 
 

0.02 ± 0.001 0.32 ± 0.025 7 ± 0.74 

22k 
 

0.087 ± 0.0015 0.083 ± 0.021 2.9 ± 0.056 

22l 
 

0.16 ± 0.01 0.081 ± 0.006 1.7 ± 01 

22m 
 

0.039 ± 0.041 0.087 ± 0.008 1.3 ± 0.11 

22n 
 

0.059 ± 0.001 0.23 ± 0.0001 3.4 ± 1.2 

22o 
 

0.13 ± 0.0057 0.12 ± 0.02 0.8 ± 0.084 

22p 
 

0.13 ± 0.001 0.17 ± 0.05 0.51 ± 0.15 

22q 
 

0.46 ± 0.021 0.65 ± 0.076 4.0 ± 0.32 

22r  0.12 ± 0.0001 0.037 ± 0.009 0.48 ± 0.006 
22s  0.33 ± 0.015 0.2 ± 0.011 0.87 ± 0.068 0.33 ± 0.015 0.2 ± 0.011 0.87 ± 0.068

22t
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22t 
 

0.44 ± 0.03 0.26 ± 0.052 7.6 ± 0.61 

22u 
 

0.19 ± 0.021 0.2 ± 0.02 1.2 ± 0.11 

22v 
 

0.042 ± 0.003 0.059 ± 0.006 3.6 ± 0.89 

22w  3.9 ± 0.023 3.8 ± 0.02 >10 
22x  0.034 ± 0.002 0.33 ± 0.029 6.2 ± 0.38 
22y  0.059 ± 0.003 0.95 ± 0.04 4.2 ± 0.36 

22z 
 

0.14 ± 0.021 0.063 ± 0.002 1.9 ± 0.058 

22aa 
 

0.057 ± 0.0021 0.063 ± 0.001 >10 

22ab  0.25 ± 0.06 0.46 ± 0.01 4.4 ± 1.37 

However, N,N-dimethylglycine (22h) exhibited improved activity against c-KIT wt 
(GI50 = 0.038 μM) and regained activity against the c-KIT T670I mutant (GI50 = 0.053 μM) 
while maintaining good selectivity toward parental BaF3 cells (GI50 = 2.9 μM), compared 
with 22a. The addition of cyclohexene (22i) and pyridine groups (22j) decreased the activ-
ity five- to ten-fold, while the addition of tetrahydropyran (22k) led to the regained activ-
ity against both c-KIT wt (GI50 = 0.087 μM) and c-KIT T670I (GI50 = 0.083 μM). N-Methylpi-
peridine (22l) and N-ethylpiperidine (22m) showed a similar potency. N-Acyl (22n), N-
cyclopropanecarbonyl (22o), and Boc (22p) led to a two- to three-fold reduction in activity, 
and 2-methylpiperidine (22q) showed a ten-fold decreased activity against c-KIT T670I. 
Selectivity window to parental BaF3 cells (22r and 22s) or reduced activity against c-KIT 
T670I (22t and 22u) was observed by increasing the size of the piperidine-derived substit-
uents. However, ethyl-linked morpholine (22v) displayed impressive activity against c-
KIT wt (GI50 = 0.042 μM) and c-KIT T670I (GI50 = 0.059 μM), with good selectivity for pa-
rental BaF3 cells (GI50 = 3.6 μM). Switching the amide moiety to sulfonamide derivatives 
(22w–22y) with different aliphatic chains did not improve antiproliferative efficacy 
against c-KIT T670I mutant. However, introducing the cyclopropyl group (22z) regained 
the activity against BaF3-TEL-c-KIT-T670I cells (GI50 = 0.063 μM). N-(piperidin-4-ylme-
thyl)propionamide (22aa) improved activity against c-KIT wt (GI50 = 0.057 μM), main-
tained activity against c-KIT T670I, and improved selectivity to parental BaF3 cells (GI50 > 
10 μM), whereas further enlargement (22ab) showed significantly reduced activity, com-
pared with 22aa. A SAR study of this series revealed that by switching the amide linkage 
to the urea linkage and increasing the size of the substituent that is coupled to the urea, 
moiety improved the activity and selectivity against the c-KIT and c-KIT T670I mutant 
(Figure 5). 
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However, N,N-dimethylglycine (22h) exhibited improved activity against c-KIT wt 
(GI50 = 0.038 μM) and regained activity against the c-KIT T670I mutant (GI50 = 0.053 μM) 
while maintaining good selectivity toward parental BaF3 cells (GI50 = 2.9 μM), compared 
with 22a. The addition of cyclohexene (22i) and pyridine groups (22j) decreased the activ-
ity five- to ten-fold, while the addition of tetrahydropyran (22k) led to the regained activ-
ity against both c-KIT wt (GI50 = 0.087 μM) and c-KIT T670I (GI50 = 0.083 μM). N-Methylpi-
peridine (22l) and N-ethylpiperidine (22m) showed a similar potency. N-Acyl (22n), N-
cyclopropanecarbonyl (22o), and Boc (22p) led to a two- to three-fold reduction in activity, 
and 2-methylpiperidine (22q) showed a ten-fold decreased activity against c-KIT T670I. 
Selectivity window to parental BaF3 cells (22r and 22s) or reduced activity against c-KIT 
T670I (22t and 22u) was observed by increasing the size of the piperidine-derived substit-
uents. However, ethyl-linked morpholine (22v) displayed impressive activity against c-
KIT wt (GI50 = 0.042 μM) and c-KIT T670I (GI50 = 0.059 μM), with good selectivity for pa-
rental BaF3 cells (GI50 = 3.6 μM). Switching the amide moiety to sulfonamide derivatives 
(22w–22y) with different aliphatic chains did not improve antiproliferative efficacy 
against c-KIT T670I mutant. However, introducing the cyclopropyl group (22z) regained 
the activity against BaF3-TEL-c-KIT-T670I cells (GI50 = 0.063 μM). N-(piperidin-4-ylme-
thyl)propionamide (22aa) improved activity against c-KIT wt (GI50 = 0.057 μM), main-
tained activity against c-KIT T670I, and improved selectivity to parental BaF3 cells (GI50 > 
10 μM), whereas further enlargement (22ab) showed significantly reduced activity, com-
pared with 22aa. A SAR study of this series revealed that by switching the amide linkage 
to the urea linkage and increasing the size of the substituent that is coupled to the urea, 
moiety improved the activity and selectivity against the c-KIT and c-KIT T670I mutant 
(Figure 5). 
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However, N,N-dimethylglycine (22h) exhibited improved activity against c-KIT wt 
(GI50 = 0.038 μM) and regained activity against the c-KIT T670I mutant (GI50 = 0.053 μM) 
while maintaining good selectivity toward parental BaF3 cells (GI50 = 2.9 μM), compared 
with 22a. The addition of cyclohexene (22i) and pyridine groups (22j) decreased the activ-
ity five- to ten-fold, while the addition of tetrahydropyran (22k) led to the regained activ-
ity against both c-KIT wt (GI50 = 0.087 μM) and c-KIT T670I (GI50 = 0.083 μM). N-Methylpi-
peridine (22l) and N-ethylpiperidine (22m) showed a similar potency. N-Acyl (22n), N-
cyclopropanecarbonyl (22o), and Boc (22p) led to a two- to three-fold reduction in activity, 
and 2-methylpiperidine (22q) showed a ten-fold decreased activity against c-KIT T670I. 
Selectivity window to parental BaF3 cells (22r and 22s) or reduced activity against c-KIT 
T670I (22t and 22u) was observed by increasing the size of the piperidine-derived substit-
uents. However, ethyl-linked morpholine (22v) displayed impressive activity against c-
KIT wt (GI50 = 0.042 μM) and c-KIT T670I (GI50 = 0.059 μM), with good selectivity for pa-
rental BaF3 cells (GI50 = 3.6 μM). Switching the amide moiety to sulfonamide derivatives 
(22w–22y) with different aliphatic chains did not improve antiproliferative efficacy 
against c-KIT T670I mutant. However, introducing the cyclopropyl group (22z) regained 
the activity against BaF3-TEL-c-KIT-T670I cells (GI50 = 0.063 μM). N-(piperidin-4-ylme-
thyl)propionamide (22aa) improved activity against c-KIT wt (GI50 = 0.057 μM), main-
tained activity against c-KIT T670I, and improved selectivity to parental BaF3 cells (GI50 > 
10 μM), whereas further enlargement (22ab) showed significantly reduced activity, com-
pared with 22aa. A SAR study of this series revealed that by switching the amide linkage 
to the urea linkage and increasing the size of the substituent that is coupled to the urea, 
moiety improved the activity and selectivity against the c-KIT and c-KIT T670I mutant 
(Figure 5). 
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However, N,N-dimethylglycine (22h) exhibited improved activity against c-KIT wt 
(GI50 = 0.038 μM) and regained activity against the c-KIT T670I mutant (GI50 = 0.053 μM) 
while maintaining good selectivity toward parental BaF3 cells (GI50 = 2.9 μM), compared 
with 22a. The addition of cyclohexene (22i) and pyridine groups (22j) decreased the activ-
ity five- to ten-fold, while the addition of tetrahydropyran (22k) led to the regained activ-
ity against both c-KIT wt (GI50 = 0.087 μM) and c-KIT T670I (GI50 = 0.083 μM). N-Methylpi-
peridine (22l) and N-ethylpiperidine (22m) showed a similar potency. N-Acyl (22n), N-
cyclopropanecarbonyl (22o), and Boc (22p) led to a two- to three-fold reduction in activity, 
and 2-methylpiperidine (22q) showed a ten-fold decreased activity against c-KIT T670I. 
Selectivity window to parental BaF3 cells (22r and 22s) or reduced activity against c-KIT 
T670I (22t and 22u) was observed by increasing the size of the piperidine-derived substit-
uents. However, ethyl-linked morpholine (22v) displayed impressive activity against c-
KIT wt (GI50 = 0.042 μM) and c-KIT T670I (GI50 = 0.059 μM), with good selectivity for pa-
rental BaF3 cells (GI50 = 3.6 μM). Switching the amide moiety to sulfonamide derivatives 
(22w–22y) with different aliphatic chains did not improve antiproliferative efficacy 
against c-KIT T670I mutant. However, introducing the cyclopropyl group (22z) regained 
the activity against BaF3-TEL-c-KIT-T670I cells (GI50 = 0.063 μM). N-(piperidin-4-ylme-
thyl)propionamide (22aa) improved activity against c-KIT wt (GI50 = 0.057 μM), main-
tained activity against c-KIT T670I, and improved selectivity to parental BaF3 cells (GI50 > 
10 μM), whereas further enlargement (22ab) showed significantly reduced activity, com-
pared with 22aa. A SAR study of this series revealed that by switching the amide linkage 
to the urea linkage and increasing the size of the substituent that is coupled to the urea, 
moiety improved the activity and selectivity against the c-KIT and c-KIT T670I mutant 
(Figure 5). 
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22ab  0.25 ± 0.06 0.46 ± 0.01 4.4 ± 1.37 

However, N,N-dimethylglycine (22h) exhibited improved activity against c-KIT wt 
(GI50 = 0.038 μM) and regained activity against the c-KIT T670I mutant (GI50 = 0.053 μM) 
while maintaining good selectivity toward parental BaF3 cells (GI50 = 2.9 μM), compared 
with 22a. The addition of cyclohexene (22i) and pyridine groups (22j) decreased the activ-
ity five- to ten-fold, while the addition of tetrahydropyran (22k) led to the regained activ-
ity against both c-KIT wt (GI50 = 0.087 μM) and c-KIT T670I (GI50 = 0.083 μM). N-Methylpi-
peridine (22l) and N-ethylpiperidine (22m) showed a similar potency. N-Acyl (22n), N-
cyclopropanecarbonyl (22o), and Boc (22p) led to a two- to three-fold reduction in activity, 
and 2-methylpiperidine (22q) showed a ten-fold decreased activity against c-KIT T670I. 
Selectivity window to parental BaF3 cells (22r and 22s) or reduced activity against c-KIT 
T670I (22t and 22u) was observed by increasing the size of the piperidine-derived substit-
uents. However, ethyl-linked morpholine (22v) displayed impressive activity against c-
KIT wt (GI50 = 0.042 μM) and c-KIT T670I (GI50 = 0.059 μM), with good selectivity for pa-
rental BaF3 cells (GI50 = 3.6 μM). Switching the amide moiety to sulfonamide derivatives 
(22w–22y) with different aliphatic chains did not improve antiproliferative efficacy 
against c-KIT T670I mutant. However, introducing the cyclopropyl group (22z) regained 
the activity against BaF3-TEL-c-KIT-T670I cells (GI50 = 0.063 μM). N-(piperidin-4-ylme-
thyl)propionamide (22aa) improved activity against c-KIT wt (GI50 = 0.057 μM), main-
tained activity against c-KIT T670I, and improved selectivity to parental BaF3 cells (GI50 > 
10 μM), whereas further enlargement (22ab) showed significantly reduced activity, com-
pared with 22aa. A SAR study of this series revealed that by switching the amide linkage 
to the urea linkage and increasing the size of the substituent that is coupled to the urea, 
moiety improved the activity and selectivity against the c-KIT and c-KIT T670I mutant 
(Figure 5). 
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However, N,N-dimethylglycine (22h) exhibited improved activity against c-KIT wt 
(GI50 = 0.038 μM) and regained activity against the c-KIT T670I mutant (GI50 = 0.053 μM) 
while maintaining good selectivity toward parental BaF3 cells (GI50 = 2.9 μM), compared 
with 22a. The addition of cyclohexene (22i) and pyridine groups (22j) decreased the activ-
ity five- to ten-fold, while the addition of tetrahydropyran (22k) led to the regained activ-
ity against both c-KIT wt (GI50 = 0.087 μM) and c-KIT T670I (GI50 = 0.083 μM). N-Methylpi-
peridine (22l) and N-ethylpiperidine (22m) showed a similar potency. N-Acyl (22n), N-
cyclopropanecarbonyl (22o), and Boc (22p) led to a two- to three-fold reduction in activity, 
and 2-methylpiperidine (22q) showed a ten-fold decreased activity against c-KIT T670I. 
Selectivity window to parental BaF3 cells (22r and 22s) or reduced activity against c-KIT 
T670I (22t and 22u) was observed by increasing the size of the piperidine-derived substit-
uents. However, ethyl-linked morpholine (22v) displayed impressive activity against c-
KIT wt (GI50 = 0.042 μM) and c-KIT T670I (GI50 = 0.059 μM), with good selectivity for pa-
rental BaF3 cells (GI50 = 3.6 μM). Switching the amide moiety to sulfonamide derivatives 
(22w–22y) with different aliphatic chains did not improve antiproliferative efficacy 
against c-KIT T670I mutant. However, introducing the cyclopropyl group (22z) regained 
the activity against BaF3-TEL-c-KIT-T670I cells (GI50 = 0.063 μM). N-(piperidin-4-ylme-
thyl)propionamide (22aa) improved activity against c-KIT wt (GI50 = 0.057 μM), main-
tained activity against c-KIT T670I, and improved selectivity to parental BaF3 cells (GI50 > 
10 μM), whereas further enlargement (22ab) showed significantly reduced activity, com-
pared with 22aa. A SAR study of this series revealed that by switching the amide linkage 
to the urea linkage and increasing the size of the substituent that is coupled to the urea, 
moiety improved the activity and selectivity against the c-KIT and c-KIT T670I mutant 
(Figure 5). 
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However, N,N-dimethylglycine (22h) exhibited improved activity against c-KIT wt 
(GI50 = 0.038 μM) and regained activity against the c-KIT T670I mutant (GI50 = 0.053 μM) 
while maintaining good selectivity toward parental BaF3 cells (GI50 = 2.9 μM), compared 
with 22a. The addition of cyclohexene (22i) and pyridine groups (22j) decreased the activ-
ity five- to ten-fold, while the addition of tetrahydropyran (22k) led to the regained activ-
ity against both c-KIT wt (GI50 = 0.087 μM) and c-KIT T670I (GI50 = 0.083 μM). N-Methylpi-
peridine (22l) and N-ethylpiperidine (22m) showed a similar potency. N-Acyl (22n), N-
cyclopropanecarbonyl (22o), and Boc (22p) led to a two- to three-fold reduction in activity, 
and 2-methylpiperidine (22q) showed a ten-fold decreased activity against c-KIT T670I. 
Selectivity window to parental BaF3 cells (22r and 22s) or reduced activity against c-KIT 
T670I (22t and 22u) was observed by increasing the size of the piperidine-derived substit-
uents. However, ethyl-linked morpholine (22v) displayed impressive activity against c-
KIT wt (GI50 = 0.042 μM) and c-KIT T670I (GI50 = 0.059 μM), with good selectivity for pa-
rental BaF3 cells (GI50 = 3.6 μM). Switching the amide moiety to sulfonamide derivatives 
(22w–22y) with different aliphatic chains did not improve antiproliferative efficacy 
against c-KIT T670I mutant. However, introducing the cyclopropyl group (22z) regained 
the activity against BaF3-TEL-c-KIT-T670I cells (GI50 = 0.063 μM). N-(piperidin-4-ylme-
thyl)propionamide (22aa) improved activity against c-KIT wt (GI50 = 0.057 μM), main-
tained activity against c-KIT T670I, and improved selectivity to parental BaF3 cells (GI50 > 
10 μM), whereas further enlargement (22ab) showed significantly reduced activity, com-
pared with 22aa. A SAR study of this series revealed that by switching the amide linkage 
to the urea linkage and increasing the size of the substituent that is coupled to the urea, 
moiety improved the activity and selectivity against the c-KIT and c-KIT T670I mutant 
(Figure 5). 
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However, N,N-dimethylglycine (22h) exhibited improved activity against c-KIT wt 
(GI50 = 0.038 μM) and regained activity against the c-KIT T670I mutant (GI50 = 0.053 μM) 
while maintaining good selectivity toward parental BaF3 cells (GI50 = 2.9 μM), compared 
with 22a. The addition of cyclohexene (22i) and pyridine groups (22j) decreased the activ-
ity five- to ten-fold, while the addition of tetrahydropyran (22k) led to the regained activ-
ity against both c-KIT wt (GI50 = 0.087 μM) and c-KIT T670I (GI50 = 0.083 μM). N-Methylpi-
peridine (22l) and N-ethylpiperidine (22m) showed a similar potency. N-Acyl (22n), N-
cyclopropanecarbonyl (22o), and Boc (22p) led to a two- to three-fold reduction in activity, 
and 2-methylpiperidine (22q) showed a ten-fold decreased activity against c-KIT T670I. 
Selectivity window to parental BaF3 cells (22r and 22s) or reduced activity against c-KIT 
T670I (22t and 22u) was observed by increasing the size of the piperidine-derived substit-
uents. However, ethyl-linked morpholine (22v) displayed impressive activity against c-
KIT wt (GI50 = 0.042 μM) and c-KIT T670I (GI50 = 0.059 μM), with good selectivity for pa-
rental BaF3 cells (GI50 = 3.6 μM). Switching the amide moiety to sulfonamide derivatives 
(22w–22y) with different aliphatic chains did not improve antiproliferative efficacy 
against c-KIT T670I mutant. However, introducing the cyclopropyl group (22z) regained 
the activity against BaF3-TEL-c-KIT-T670I cells (GI50 = 0.063 μM). N-(piperidin-4-ylme-
thyl)propionamide (22aa) improved activity against c-KIT wt (GI50 = 0.057 μM), main-
tained activity against c-KIT T670I, and improved selectivity to parental BaF3 cells (GI50 > 
10 μM), whereas further enlargement (22ab) showed significantly reduced activity, com-
pared with 22aa. A SAR study of this series revealed that by switching the amide linkage 
to the urea linkage and increasing the size of the substituent that is coupled to the urea, 
moiety improved the activity and selectivity against the c-KIT and c-KIT T670I mutant 
(Figure 5). 
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while maintaining good selectivity toward parental BaF3 cells (GI50 = 2.9 μM), compared 
with 22a. The addition of cyclohexene (22i) and pyridine groups (22j) decreased the activ-
ity five- to ten-fold, while the addition of tetrahydropyran (22k) led to the regained activ-
ity against both c-KIT wt (GI50 = 0.087 μM) and c-KIT T670I (GI50 = 0.083 μM). N-Methylpi-
peridine (22l) and N-ethylpiperidine (22m) showed a similar potency. N-Acyl (22n), N-
cyclopropanecarbonyl (22o), and Boc (22p) led to a two- to three-fold reduction in activity, 
and 2-methylpiperidine (22q) showed a ten-fold decreased activity against c-KIT T670I. 
Selectivity window to parental BaF3 cells (22r and 22s) or reduced activity against c-KIT 
T670I (22t and 22u) was observed by increasing the size of the piperidine-derived substit-
uents. However, ethyl-linked morpholine (22v) displayed impressive activity against c-
KIT wt (GI50 = 0.042 μM) and c-KIT T670I (GI50 = 0.059 μM), with good selectivity for pa-
rental BaF3 cells (GI50 = 3.6 μM). Switching the amide moiety to sulfonamide derivatives 
(22w–22y) with different aliphatic chains did not improve antiproliferative efficacy 
against c-KIT T670I mutant. However, introducing the cyclopropyl group (22z) regained 
the activity against BaF3-TEL-c-KIT-T670I cells (GI50 = 0.063 μM). N-(piperidin-4-ylme-
thyl)propionamide (22aa) improved activity against c-KIT wt (GI50 = 0.057 μM), main-
tained activity against c-KIT T670I, and improved selectivity to parental BaF3 cells (GI50 > 
10 μM), whereas further enlargement (22ab) showed significantly reduced activity, com-
pared with 22aa. A SAR study of this series revealed that by switching the amide linkage 
to the urea linkage and increasing the size of the substituent that is coupled to the urea, 
moiety improved the activity and selectivity against the c-KIT and c-KIT T670I mutant 
(Figure 5). 
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However, N,N-dimethylglycine (22h) exhibited improved activity against c-KIT wt
(GI50 = 0.038 µM) and regained activity against the c-KIT T670I mutant (GI50 = 0.053 µM)
while maintaining good selectivity toward parental BaF3 cells (GI50 = 2.9 µM), compared
with 22a. The addition of cyclohexene (22i) and pyridine groups (22j) decreased the ac-
tivity five- to ten-fold, while the addition of tetrahydropyran (22k) led to the regained
activity against both c-KIT wt (GI50 = 0.087 µM) and c-KIT T670I (GI50 = 0.083 µM).
N-Methylpiperidine (22l) and N-ethylpiperidine (22m) showed a similar potency.
N-Acyl (22n), N-cyclopropanecarbonyl (22o), and Boc (22p) led to a two- to three-fold
reduction in activity, and 2-methylpiperidine (22q) showed a ten-fold decreased activity
against c-KIT T670I. Selectivity window to parental BaF3 cells (22r and 22s) or reduced
activity against c-KIT T670I (22t and 22u) was observed by increasing the size of the
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piperidine-derived substituents. However, ethyl-linked morpholine (22v) displayed im-
pressive activity against c-KIT wt (GI50 = 0.042 µM) and c-KIT T670I (GI50 = 0.059 µM), with
good selectivity for parental BaF3 cells (GI50 = 3.6 µM). Switching the amide moiety to sul-
fonamide derivatives (22w–22y) with different aliphatic chains did not improve antiprolifer-
ative efficacy against c-KIT T670I mutant. However, introducing the cyclopropyl group (22z)
regained the activity against BaF3-TEL-c-KIT-T670I cells (GI50 = 0.063 µM). N-(piperidin-
4-ylmethyl)propionamide (22aa) improved activity against c-KIT wt (GI50 = 0.057 µM),
maintained activity against c-KIT T670I, and improved selectivity to parental BaF3 cells
(GI50 > 10 µM), whereas further enlargement (22ab) showed significantly reduced activity,
compared with 22aa. A SAR study of this series revealed that by switching the amide
linkage to the urea linkage and increasing the size of the substituent that is coupled to
the urea, moiety improved the activity and selectivity against the c-KIT and c-KIT T670I
mutant (Figure 5).
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tives as c-KIT wt and c-KIT T670I inhibitors.

Compound 22aa exhibited potent antiproliferative activity against both c-KIT wt-
expressing GIST cancer cell line GIST-T1 (GI50 = 0.004 µM) and the c-KIT T670I-expressing
GIST cancer cell line GIST-5R (GI50 = 0.026 µM). The pharmacokinetics of 22aa demon-
strated a half-life of 2.04 h and clearance of 2.76 L/h/kg when administered via intravenous
injection. However, oral administration of 22aa resulted in negligible absorption, which
precluded its use via the oral route in the animal model. The antitumor effect of 22aa at
25, 50 and 100 mg/kg dosages in a BaF3-TEL-c-KIT-T670I cell-inoculated xenograft mouse
model was evaluated. Over a period of 10 days of continuous treatment, the growth of
BaF3-TEL-c-KIT-T670I tumors was found to be dose-dependently inhibited by compound
22aa. At a dosage of 100 mg/kg, the compound exhibited a tumor growth inhibition
of 47.7%.

Molecular modeling showed that compound 22aa adopted a type II binding mode. In
c-KIT, the nitrogen atom of the quinoline moiety established a hydrogen bond with Cys673
of the c-KIT domain at the hinge-binding region, and the urea moiety NHs interacted
with Glu640 via a hydrogen bond formation. The hydrophobic pocket was occupied by
the piperidine moiety and amide NH to form an additional hydrogen bond with Ile789



Int. J. Mol. Sci. 2023, 24, 9450 12 of 48

(Figure 6A). A similar type II binding mechanism was adopted by compound 22aa in the
c-KIT T670I mutant homology model. The O-bridged phenyl moiety in 22aa was oriented
at an angle that allowed room for the large residue isoleucine due to the three hydrogen
bonds created by the urea moiety (Figure 6B).
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In continuation to their previously developed c-KIT inhibitor CHMFL-KIT-8140,
Wu et al. designed and synthesized a series of substituted N-(4-((6,7-dimethoxyquinolin-
4-yl)oxy)phenyl)acetamide derivatives [42]. The 35 synthesized compounds were
screened for their inhibitory activity against IL-3-independent BaF3 cells expressing
c-KIT wt (BaF3-tel-c-KIT) and c-KIT T670I (BaF3-tel-c-KIT-T670I). The inhibitory ac-
tivity of CHMFL-KIT-8140 was significantly reduced by replacing the urea fragment
(L2) with acetamide and the R1 tail moiety with a phenyl ring (35a) or pyridine (35b).
Modification of L2 in 35a to cyclopropanecarboxamide (36) did not increase the potency.
Nevertheless, introducing a CF3 group at the para-position of R1 (35c) significantly
increased the activity against c-KIT wt and c-KIT T670I with strong selectivity against
parental BaF3 cells (GI50 = 2.16 µM) and GI50 values of 0.022 µM and 0.011 µM, re-
spectively. Similar efficacy against c-KIT wt and c-KIT T670I was demonstrated by
an analogous molecule with an m-CF3 substituent (35d) (GI50 = 0.020 and 0.001 µM,
respectively). Significant activity loss occurred when the R1 substituent was changed
from m-CF3 to m-F (35e) or m-OMe (35f). The p-F substitution added to R1 in 35d (35g)
resulted in a 13-fold decrease in activity against c-KIT T670I. Cl substitution (35h),
however, increased the selectivity for parental BaF3 cells (GI50 = 5.97 µM) and efficacy
against c-KIT wt and c-KIT T670I. The activity against c-KIT wt and c-KIT T670I was
slightly decreased by installing a larger substituent, such as a methyl group, at R1
(35i). The effects of various substituents at the meta- and para-positions of the benzene
ring (35k–m) were further investigated, and this led to a considerable loss of activity
against c-KIT wt. In addition, activity loss was observed when a F or CF3 group was
installed to the benzene ring ortho-position (35n–p). Larger groups at R1, such as
benzodioxole (35q), naphthyl (35r), and aliphatic rings such as cyclohexyl (35s) and
N-methyl piperazine (35t), led to a loss of activity. When the amide of L2 in 35c (43)
and 35d (44) was changed to a reversed amide, activity loss occurred (Table 5).
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 

CF3

CF3
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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CF3
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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Cl

CF3
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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Cl

CF3
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Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 13 of 45 
 

 

35a 
  

>10 >10 >10 

35b 
  

5.13 4.17 6.99 

36 
  

>10 >10 >10 

35c 
  

2.16 0.022 0.001 

35d 
  

1.89 0.020 0.001 

35e 
  

1.0 0.923 0.342 

35f 
  

2.78 0.293 0.339 

35g 
  

1.03 0.024 0.013 

35h 
  

5.97 0.001 0.004 

35i 
  

7.26 0.017 0.014 

35j 
  

6.42 0.027 0.015 

35k 
 

4.13 0.319 0.179 

35l 
  

0.67 0.312 0.309 

35m 
 

2.03 0.342 0.037 

35n 
  

6.70 0.424 0.309 

35o 
  

1.93 2.78 1.70 

35p 
  

0.704 0.040 0.285 

35q 
  

3.10 0.11 0.167 

35r 
  

6.23 0.112 0.034 

35s 
  

2.47 0.635 0.362 

35t 
  

8.70 7.33 8.52 

43 
  

6.18 2.90 0.668 

44 
  

10 2.35 4.61 

To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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Cl

CF3
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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Cl
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 

CF3

CF3

Cl

CF3

0.704 0.040 0.285
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Figure 6. (A) Molecular modeling of compound 22aa with c-KIT wt (PDB code 1T46); (B) Molecular 
modeling of compound 22aa with the c-KIT T670I homology model (generated based on PDB code 
1T46). Reprinted with permission from Ref. [41]. 

In continuation to their previously developed c-KIT inhibitor CHMFL-KIT-8140, Wu 
et al. designed and synthesized a series of substituted N-(4-((6,7-dimethoxyquinolin-4-
yl)oxy)phenyl)acetamide derivatives [42]. The 35 synthesized compounds were screened 
for their inhibitory activity against IL-3-independent BaF3 cells expressing c-KIT wt 
(BaF3-tel-c-KIT) and c-KIT T670I (BaF3-tel-c-KIT-T670I). The inhibitory activity of 
CHMFL-KIT-8140 was significantly reduced by replacing the urea fragment (L2) with ac-
etamide and the R1 tail moiety with a phenyl ring (35a) or pyridine (35b). Modification of 
L2 in 35a to cyclopropanecarboxamide (36) did not increase the potency. Nevertheless, 
introducing a CF3 group at the para-position of R1 (35c) significantly increased the activ-
ity against c-KIT wt and c-KIT T670I with strong selectivity against parental BaF3 cells 
(GI50 = 2.16 μM) and GI50 values of 0.022 μM and 0.011 μM, respectively. Similar efficacy 
against c-KIT wt and c-KIT T670I was demonstrated by an analogous molecule with an 
m-CF3 substituent (35d) (GI50 = 0.020 and 0.001 μM, respectively). Significant activity loss 
occurred when the R1 substituent was changed from m-CF3 to m-F (35e) or m-OMe (35f). 
The p-F substitution added to R1 in 35d (35g) resulted in a 13-fold decrease in activity 
against c-KIT T670I. Cl substitution (35h), however, increased the selectivity for parental 
BaF3 cells (GI50 = 5.97 μM) and efficacy against c-KIT wt and c-KIT T670I. The activity 
against c-KIT wt and c-KIT T670I was slightly decreased by installing a larger substituent, 
such as a methyl group, at R1 (35i). The effects of various substituents at the meta- and 
para-positions of the benzene ring (35k–m) were further investigated, and this led to a 
considerable loss of activity against c-KIT wt. In addition, activity loss was observed when 
a F or CF3 group was installed to the benzene ring ortho-position (35n–p). Larger groups 
at R1, such as benzodioxole (35q), naphthyl (35r), and aliphatic rings such as cyclohexyl 
(35s) and N-methyl piperazine (35t), led to a loss of activity. When the amide of L2 in 35c 
(43) and 35d (44) was changed to a reversed amide, activity loss occurred (Table 5). 

Table 5. SAR exploration focused on the L2/R1 moieties. 

 

Compd. L2 R1 
Parental BaF3 

(GI50: μM) 
BaF3-Tel-c-KIT 

(GI50: μM) 
BaF3-Tel-c-KIT-
T670I (GI50: μM) 

CHMFL-KIT-
8140 - - >10 0.057 0.063 

Compd. L2 R1 Parental BaF3
(GI50: µM)

BaF3-Tel-c-KIT
(GI50: µM)

BaF3-Tel-c-KIT-T670I
(GI50: µM)
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 

CF3

CF3

Cl

CF3

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 13 of 45 
 

 

35a 
  

>10 >10 >10 

35b 
  

5.13 4.17 6.99 

36 
  

>10 >10 >10 

35c 
  

2.16 0.022 0.001 

35d 
  

1.89 0.020 0.001 

35e 
  

1.0 0.923 0.342 

35f 
  

2.78 0.293 0.339 

35g 
  

1.03 0.024 0.013 

35h 
  

5.97 0.001 0.004 

35i 
  

7.26 0.017 0.014 

35j 
  

6.42 0.027 0.015 

35k 
 

4.13 0.319 0.179 

35l 
  

0.67 0.312 0.309 

35m 
 

2.03 0.342 0.037 

35n 
  

6.70 0.424 0.309 

35o 
  

1.93 2.78 1.70 

35p 
  

0.704 0.040 0.285 

35q 
  

3.10 0.11 0.167 

35r 
  

6.23 0.112 0.034 

35s 
  

2.47 0.635 0.362 

35t 
  

8.70 7.33 8.52 

43 
  

6.18 2.90 0.668 

44 
  

10 2.35 4.61 

To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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Cl

CF3
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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CF3

Cl

CF3
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
placement of the F atom with a chlorine atom (35a) or a methyl group (40a) displayed 
similar activity compared to 39. However, shifting the F atom from the ortho- to the meta-
position (40) decreased the activity against c-KIT wt (GI50 = 0.116 μM). Substituting the 
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To further explore the SAR of the compound series, they focused on the L1 moiety 
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluorome-
thyl)phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of 
compound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant 
loss of activity against both c-KIT wt and c-KIT T670I. The effects of various substituents 
on the benzene ring of the L1 moiety was investigated while the phenoxy group was kept 
intact. The addition of an F atom to the acetamide ortho-position (39) improved the activ-
ity against both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 μM, respectively). Re-
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To further explore the SAR of the compound series, they focused on the L1 moiety
while fixing the L2 and R1 moieties as phenoxyacetamide and 4-chloro-3-(trifluoromethyl)
phenyl, respectively (Table 6). Replacement of the oxygen atom in the L1 linker of com-
pound 35h with nitrogen (48), N-methyl (50), or sulfur (52) resulted in a significant loss of
activity against both c-KIT wt and c-KIT T670I. The effects of various substituents on the
benzene ring of the L1 moiety was investigated while the phenoxy group was kept intact.
The addition of an F atom to the acetamide ortho-position (39) improved the activity against
both c-KIT wt and c-KIT T670I (GI50 = 0.049 and 0.018 µM, respectively). Replacement of
the F atom with a chlorine atom (35a) or a methyl group (40a) displayed similar activity
compared to 39. However, shifting the F atom from the ortho- to the meta-position (40)
decreased the activity against c-KIT wt (GI50 = 0.116 µM). Substituting the meta-position
with various groups, such as chloro (40b), methyl (40c), methoxy (40d), trifluoromethyl
(40e), and nitrile (40f), all resulted in a loss of activity compared with compound 35h.
SAR study of this series disclosed that changing the urea linkage to a phenylacetamide
linker and substituting the tail phenyl ring with a chloro group in combination with the
trifluoromethyl group para to the acetamide linker improved the activity and selectivity
(Figure 7).

Compound 35h showed a strong growth inhibition in KIT-dependent GIST cancer cells,
such as GIST-T1 and GIST-882 (GI50 = 0.013 and 0.006 µM) and maintained a selectivity
window against the GIST-48B cancer cell line (GI50 = 1.37 µM). When administered orally,
the pharmacokinetics of compound 35h exhibited half-lives of 4.5 h, 6.4 h, and 19.4 h in
mice, rats and dogs, respectively. Compound 35h has an acceptable bioavailability in mice
(F = 43%), rats (F = 50%), and dogs (F = 81%). The antitumor effect of 35h at dosages of 20,
40, 80 and 100 mg/kg in a BaF3-tel-c-KIT-T670I cell-inoculated xenograft mouse model was
evaluated. Over an 11-day course of treatment, compound 35h showed a dose-dependent
inhibition of BaF3-tel-c-KIT-T670I tumor progression with almost 100% tumor growth
inhibition at a dosage of 100 mg/kg/day.
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The docking results revealed that the potent derivative 35h adopted a type II
binding mode in the c-KIT wt (Figure 8A) and c-KIT T670I mutant. At the hinge-
binding region, the nitrogen atom of the quinoline moiety forms a hydrogen bond with
Cys673. Two more hydrogen bonds were established by the amide group with Asp810
and Glu640, and the tail phenyl group fit into the hydrophobic pocket in the c-KIT wt
model (Figure 8B).
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Liu et al. designed and synthesized structurally modified derivatives of the FDA-
approved drug axitinib and tested them for their inhibitory activity [43]. The inhibitory
activity of the 29 synthesized compounds was evaluated against IL-3-independent BaF3 cells
(GI50) expressing c-KIT wt (BaF3-tel-c-KIT) and c-KIT T670I (BaF3-tel-c-KIT-T670I). When
the phenyl thiol ether linkage was replaced with a malonamide linkage (57a), it showed an
improved potency against c-KIT wt and c-KIT T670I (GI50 = 0.025 and 0.002 µM, respectively).
57a also displayed selectivity against parental BaF3 cells (GI50 = 7.4 µM), which indicates
effective antiproliferative inhibition. Shorter linkers, such as amide 58a, ethyleneamide
58b, and urea 59, showed a decreased activity against c-KIT T670I. Increasing the linker
size (57b) decreased the activity against both c-KIT wt and c-KIT T670I (Table 7).
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Removal of vinylpyridine in 57a with a hydrogen atom (67a) or methyl group (67b) 
led to a substantial loss of activity. However, 1-methyl-1H-pyrazole, pyridine, and 2-
methylpyridine (67c–e) displayed potent inhibitory activity against c-KIT T670I (GI50 = 
0.023, 0.045, and 0.059 μM, respectively) and had 7- to 15-fold increased selectivity over c-
KIT, indicating the importance of the aromatic head moiety for c-KIT kinase binding. Al-
tering the pyridine in 67d to 5-(methylcarbamoyl)pyridin (67f), fluorophenyl (67g), or 3-
carbamoylphenyl (67h) led to a loss of activity against c-KIT wt and c-KIT T670I. N-Methyl 
formamyl (67i) showed a six-fold selectivity over c-KIT wt and good activity against c-
KIT T670I (GI50 = 0.057 μM). Larger groups, such as 4-N-methyl piperazine (67j) and N-
methyl piperazinyl methylene (67k), showed more potent activity against c-KIT T670I and 
c-KIT wt, but also exhibited inhibitory activity against parental BaF3 cells (Table 8).  

  

Compd. Linker (L) BaF3
(GI50: µM)

BaF3-Tel-c-KIT
(GI50: µM)

BaF3-Tel-c-KIT-T670I
(GI50: µM)

Axitinib - 1.64 0.105 0.108

57a

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 16 of 45 
 

 

Liu et al. designed and synthesized structurally modified derivatives of the FDA-
approved drug axitinib and tested them for their inhibitory activity [43]. The inhibitory 
activity of the 29 synthesized compounds was evaluated against IL-3-independent BaF3 
cells (GI50) expressing c-KIT wt (BaF3-tel-c-KIT) and c-KIT T670I (BaF3-tel-c-KIT-T670I). 
When the phenyl thiol ether linkage was replaced with a malonamide linkage (57a), it 
showed an improved potency against c-KIT wt and c-KIT T670I (GI50 = 0.025 and 0.002 
μM, respectively). 57a also displayed selectivity against parental BaF3 cells (GI50 = 7.4 μM), 
which indicates effective antiproliferative inhibition. Shorter linkers, such as amide 58a, 
ethyleneamide 58b, and urea 59, showed a decreased activity against c-KIT T670I. Increas-
ing the linker size (57b) decreased the activity against both c-KIT wt and c-KIT T670I (Ta-
ble 7).  

Table 7. SAR exploration of the linker moiety (L). 

 

Compd. Linker (L) BaF3 
(GI50: μM) 

BaF3-Tel-c-KIT 
(GI50: μM) 

BaF3-Tel-c-KIT-
T670I (GI50: μM) 

Axitinib - 1.64 0.105 0.108 

57a 7.4 0.025 0.002 

58a 
 

1.71 2.97 1.71 

58b 
 

3.79 5.5 3.18 

59 
 

1.9 1.6 1.15 

57b 
 

>10 1 0.23 

Removal of vinylpyridine in 57a with a hydrogen atom (67a) or methyl group (67b) 
led to a substantial loss of activity. However, 1-methyl-1H-pyrazole, pyridine, and 2-
methylpyridine (67c–e) displayed potent inhibitory activity against c-KIT T670I (GI50 = 
0.023, 0.045, and 0.059 μM, respectively) and had 7- to 15-fold increased selectivity over c-
KIT, indicating the importance of the aromatic head moiety for c-KIT kinase binding. Al-
tering the pyridine in 67d to 5-(methylcarbamoyl)pyridin (67f), fluorophenyl (67g), or 3-
carbamoylphenyl (67h) led to a loss of activity against c-KIT wt and c-KIT T670I. N-Methyl 
formamyl (67i) showed a six-fold selectivity over c-KIT wt and good activity against c-
KIT T670I (GI50 = 0.057 μM). Larger groups, such as 4-N-methyl piperazine (67j) and N-
methyl piperazinyl methylene (67k), showed more potent activity against c-KIT T670I and 
c-KIT wt, but also exhibited inhibitory activity against parental BaF3 cells (Table 8).  

  

7.4 0.025 0.002

58a

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 16 of 45 
 

 

Liu et al. designed and synthesized structurally modified derivatives of the FDA-
approved drug axitinib and tested them for their inhibitory activity [43]. The inhibitory 
activity of the 29 synthesized compounds was evaluated against IL-3-independent BaF3 
cells (GI50) expressing c-KIT wt (BaF3-tel-c-KIT) and c-KIT T670I (BaF3-tel-c-KIT-T670I). 
When the phenyl thiol ether linkage was replaced with a malonamide linkage (57a), it 
showed an improved potency against c-KIT wt and c-KIT T670I (GI50 = 0.025 and 0.002 
μM, respectively). 57a also displayed selectivity against parental BaF3 cells (GI50 = 7.4 μM), 
which indicates effective antiproliferative inhibition. Shorter linkers, such as amide 58a, 
ethyleneamide 58b, and urea 59, showed a decreased activity against c-KIT T670I. Increas-
ing the linker size (57b) decreased the activity against both c-KIT wt and c-KIT T670I (Ta-
ble 7).  

Table 7. SAR exploration of the linker moiety (L). 

 

Compd. Linker (L) BaF3 
(GI50: μM) 

BaF3-Tel-c-KIT 
(GI50: μM) 

BaF3-Tel-c-KIT-
T670I (GI50: μM) 

Axitinib - 1.64 0.105 0.108 

57a 7.4 0.025 0.002 

58a 
 

1.71 2.97 1.71 

58b 
 

3.79 5.5 3.18 

59 
 

1.9 1.6 1.15 

57b 
 

>10 1 0.23 

Removal of vinylpyridine in 57a with a hydrogen atom (67a) or methyl group (67b) 
led to a substantial loss of activity. However, 1-methyl-1H-pyrazole, pyridine, and 2-
methylpyridine (67c–e) displayed potent inhibitory activity against c-KIT T670I (GI50 = 
0.023, 0.045, and 0.059 μM, respectively) and had 7- to 15-fold increased selectivity over c-
KIT, indicating the importance of the aromatic head moiety for c-KIT kinase binding. Al-
tering the pyridine in 67d to 5-(methylcarbamoyl)pyridin (67f), fluorophenyl (67g), or 3-
carbamoylphenyl (67h) led to a loss of activity against c-KIT wt and c-KIT T670I. N-Methyl 
formamyl (67i) showed a six-fold selectivity over c-KIT wt and good activity against c-
KIT T670I (GI50 = 0.057 μM). Larger groups, such as 4-N-methyl piperazine (67j) and N-
methyl piperazinyl methylene (67k), showed more potent activity against c-KIT T670I and 
c-KIT wt, but also exhibited inhibitory activity against parental BaF3 cells (Table 8).  

  

1.71 2.97 1.71

58b

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 16 of 45 
 

 

Liu et al. designed and synthesized structurally modified derivatives of the FDA-
approved drug axitinib and tested them for their inhibitory activity [43]. The inhibitory 
activity of the 29 synthesized compounds was evaluated against IL-3-independent BaF3 
cells (GI50) expressing c-KIT wt (BaF3-tel-c-KIT) and c-KIT T670I (BaF3-tel-c-KIT-T670I). 
When the phenyl thiol ether linkage was replaced with a malonamide linkage (57a), it 
showed an improved potency against c-KIT wt and c-KIT T670I (GI50 = 0.025 and 0.002 
μM, respectively). 57a also displayed selectivity against parental BaF3 cells (GI50 = 7.4 μM), 
which indicates effective antiproliferative inhibition. Shorter linkers, such as amide 58a, 
ethyleneamide 58b, and urea 59, showed a decreased activity against c-KIT T670I. Increas-
ing the linker size (57b) decreased the activity against both c-KIT wt and c-KIT T670I (Ta-
ble 7).  

Table 7. SAR exploration of the linker moiety (L). 

 

Compd. Linker (L) BaF3 
(GI50: μM) 

BaF3-Tel-c-KIT 
(GI50: μM) 

BaF3-Tel-c-KIT-
T670I (GI50: μM) 

Axitinib - 1.64 0.105 0.108 

57a 7.4 0.025 0.002 

58a 
 

1.71 2.97 1.71 

58b 
 

3.79 5.5 3.18 

59 
 

1.9 1.6 1.15 

57b 
 

>10 1 0.23 

Removal of vinylpyridine in 57a with a hydrogen atom (67a) or methyl group (67b) 
led to a substantial loss of activity. However, 1-methyl-1H-pyrazole, pyridine, and 2-
methylpyridine (67c–e) displayed potent inhibitory activity against c-KIT T670I (GI50 = 
0.023, 0.045, and 0.059 μM, respectively) and had 7- to 15-fold increased selectivity over c-
KIT, indicating the importance of the aromatic head moiety for c-KIT kinase binding. Al-
tering the pyridine in 67d to 5-(methylcarbamoyl)pyridin (67f), fluorophenyl (67g), or 3-
carbamoylphenyl (67h) led to a loss of activity against c-KIT wt and c-KIT T670I. N-Methyl 
formamyl (67i) showed a six-fold selectivity over c-KIT wt and good activity against c-
KIT T670I (GI50 = 0.057 μM). Larger groups, such as 4-N-methyl piperazine (67j) and N-
methyl piperazinyl methylene (67k), showed more potent activity against c-KIT T670I and 
c-KIT wt, but also exhibited inhibitory activity against parental BaF3 cells (Table 8).  

  

3.79 5.5 3.18

59

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 16 of 45 
 

 

Liu et al. designed and synthesized structurally modified derivatives of the FDA-
approved drug axitinib and tested them for their inhibitory activity [43]. The inhibitory 
activity of the 29 synthesized compounds was evaluated against IL-3-independent BaF3 
cells (GI50) expressing c-KIT wt (BaF3-tel-c-KIT) and c-KIT T670I (BaF3-tel-c-KIT-T670I). 
When the phenyl thiol ether linkage was replaced with a malonamide linkage (57a), it 
showed an improved potency against c-KIT wt and c-KIT T670I (GI50 = 0.025 and 0.002 
μM, respectively). 57a also displayed selectivity against parental BaF3 cells (GI50 = 7.4 μM), 
which indicates effective antiproliferative inhibition. Shorter linkers, such as amide 58a, 
ethyleneamide 58b, and urea 59, showed a decreased activity against c-KIT T670I. Increas-
ing the linker size (57b) decreased the activity against both c-KIT wt and c-KIT T670I (Ta-
ble 7).  

Table 7. SAR exploration of the linker moiety (L). 

 

Compd. Linker (L) BaF3 
(GI50: μM) 

BaF3-Tel-c-KIT 
(GI50: μM) 

BaF3-Tel-c-KIT-
T670I (GI50: μM) 

Axitinib - 1.64 0.105 0.108 

57a 7.4 0.025 0.002 

58a 
 

1.71 2.97 1.71 

58b 
 

3.79 5.5 3.18 

59 
 

1.9 1.6 1.15 

57b 
 

>10 1 0.23 

Removal of vinylpyridine in 57a with a hydrogen atom (67a) or methyl group (67b) 
led to a substantial loss of activity. However, 1-methyl-1H-pyrazole, pyridine, and 2-
methylpyridine (67c–e) displayed potent inhibitory activity against c-KIT T670I (GI50 = 
0.023, 0.045, and 0.059 μM, respectively) and had 7- to 15-fold increased selectivity over c-
KIT, indicating the importance of the aromatic head moiety for c-KIT kinase binding. Al-
tering the pyridine in 67d to 5-(methylcarbamoyl)pyridin (67f), fluorophenyl (67g), or 3-
carbamoylphenyl (67h) led to a loss of activity against c-KIT wt and c-KIT T670I. N-Methyl 
formamyl (67i) showed a six-fold selectivity over c-KIT wt and good activity against c-
KIT T670I (GI50 = 0.057 μM). Larger groups, such as 4-N-methyl piperazine (67j) and N-
methyl piperazinyl methylene (67k), showed more potent activity against c-KIT T670I and 
c-KIT wt, but also exhibited inhibitory activity against parental BaF3 cells (Table 8).  

  

1.9 1.6 1.15

57b
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Liu et al. designed and synthesized structurally modified derivatives of the FDA-
approved drug axitinib and tested them for their inhibitory activity [43]. The inhibitory 
activity of the 29 synthesized compounds was evaluated against IL-3-independent BaF3 
cells (GI50) expressing c-KIT wt (BaF3-tel-c-KIT) and c-KIT T670I (BaF3-tel-c-KIT-T670I). 
When the phenyl thiol ether linkage was replaced with a malonamide linkage (57a), it 
showed an improved potency against c-KIT wt and c-KIT T670I (GI50 = 0.025 and 0.002 
μM, respectively). 57a also displayed selectivity against parental BaF3 cells (GI50 = 7.4 μM), 
which indicates effective antiproliferative inhibition. Shorter linkers, such as amide 58a, 
ethyleneamide 58b, and urea 59, showed a decreased activity against c-KIT T670I. Increas-
ing the linker size (57b) decreased the activity against both c-KIT wt and c-KIT T670I (Ta-
ble 7).  

Table 7. SAR exploration of the linker moiety (L). 

 

Compd. Linker (L) BaF3 
(GI50: μM) 

BaF3-Tel-c-KIT 
(GI50: μM) 

BaF3-Tel-c-KIT-
T670I (GI50: μM) 

Axitinib - 1.64 0.105 0.108 

57a 7.4 0.025 0.002 

58a 
 

1.71 2.97 1.71 

58b 
 

3.79 5.5 3.18 

59 
 

1.9 1.6 1.15 

57b 
 

>10 1 0.23 

Removal of vinylpyridine in 57a with a hydrogen atom (67a) or methyl group (67b) 
led to a substantial loss of activity. However, 1-methyl-1H-pyrazole, pyridine, and 2-
methylpyridine (67c–e) displayed potent inhibitory activity against c-KIT T670I (GI50 = 
0.023, 0.045, and 0.059 μM, respectively) and had 7- to 15-fold increased selectivity over c-
KIT, indicating the importance of the aromatic head moiety for c-KIT kinase binding. Al-
tering the pyridine in 67d to 5-(methylcarbamoyl)pyridin (67f), fluorophenyl (67g), or 3-
carbamoylphenyl (67h) led to a loss of activity against c-KIT wt and c-KIT T670I. N-Methyl 
formamyl (67i) showed a six-fold selectivity over c-KIT wt and good activity against c-
KIT T670I (GI50 = 0.057 μM). Larger groups, such as 4-N-methyl piperazine (67j) and N-
methyl piperazinyl methylene (67k), showed more potent activity against c-KIT T670I and 
c-KIT wt, but also exhibited inhibitory activity against parental BaF3 cells (Table 8).  

  

>10 1 0.23

Removal of vinylpyridine in 57a with a hydrogen atom (67a) or methyl group (67b) led
to a substantial loss of activity. However, 1-methyl-1H-pyrazole, pyridine, and
2-methylpyridine (67c–e) displayed potent inhibitory activity against c-KIT T670I
(GI50 = 0.023, 0.045, and 0.059 µM, respectively) and had 7- to 15-fold increased selectiv-
ity over c-KIT, indicating the importance of the aromatic head moiety for c-KIT kinase
binding. Altering the pyridine in 67d to 5-(methylcarbamoyl)pyridin (67f), fluorophenyl
(67g), or 3-carbamoylphenyl (67h) led to a loss of activity against c-KIT wt and c-KIT T670I.
N-Methyl formamyl (67i) showed a six-fold selectivity over c-KIT wt and good activity
against c-KIT T670I (GI50 = 0.057 µM). Larger groups, such as 4-N-methyl piperazine
(67j) and N-methyl piperazinyl methylene (67k), showed more potent activity against
c-KIT T670I and c-KIT wt, but also exhibited inhibitory activity against parental BaF3
cells (Table 8).

According to these findings, vinylpyridine in 57a was preferred for its increased
efficacy against c-KIT T670I and for its higher selectivity for c-KIT wt. The impact of the R2
tail moiety was tested while keeping the head and linker the same (Table 9). Compound 57c,
which has a simple phenyl group at R2, displayed a 19-fold selectivity over c-KIT wt, but
showed a reduced activity against c-KIT T670I (GI50 = 0.117 µM). Meta-halogen-substituted
phenyl groups (57d–f) were tested at R2 to increase the hydrophobicity and m-fluoro (57d),
showing the best selectivity over c-KIT wt (26–fold) and highest potency against c-KIT
T670I (GI50 = 0.044 µM). Larger substituent groups, such as m-methyl (57g), m-methoxy
(57h), m-N,N-dimethyl (57i), and m-trifluoromethyl (57j), showed a reduced activity against
c-KIT T670I and poorer selectivity for c-KIT wt. The m-N-methyl piperazinyl group (57k)
caused significant activity loss. Fluoro-containing groups, such as o-fluoro (57l), p-fluoro
(57m), and various multifluoro substituents (57n–p), resulted in loss a of activity against
c-KIT T670I, compared with compound 57d.
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Compd. R1 BaF3 
(GI50: μM) 

BaF3-Tel-c-KIT 
(GI50: μM) 

BaF3-Tel-c-KIT-
T670I (GI50: μM) 

67a H >10 >10 2.67 
67b Me >10 >10 1.88 

67c 
 

>10 0.35 0.023 

67d 
 

>10 0.32 0.045 

67e 
 

4.91 0.183 0.059 

67f 
 

>10 >10 4.48 

67g 
 

>10 1.12 0.179 

67h 
 

>10 1.55 0.339 

67i 
 

>10 0.338 0.057 

67j 
 

1.35 0.025 0.012 

67k 

 

0.911 0.019 0.012 

According to these findings, vinylpyridine in 57a was preferred for its increased ef-
ficacy against c-KIT T670I and for its higher selectivity for c-KIT wt. The impact of the R2 
tail moiety was tested while keeping the head and linker the same (Table 9). Compound 
57c, which has a simple phenyl group at R2, displayed a 19-fold selectivity over c-KIT wt, 
but showed a reduced activity against c-KIT T670I (GI50 = 0.117 μM). Meta-halogen-sub-
stituted phenyl groups (57d–f) were tested at R2 to increase the hydrophobicity and m-
fluoro (57d), showing the best selectivity over c-KIT wt (26–fold) and highest potency 
against c-KIT T670I (GI50 = 0.044 μM). Larger substituent groups, such as m-methyl (57g), 
m-methoxy (57h), m-N,N-dimethyl (57i), and m-trifluoromethyl (57j), showed a reduced 
activity against c-KIT T670I and poorer selectivity for c-KIT wt. The m-N-methyl piperazi-
nyl group (57k) caused significant activity loss. Fluoro-containing groups, such as o-fluoro 
(57l), p-fluoro (57m), and various multifluoro substituents (57n–p), resulted in loss a of 
activity against c-KIT T670I, compared with compound 57d.  

  

Compd. R1 BaF3
(GI50: µM)

BaF3-Tel-c-KIT
(GI50: µM)

BaF3-Tel-c-KIT-T670I
(GI50: µM)

67a H >10 >10 2.67

67b Me >10 >10 1.88

67c
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67c 
 

>10 0.35 0.023 

67d 
 

>10 0.32 0.045 

67e 
 

4.91 0.183 0.059 

67f 
 

>10 >10 4.48 

67g 
 

>10 1.12 0.179 

67h 
 

>10 1.55 0.339 

67i 
 

>10 0.338 0.057 

67j 
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According to these findings, vinylpyridine in 57a was preferred for its increased ef-
ficacy against c-KIT T670I and for its higher selectivity for c-KIT wt. The impact of the R2 
tail moiety was tested while keeping the head and linker the same (Table 9). Compound 
57c, which has a simple phenyl group at R2, displayed a 19-fold selectivity over c-KIT wt, 
but showed a reduced activity against c-KIT T670I (GI50 = 0.117 μM). Meta-halogen-sub-
stituted phenyl groups (57d–f) were tested at R2 to increase the hydrophobicity and m-
fluoro (57d), showing the best selectivity over c-KIT wt (26–fold) and highest potency 
against c-KIT T670I (GI50 = 0.044 μM). Larger substituent groups, such as m-methyl (57g), 
m-methoxy (57h), m-N,N-dimethyl (57i), and m-trifluoromethyl (57j), showed a reduced 
activity against c-KIT T670I and poorer selectivity for c-KIT wt. The m-N-methyl piperazi-
nyl group (57k) caused significant activity loss. Fluoro-containing groups, such as o-fluoro 
(57l), p-fluoro (57m), and various multifluoro substituents (57n–p), resulted in loss a of 
activity against c-KIT T670I, compared with compound 57d.  
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67d
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Compd. R1 BaF3 
(GI50: μM) 

BaF3-Tel-c-KIT 
(GI50: μM) 

BaF3-Tel-c-KIT-
T670I (GI50: μM) 

67a H >10 >10 2.67 
67b Me >10 >10 1.88 

67c 
 

>10 0.35 0.023 

67d 
 

>10 0.32 0.045 

67e 
 

4.91 0.183 0.059 
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>10 >10 4.48 
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>10 1.12 0.179 
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>10 1.55 0.339 
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0.911 0.019 0.012 

According to these findings, vinylpyridine in 57a was preferred for its increased ef-
ficacy against c-KIT T670I and for its higher selectivity for c-KIT wt. The impact of the R2 
tail moiety was tested while keeping the head and linker the same (Table 9). Compound 
57c, which has a simple phenyl group at R2, displayed a 19-fold selectivity over c-KIT wt, 
but showed a reduced activity against c-KIT T670I (GI50 = 0.117 μM). Meta-halogen-sub-
stituted phenyl groups (57d–f) were tested at R2 to increase the hydrophobicity and m-
fluoro (57d), showing the best selectivity over c-KIT wt (26–fold) and highest potency 
against c-KIT T670I (GI50 = 0.044 μM). Larger substituent groups, such as m-methyl (57g), 
m-methoxy (57h), m-N,N-dimethyl (57i), and m-trifluoromethyl (57j), showed a reduced 
activity against c-KIT T670I and poorer selectivity for c-KIT wt. The m-N-methyl piperazi-
nyl group (57k) caused significant activity loss. Fluoro-containing groups, such as o-fluoro 
(57l), p-fluoro (57m), and various multifluoro substituents (57n–p), resulted in loss a of 
activity against c-KIT T670I, compared with compound 57d.  

  

>10 0.32 0.045

67e
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Compd. R1 BaF3 
(GI50: μM) 

BaF3-Tel-c-KIT 
(GI50: μM) 

BaF3-Tel-c-KIT-
T670I (GI50: μM) 

67a H >10 >10 2.67 
67b Me >10 >10 1.88 

67c 
 

>10 0.35 0.023 

67d 
 

>10 0.32 0.045 

67e 
 

4.91 0.183 0.059 

67f 
 

>10 >10 4.48 

67g 
 

>10 1.12 0.179 

67h 
 

>10 1.55 0.339 

67i 
 

>10 0.338 0.057 

67j 
 

1.35 0.025 0.012 

67k 

 

0.911 0.019 0.012 

According to these findings, vinylpyridine in 57a was preferred for its increased ef-
ficacy against c-KIT T670I and for its higher selectivity for c-KIT wt. The impact of the R2 
tail moiety was tested while keeping the head and linker the same (Table 9). Compound 
57c, which has a simple phenyl group at R2, displayed a 19-fold selectivity over c-KIT wt, 
but showed a reduced activity against c-KIT T670I (GI50 = 0.117 μM). Meta-halogen-sub-
stituted phenyl groups (57d–f) were tested at R2 to increase the hydrophobicity and m-
fluoro (57d), showing the best selectivity over c-KIT wt (26–fold) and highest potency 
against c-KIT T670I (GI50 = 0.044 μM). Larger substituent groups, such as m-methyl (57g), 
m-methoxy (57h), m-N,N-dimethyl (57i), and m-trifluoromethyl (57j), showed a reduced 
activity against c-KIT T670I and poorer selectivity for c-KIT wt. The m-N-methyl piperazi-
nyl group (57k) caused significant activity loss. Fluoro-containing groups, such as o-fluoro 
(57l), p-fluoro (57m), and various multifluoro substituents (57n–p), resulted in loss a of 
activity against c-KIT T670I, compared with compound 57d.  

  

4.91 0.183 0.059

67f
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Compd. R1 BaF3 
(GI50: μM) 

BaF3-Tel-c-KIT 
(GI50: μM) 

BaF3-Tel-c-KIT-
T670I (GI50: μM) 

67a H >10 >10 2.67 
67b Me >10 >10 1.88 

67c 
 

>10 0.35 0.023 

67d 
 

>10 0.32 0.045 

67e 
 

4.91 0.183 0.059 
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>10 >10 4.48 
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>10 1.55 0.339 

67i 
 

>10 0.338 0.057 

67j 
 

1.35 0.025 0.012 

67k 

 

0.911 0.019 0.012 

According to these findings, vinylpyridine in 57a was preferred for its increased ef-
ficacy against c-KIT T670I and for its higher selectivity for c-KIT wt. The impact of the R2 
tail moiety was tested while keeping the head and linker the same (Table 9). Compound 
57c, which has a simple phenyl group at R2, displayed a 19-fold selectivity over c-KIT wt, 
but showed a reduced activity against c-KIT T670I (GI50 = 0.117 μM). Meta-halogen-sub-
stituted phenyl groups (57d–f) were tested at R2 to increase the hydrophobicity and m-
fluoro (57d), showing the best selectivity over c-KIT wt (26–fold) and highest potency 
against c-KIT T670I (GI50 = 0.044 μM). Larger substituent groups, such as m-methyl (57g), 
m-methoxy (57h), m-N,N-dimethyl (57i), and m-trifluoromethyl (57j), showed a reduced 
activity against c-KIT T670I and poorer selectivity for c-KIT wt. The m-N-methyl piperazi-
nyl group (57k) caused significant activity loss. Fluoro-containing groups, such as o-fluoro 
(57l), p-fluoro (57m), and various multifluoro substituents (57n–p), resulted in loss a of 
activity against c-KIT T670I, compared with compound 57d.  

  

>10 >10 4.48

67g
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Compd. R1 BaF3 
(GI50: μM) 

BaF3-Tel-c-KIT 
(GI50: μM) 

BaF3-Tel-c-KIT-
T670I (GI50: μM) 

67a H >10 >10 2.67 
67b Me >10 >10 1.88 

67c 
 

>10 0.35 0.023 

67d 
 

>10 0.32 0.045 

67e 
 

4.91 0.183 0.059 
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>10 >10 4.48 

67g 
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67h 
 

>10 1.55 0.339 
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0.911 0.019 0.012 

According to these findings, vinylpyridine in 57a was preferred for its increased ef-
ficacy against c-KIT T670I and for its higher selectivity for c-KIT wt. The impact of the R2 
tail moiety was tested while keeping the head and linker the same (Table 9). Compound 
57c, which has a simple phenyl group at R2, displayed a 19-fold selectivity over c-KIT wt, 
but showed a reduced activity against c-KIT T670I (GI50 = 0.117 μM). Meta-halogen-sub-
stituted phenyl groups (57d–f) were tested at R2 to increase the hydrophobicity and m-
fluoro (57d), showing the best selectivity over c-KIT wt (26–fold) and highest potency 
against c-KIT T670I (GI50 = 0.044 μM). Larger substituent groups, such as m-methyl (57g), 
m-methoxy (57h), m-N,N-dimethyl (57i), and m-trifluoromethyl (57j), showed a reduced 
activity against c-KIT T670I and poorer selectivity for c-KIT wt. The m-N-methyl piperazi-
nyl group (57k) caused significant activity loss. Fluoro-containing groups, such as o-fluoro 
(57l), p-fluoro (57m), and various multifluoro substituents (57n–p), resulted in loss a of 
activity against c-KIT T670I, compared with compound 57d.  

  

>10 1.12 0.179

67h
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Compd. R1 BaF3 
(GI50: μM) 

BaF3-Tel-c-KIT 
(GI50: μM) 

BaF3-Tel-c-KIT-
T670I (GI50: μM) 

67a H >10 >10 2.67 
67b Me >10 >10 1.88 

67c 
 

>10 0.35 0.023 

67d 
 

>10 0.32 0.045 

67e 
 

4.91 0.183 0.059 
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0.911 0.019 0.012 

According to these findings, vinylpyridine in 57a was preferred for its increased ef-
ficacy against c-KIT T670I and for its higher selectivity for c-KIT wt. The impact of the R2 
tail moiety was tested while keeping the head and linker the same (Table 9). Compound 
57c, which has a simple phenyl group at R2, displayed a 19-fold selectivity over c-KIT wt, 
but showed a reduced activity against c-KIT T670I (GI50 = 0.117 μM). Meta-halogen-sub-
stituted phenyl groups (57d–f) were tested at R2 to increase the hydrophobicity and m-
fluoro (57d), showing the best selectivity over c-KIT wt (26–fold) and highest potency 
against c-KIT T670I (GI50 = 0.044 μM). Larger substituent groups, such as m-methyl (57g), 
m-methoxy (57h), m-N,N-dimethyl (57i), and m-trifluoromethyl (57j), showed a reduced 
activity against c-KIT T670I and poorer selectivity for c-KIT wt. The m-N-methyl piperazi-
nyl group (57k) caused significant activity loss. Fluoro-containing groups, such as o-fluoro 
(57l), p-fluoro (57m), and various multifluoro substituents (57n–p), resulted in loss a of 
activity against c-KIT T670I, compared with compound 57d.  

  

>10 1.55 0.339

67i
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Compd. R1 BaF3 
(GI50: μM) 

BaF3-Tel-c-KIT 
(GI50: μM) 

BaF3-Tel-c-KIT-
T670I (GI50: μM) 

67a H >10 >10 2.67 
67b Me >10 >10 1.88 

67c 
 

>10 0.35 0.023 

67d 
 

>10 0.32 0.045 

67e 
 

4.91 0.183 0.059 

67f 
 

>10 >10 4.48 

67g 
 

>10 1.12 0.179 

67h 
 

>10 1.55 0.339 

67i 
 

>10 0.338 0.057 

67j 
 

1.35 0.025 0.012 

67k 

 

0.911 0.019 0.012 

According to these findings, vinylpyridine in 57a was preferred for its increased ef-
ficacy against c-KIT T670I and for its higher selectivity for c-KIT wt. The impact of the R2 
tail moiety was tested while keeping the head and linker the same (Table 9). Compound 
57c, which has a simple phenyl group at R2, displayed a 19-fold selectivity over c-KIT wt, 
but showed a reduced activity against c-KIT T670I (GI50 = 0.117 μM). Meta-halogen-sub-
stituted phenyl groups (57d–f) were tested at R2 to increase the hydrophobicity and m-
fluoro (57d), showing the best selectivity over c-KIT wt (26–fold) and highest potency 
against c-KIT T670I (GI50 = 0.044 μM). Larger substituent groups, such as m-methyl (57g), 
m-methoxy (57h), m-N,N-dimethyl (57i), and m-trifluoromethyl (57j), showed a reduced 
activity against c-KIT T670I and poorer selectivity for c-KIT wt. The m-N-methyl piperazi-
nyl group (57k) caused significant activity loss. Fluoro-containing groups, such as o-fluoro 
(57l), p-fluoro (57m), and various multifluoro substituents (57n–p), resulted in loss a of 
activity against c-KIT T670I, compared with compound 57d.  

  

>10 0.338 0.057

67j
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Compd. R1 BaF3 
(GI50: μM) 

BaF3-Tel-c-KIT 
(GI50: μM) 

BaF3-Tel-c-KIT-
T670I (GI50: μM) 

67a H >10 >10 2.67 
67b Me >10 >10 1.88 

67c 
 

>10 0.35 0.023 

67d 
 

>10 0.32 0.045 

67e 
 

4.91 0.183 0.059 
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>10 >10 4.48 
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According to these findings, vinylpyridine in 57a was preferred for its increased ef-
ficacy against c-KIT T670I and for its higher selectivity for c-KIT wt. The impact of the R2 
tail moiety was tested while keeping the head and linker the same (Table 9). Compound 
57c, which has a simple phenyl group at R2, displayed a 19-fold selectivity over c-KIT wt, 
but showed a reduced activity against c-KIT T670I (GI50 = 0.117 μM). Meta-halogen-sub-
stituted phenyl groups (57d–f) were tested at R2 to increase the hydrophobicity and m-
fluoro (57d), showing the best selectivity over c-KIT wt (26–fold) and highest potency 
against c-KIT T670I (GI50 = 0.044 μM). Larger substituent groups, such as m-methyl (57g), 
m-methoxy (57h), m-N,N-dimethyl (57i), and m-trifluoromethyl (57j), showed a reduced 
activity against c-KIT T670I and poorer selectivity for c-KIT wt. The m-N-methyl piperazi-
nyl group (57k) caused significant activity loss. Fluoro-containing groups, such as o-fluoro 
(57l), p-fluoro (57m), and various multifluoro substituents (57n–p), resulted in loss a of 
activity against c-KIT T670I, compared with compound 57d.  

  

1.35 0.025 0.012

67k
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Compd. R1 BaF3 
(GI50: μM) 
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(GI50: μM) 
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T670I (GI50: μM) 

67a H >10 >10 2.67 
67b Me >10 >10 1.88 

67c 
 

>10 0.35 0.023 

67d 
 

>10 0.32 0.045 

67e 
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According to these findings, vinylpyridine in 57a was preferred for its increased ef-
ficacy against c-KIT T670I and for its higher selectivity for c-KIT wt. The impact of the R2 
tail moiety was tested while keeping the head and linker the same (Table 9). Compound 
57c, which has a simple phenyl group at R2, displayed a 19-fold selectivity over c-KIT wt, 
but showed a reduced activity against c-KIT T670I (GI50 = 0.117 μM). Meta-halogen-sub-
stituted phenyl groups (57d–f) were tested at R2 to increase the hydrophobicity and m-
fluoro (57d), showing the best selectivity over c-KIT wt (26–fold) and highest potency 
against c-KIT T670I (GI50 = 0.044 μM). Larger substituent groups, such as m-methyl (57g), 
m-methoxy (57h), m-N,N-dimethyl (57i), and m-trifluoromethyl (57j), showed a reduced 
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A SAR study of this series revealed that the replacement of the phenyl thioether linker
with a malonamide moiety and by substituting the tail phenyl ring with meta halogen
groups improved the activity and selectivity against c-KIT T670I over c-KIT wt (Figure 9).
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discovery of compound 57d.

The pharmacokinetics of active compound 57d in a rat model showed 27.5% bioavail-
ability and a half-life of 4.9 h at a dosage of 10 mg/kg when administered orally. In mice, it
exhibited a 16.4% bioavailability with a moderate half-life of 1.6 h. The compound had a
clearance rate of 12.4 L/h/kg and 6.8 L/h/kg in rats and mice, respectively. The antitu-
mor efficacy of 57d at a dose of 100 mg/kg in a GIST-5R cell-inoculated xenograft model
displayed 83% tumor growth inhibition.The pharmacokinetics of active compound 57d in
a rat model showed 27.5% bioavailability and a half-life of 4.9 h at a dosage of 10 mg/kg
when administered orally. In mice, it exhibited a 16.4% bioavailability with a moderate
half-life of 1.6 h. The compound had a clearance rate of 12.4 L/h/kg and 6.8 L/h/kg in rats
and mice, respectively. The antitumor efficacy of 57d at a dose of 100 mg/kg in a GIST-5R
cell-inoculated xenograft model displayed 83% tumor growth inhibition.

A docking study of the potent compound 57d revealed that the compound adopted
a canonical type II binding mode in the c-KIT wt and c-KIT T670I mutant. In the c-KIT
wt model, the indazol nitrogen atoms established two hydrogen bonds with Cys673 and
Glu671 in the hinge-binding region. Two additional hydrogen bonds formed between the
amide moiety and Glu640 and Asp810 at the DFG motif. Furthermore, the hydrophobic
pocket was occupied by the tail part. The modeling study was unable to explain the
selectivity of compound 57d against c-KIT T670I over c-KIT wt (Figure 10).

Kaitsiotou et al. designed and synthesized trisubstituted 3-ethynyl-N-(4-((4-
methylpiperazin-1-yl)methyl)phenyl)benzamide derivatives and screened them against
various c-KIT mutants, such as V654A, T670I, and D816H along with wild-type KIT [44].
The design of compounds was started by maintaining the potency of ponatinib and
modifying the substitutions in the R1–R4 regions, while the alkyne linker, benzoic acid
moiety, and N-methylpiperazine moiety of ponatinib were all kept intact throughout
the SAR optimization.

The 24 synthesized derivatives were tested against various c-KIT mutants, as men-
tioned above. Similar to the potent precursor of ponatinib (70a, 6.8 nM), the alkyne pre-
cursor (71a) displayed a loss of activity (231 nM) against the wild-type KIT. Unsubstituted
pyridine analogues (71b, 3.5 nM) and (71e, 2.1 nM) exhibited similar activity against the
wild-type KIT and other KIT mutants. Substitution of an electron-donating group, such as
a benzyloxy group at the five-position on the pyridine ring (71c), decreased the potency
compared with 71b, whereas methoxy group substitution at the three-position (71d) led
to a retained potency. Replacement of the pyridine heterocycle with 2-aminopyrimidine
(71g) increased the potency against the wild-type KIT and the tested mutants (2–247 nM),
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whereas 3-aminopyridazine (71f) retained similar potency against the wild-type KIT but
lost activity against all KIT mutants. Substitution of the amine group of 2-aminopyrimidine
with an aliphatic chain (71h) exhibited an IC50 value of 3.3 nM, but lost activity in all KIT
mutants compared with 71g. Further replacements of pyridine, such as 2-aminopyridin-5-
yl (71l), 2-amino-3-methylpyridin-5-yl (71j), and isoquinolin-1-amine (71m), resulted in a
loss of potency against the D816H and T670I mutant forms. These results suggest that the
2-aminopyrimidine moiety is crucial for potency. Replacing the trifluoromethyl group from
the most active derivatives 71a–lb, with a hydrogen atom (71n–q) and F atom (71r–s), re-
sulted in a significant loss of inhibitory activity against KIT mutants. These results indicate
that the trifluoromethyl group was necessary for inhibitory activity against KIT mutant
forms. Shifting the methyl group from the four-position of 71g to the two-position on the
phenyl (71t), resulted in a loss of activity against V654A and T670I mutants (Table 10).
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The pharmacokinetics of active compound 57d in a rat model showed 27.5% bioa-
vailability and a half-life of 4.9 h at a dosage of 10 mg/kg when administered orally. In 
mice, it exhibited a 16.4% bioavailability with a moderate half-life of 1.6 h. The compound 
had a clearance rate of 12.4 L/h/kg and 6.8 L/h/kg in rats and mice, respectively. The anti-
tumor efficacy of 57d at a dose of 100 mg/kg in a GIST-5R cell-inoculated xenograft model 
displayed 83% tumor growth inhibition. 

A docking study of the potent compound 57d revealed that the compound adopted 
a canonical type II binding mode in the c-KIT wt and c-KIT T670I mutant. In the c-KIT wt 
model, the indazol nitrogen atoms established two hydrogen bonds with Cys673 and 
Glu671 in the hinge-binding region. Two additional hydrogen bonds formed between the 
amide moiety and Glu640 and Asp810 at the DFG motif. Furthermore, the hydrophobic 
pocket was occupied by the tail part. The modeling study was unable to explain the selec-
tivity of compound 57d against c-KIT T670I over c-KIT wt (Figure 10). 

 
Figure 10. (A) Binding mode of 57d with c-KIT wt (PDB code: 1T46). (B) Binding mode of 57d with 
c-KIT T670I (PDB code: 1T46). Reprinted with permission from Ref. [43]. 

Kaitsiotou et al. designed and synthesized trisubstituted 3-ethynyl-N-(4-((4-
methylpiperazin-1-yl)methyl)phenyl)benzamide derivatives and screened them against 
various c-KIT mutants, such as V654A, T670I, and D816H along with wild-type KIT [44]. 
The design of compounds was started by maintaining the potency of ponatinib and 

Figure 10. (A) Binding mode of 57d with c-KIT wt (PDB code: 1T46). (B) Binding mode of 57d with
c-KIT T670I (PDB code: 1T46). Reprinted with permission from Ref. [43].

Table 10. IC50 determination of trisubstituted derivatives.

Compd. R1 R2 R3 R4
IC50 [nM]

KITWT KITV559D/T670I KITV559D/V654A KITD816H

70a I CF3 H CH3 6.8 ± 21 a a a

70b H CF3 F CH3 555.7 ± 41.6 a a a

70c I CF3 Et CH3 1039.3 ± 513.9 a a a

70d I CF3 F CH3 183.7 ± 186.5 a a a

71a H CF3 H CH3 230.7 ± 1.2 a a a

71b
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modifying the substitutions in the R1–R4 regions, while the alkyne linker, benzoic acid 
moiety, and N-methylpiperazine moiety of ponatinib were all kept intact throughout the 
SAR optimization.  

The 24 synthesized derivatives were tested against various c-KIT mutants, as men-
tioned above. Similar to the potent precursor of ponatinib (70a, 6.8 nM), the alkyne pre-
cursor (71a) displayed a loss of activity (231 nM) against the wild-type KIT. Unsubstituted 
pyridine analogues (71b, 3.5 nM) and (71e, 2.1 nM) exhibited similar activity against the 
wild-type KIT and other KIT mutants. Substitution of an electron-donating group, such 
as a benzyloxy group at the five-position on the pyridine ring (71c), decreased the potency 
compared with 71b, whereas methoxy group substitution at the three-position (71d) led 
to a retained potency. Replacement of the pyridine heterocycle with 2-aminopyrimidine 
(71g) increased the potency against the wild-type KIT and the tested mutants (2–247 nM), 
whereas 3-aminopyridazine (71f) retained similar potency against the wild-type KIT but 
lost activity against all KIT mutants. Substitution of the amine group of 2-aminopyrimi-
dine with an aliphatic chain (71h) exhibited an IC50 value of 3.3 nM, but lost activity in all 
KIT mutants compared with 71g. Further replacements of pyridine, such as 2-amino-
pyridin-5-yl (71l), 2-amino-3-methylpyridin-5-yl (71j), and isoquinolin-1-amine (71m), re-
sulted in a loss of potency against the D816H and T670I mutant forms. These results sug-
gest that the 2-aminopyrimidine moiety is crucial for potency. Replacing the trifluorome-
thyl group from the most active derivatives 71a–lb, with a hydrogen atom (71n–q) and F 
atom (71r–s), resulted in a significant loss of inhibitory activity against KIT mutants. These 
results indicate that the trifluoromethyl group was necessary for inhibitory activity 
against KIT mutant forms. Shifting the methyl group from the four-position of 71g to the 
two-position on the phenyl (71t), resulted in a loss of activity against V654A and T670I 
mutants (Table 10). 

Table 10. IC50 determination of trisubstituted derivatives. 

Compd. R1 R2 R3 R4 
IC50 [nM] 

KITWT KITV559D/T670I KITV559D/V654A KITD816H 
70a I CF3 H CH3 6.8 ± 21 a a a 
70b H CF3 F CH3 555.7 ± 41.6 a a a 
70c I CF3 Et CH3 1039.3 ± 513.9 a a a 
70d I CF3 F CH3 183.7 ± 186.5 a a a 
71a H CF3 H CH3 230.7 ± 1.2 a a a 

71b 
 

CF3 H CH3 3.5 ± 0.6 116 ± 20.1 a a 

71c 
 

CF3 H CH3 120.9 ± 154.7 a a a 

71d 
 

CF3 H CH3 6.7 ± 1.9 158.7 ± 43 a a 

71e 
 

CF3 H CH3 2.1 ± 0.6 24 ± 3.1 1101.6 ± 47.8 137.6 ± 2.3 

71f 
 

CF3 H CH3 5.8 ± 0.2 150.2 ± 35.3 a 2267.8 ± 105.3 

71g 
 

CF3 H CH3 1.9 ± 0.6 21.4 ± 1.2 246.6 ± 71.2 42.2 ± 13.0 

71h 
 

CF3 H CH3 3.3 ± 0.9 106.8 ± 7.2 252.5 ± 13.2 2614.3 ± 745.4 

71i 
 

CF3 H CH3 1.6 ± 0.9 72.0 ± 5.2 a a 

71j 
 

CF3 H CH3 2 ± 0.5 29.8 ± 1.4 777.2 ± 88.6 99.3 ± 43.3 

CF3 H CH3 3.5 ± 0.6 116 ± 20.1 a a

71c
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modifying the substitutions in the R1–R4 regions, while the alkyne linker, benzoic acid 
moiety, and N-methylpiperazine moiety of ponatinib were all kept intact throughout the 
SAR optimization.  

The 24 synthesized derivatives were tested against various c-KIT mutants, as men-
tioned above. Similar to the potent precursor of ponatinib (70a, 6.8 nM), the alkyne pre-
cursor (71a) displayed a loss of activity (231 nM) against the wild-type KIT. Unsubstituted 
pyridine analogues (71b, 3.5 nM) and (71e, 2.1 nM) exhibited similar activity against the 
wild-type KIT and other KIT mutants. Substitution of an electron-donating group, such 
as a benzyloxy group at the five-position on the pyridine ring (71c), decreased the potency 
compared with 71b, whereas methoxy group substitution at the three-position (71d) led 
to a retained potency. Replacement of the pyridine heterocycle with 2-aminopyrimidine 
(71g) increased the potency against the wild-type KIT and the tested mutants (2–247 nM), 
whereas 3-aminopyridazine (71f) retained similar potency against the wild-type KIT but 
lost activity against all KIT mutants. Substitution of the amine group of 2-aminopyrimi-
dine with an aliphatic chain (71h) exhibited an IC50 value of 3.3 nM, but lost activity in all 
KIT mutants compared with 71g. Further replacements of pyridine, such as 2-amino-
pyridin-5-yl (71l), 2-amino-3-methylpyridin-5-yl (71j), and isoquinolin-1-amine (71m), re-
sulted in a loss of potency against the D816H and T670I mutant forms. These results sug-
gest that the 2-aminopyrimidine moiety is crucial for potency. Replacing the trifluorome-
thyl group from the most active derivatives 71a–lb, with a hydrogen atom (71n–q) and F 
atom (71r–s), resulted in a significant loss of inhibitory activity against KIT mutants. These 
results indicate that the trifluoromethyl group was necessary for inhibitory activity 
against KIT mutant forms. Shifting the methyl group from the four-position of 71g to the 
two-position on the phenyl (71t), resulted in a loss of activity against V654A and T670I 
mutants (Table 10). 

Table 10. IC50 determination of trisubstituted derivatives. 

Compd. R1 R2 R3 R4 
IC50 [nM] 

KITWT KITV559D/T670I KITV559D/V654A KITD816H 
70a I CF3 H CH3 6.8 ± 21 a a a 
70b H CF3 F CH3 555.7 ± 41.6 a a a 
70c I CF3 Et CH3 1039.3 ± 513.9 a a a 
70d I CF3 F CH3 183.7 ± 186.5 a a a 
71a H CF3 H CH3 230.7 ± 1.2 a a a 

71b 
 

CF3 H CH3 3.5 ± 0.6 116 ± 20.1 a a 

71c 
 

CF3 H CH3 120.9 ± 154.7 a a a 

71d 
 

CF3 H CH3 6.7 ± 1.9 158.7 ± 43 a a 

71e 
 

CF3 H CH3 2.1 ± 0.6 24 ± 3.1 1101.6 ± 47.8 137.6 ± 2.3 

71f 
 

CF3 H CH3 5.8 ± 0.2 150.2 ± 35.3 a 2267.8 ± 105.3 

71g 
 

CF3 H CH3 1.9 ± 0.6 21.4 ± 1.2 246.6 ± 71.2 42.2 ± 13.0 

71h 
 

CF3 H CH3 3.3 ± 0.9 106.8 ± 7.2 252.5 ± 13.2 2614.3 ± 745.4 

71i 
 

CF3 H CH3 1.6 ± 0.9 72.0 ± 5.2 a a 

71j 
 

CF3 H CH3 2 ± 0.5 29.8 ± 1.4 777.2 ± 88.6 99.3 ± 43.3 

CF3 H CH3 120.9 ± 154.7 a a a

71d
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modifying the substitutions in the R1–R4 regions, while the alkyne linker, benzoic acid 
moiety, and N-methylpiperazine moiety of ponatinib were all kept intact throughout the 
SAR optimization.  

The 24 synthesized derivatives were tested against various c-KIT mutants, as men-
tioned above. Similar to the potent precursor of ponatinib (70a, 6.8 nM), the alkyne pre-
cursor (71a) displayed a loss of activity (231 nM) against the wild-type KIT. Unsubstituted 
pyridine analogues (71b, 3.5 nM) and (71e, 2.1 nM) exhibited similar activity against the 
wild-type KIT and other KIT mutants. Substitution of an electron-donating group, such 
as a benzyloxy group at the five-position on the pyridine ring (71c), decreased the potency 
compared with 71b, whereas methoxy group substitution at the three-position (71d) led 
to a retained potency. Replacement of the pyridine heterocycle with 2-aminopyrimidine 
(71g) increased the potency against the wild-type KIT and the tested mutants (2–247 nM), 
whereas 3-aminopyridazine (71f) retained similar potency against the wild-type KIT but 
lost activity against all KIT mutants. Substitution of the amine group of 2-aminopyrimi-
dine with an aliphatic chain (71h) exhibited an IC50 value of 3.3 nM, but lost activity in all 
KIT mutants compared with 71g. Further replacements of pyridine, such as 2-amino-
pyridin-5-yl (71l), 2-amino-3-methylpyridin-5-yl (71j), and isoquinolin-1-amine (71m), re-
sulted in a loss of potency against the D816H and T670I mutant forms. These results sug-
gest that the 2-aminopyrimidine moiety is crucial for potency. Replacing the trifluorome-
thyl group from the most active derivatives 71a–lb, with a hydrogen atom (71n–q) and F 
atom (71r–s), resulted in a significant loss of inhibitory activity against KIT mutants. These 
results indicate that the trifluoromethyl group was necessary for inhibitory activity 
against KIT mutant forms. Shifting the methyl group from the four-position of 71g to the 
two-position on the phenyl (71t), resulted in a loss of activity against V654A and T670I 
mutants (Table 10). 

Table 10. IC50 determination of trisubstituted derivatives. 

Compd. R1 R2 R3 R4 
IC50 [nM] 

KITWT KITV559D/T670I KITV559D/V654A KITD816H 
70a I CF3 H CH3 6.8 ± 21 a a a 
70b H CF3 F CH3 555.7 ± 41.6 a a a 
70c I CF3 Et CH3 1039.3 ± 513.9 a a a 
70d I CF3 F CH3 183.7 ± 186.5 a a a 
71a H CF3 H CH3 230.7 ± 1.2 a a a 

71b 
 

CF3 H CH3 3.5 ± 0.6 116 ± 20.1 a a 

71c 
 

CF3 H CH3 120.9 ± 154.7 a a a 

71d 
 

CF3 H CH3 6.7 ± 1.9 158.7 ± 43 a a 

71e 
 

CF3 H CH3 2.1 ± 0.6 24 ± 3.1 1101.6 ± 47.8 137.6 ± 2.3 

71f 
 

CF3 H CH3 5.8 ± 0.2 150.2 ± 35.3 a 2267.8 ± 105.3 

71g 
 

CF3 H CH3 1.9 ± 0.6 21.4 ± 1.2 246.6 ± 71.2 42.2 ± 13.0 

71h 
 

CF3 H CH3 3.3 ± 0.9 106.8 ± 7.2 252.5 ± 13.2 2614.3 ± 745.4 

71i 
 

CF3 H CH3 1.6 ± 0.9 72.0 ± 5.2 a a 

71j 
 

CF3 H CH3 2 ± 0.5 29.8 ± 1.4 777.2 ± 88.6 99.3 ± 43.3 

CF3 H CH3 6.7 ± 1.9 158.7 ± 43 a a

71e

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 20 of 45 
 

 

modifying the substitutions in the R1–R4 regions, while the alkyne linker, benzoic acid 
moiety, and N-methylpiperazine moiety of ponatinib were all kept intact throughout the 
SAR optimization.  

The 24 synthesized derivatives were tested against various c-KIT mutants, as men-
tioned above. Similar to the potent precursor of ponatinib (70a, 6.8 nM), the alkyne pre-
cursor (71a) displayed a loss of activity (231 nM) against the wild-type KIT. Unsubstituted 
pyridine analogues (71b, 3.5 nM) and (71e, 2.1 nM) exhibited similar activity against the 
wild-type KIT and other KIT mutants. Substitution of an electron-donating group, such 
as a benzyloxy group at the five-position on the pyridine ring (71c), decreased the potency 
compared with 71b, whereas methoxy group substitution at the three-position (71d) led 
to a retained potency. Replacement of the pyridine heterocycle with 2-aminopyrimidine 
(71g) increased the potency against the wild-type KIT and the tested mutants (2–247 nM), 
whereas 3-aminopyridazine (71f) retained similar potency against the wild-type KIT but 
lost activity against all KIT mutants. Substitution of the amine group of 2-aminopyrimi-
dine with an aliphatic chain (71h) exhibited an IC50 value of 3.3 nM, but lost activity in all 
KIT mutants compared with 71g. Further replacements of pyridine, such as 2-amino-
pyridin-5-yl (71l), 2-amino-3-methylpyridin-5-yl (71j), and isoquinolin-1-amine (71m), re-
sulted in a loss of potency against the D816H and T670I mutant forms. These results sug-
gest that the 2-aminopyrimidine moiety is crucial for potency. Replacing the trifluorome-
thyl group from the most active derivatives 71a–lb, with a hydrogen atom (71n–q) and F 
atom (71r–s), resulted in a significant loss of inhibitory activity against KIT mutants. These 
results indicate that the trifluoromethyl group was necessary for inhibitory activity 
against KIT mutant forms. Shifting the methyl group from the four-position of 71g to the 
two-position on the phenyl (71t), resulted in a loss of activity against V654A and T670I 
mutants (Table 10). 

Table 10. IC50 determination of trisubstituted derivatives. 

Compd. R1 R2 R3 R4 
IC50 [nM] 

KITWT KITV559D/T670I KITV559D/V654A KITD816H 
70a I CF3 H CH3 6.8 ± 21 a a a 
70b H CF3 F CH3 555.7 ± 41.6 a a a 
70c I CF3 Et CH3 1039.3 ± 513.9 a a a 
70d I CF3 F CH3 183.7 ± 186.5 a a a 
71a H CF3 H CH3 230.7 ± 1.2 a a a 

71b 
 

CF3 H CH3 3.5 ± 0.6 116 ± 20.1 a a 

71c 
 

CF3 H CH3 120.9 ± 154.7 a a a 

71d 
 

CF3 H CH3 6.7 ± 1.9 158.7 ± 43 a a 

71e 
 

CF3 H CH3 2.1 ± 0.6 24 ± 3.1 1101.6 ± 47.8 137.6 ± 2.3 

71f 
 

CF3 H CH3 5.8 ± 0.2 150.2 ± 35.3 a 2267.8 ± 105.3 

71g 
 

CF3 H CH3 1.9 ± 0.6 21.4 ± 1.2 246.6 ± 71.2 42.2 ± 13.0 

71h 
 

CF3 H CH3 3.3 ± 0.9 106.8 ± 7.2 252.5 ± 13.2 2614.3 ± 745.4 

71i 
 

CF3 H CH3 1.6 ± 0.9 72.0 ± 5.2 a a 

71j 
 

CF3 H CH3 2 ± 0.5 29.8 ± 1.4 777.2 ± 88.6 99.3 ± 43.3 

CF3 H CH3 2.1 ± 0.6 24 ± 3.1 1101.6 ± 47.8 137.6 ± 2.3

71f
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modifying the substitutions in the R1–R4 regions, while the alkyne linker, benzoic acid 
moiety, and N-methylpiperazine moiety of ponatinib were all kept intact throughout the 
SAR optimization.  

The 24 synthesized derivatives were tested against various c-KIT mutants, as men-
tioned above. Similar to the potent precursor of ponatinib (70a, 6.8 nM), the alkyne pre-
cursor (71a) displayed a loss of activity (231 nM) against the wild-type KIT. Unsubstituted 
pyridine analogues (71b, 3.5 nM) and (71e, 2.1 nM) exhibited similar activity against the 
wild-type KIT and other KIT mutants. Substitution of an electron-donating group, such 
as a benzyloxy group at the five-position on the pyridine ring (71c), decreased the potency 
compared with 71b, whereas methoxy group substitution at the three-position (71d) led 
to a retained potency. Replacement of the pyridine heterocycle with 2-aminopyrimidine 
(71g) increased the potency against the wild-type KIT and the tested mutants (2–247 nM), 
whereas 3-aminopyridazine (71f) retained similar potency against the wild-type KIT but 
lost activity against all KIT mutants. Substitution of the amine group of 2-aminopyrimi-
dine with an aliphatic chain (71h) exhibited an IC50 value of 3.3 nM, but lost activity in all 
KIT mutants compared with 71g. Further replacements of pyridine, such as 2-amino-
pyridin-5-yl (71l), 2-amino-3-methylpyridin-5-yl (71j), and isoquinolin-1-amine (71m), re-
sulted in a loss of potency against the D816H and T670I mutant forms. These results sug-
gest that the 2-aminopyrimidine moiety is crucial for potency. Replacing the trifluorome-
thyl group from the most active derivatives 71a–lb, with a hydrogen atom (71n–q) and F 
atom (71r–s), resulted in a significant loss of inhibitory activity against KIT mutants. These 
results indicate that the trifluoromethyl group was necessary for inhibitory activity 
against KIT mutant forms. Shifting the methyl group from the four-position of 71g to the 
two-position on the phenyl (71t), resulted in a loss of activity against V654A and T670I 
mutants (Table 10). 

Table 10. IC50 determination of trisubstituted derivatives. 

Compd. R1 R2 R3 R4 
IC50 [nM] 

KITWT KITV559D/T670I KITV559D/V654A KITD816H 
70a I CF3 H CH3 6.8 ± 21 a a a 
70b H CF3 F CH3 555.7 ± 41.6 a a a 
70c I CF3 Et CH3 1039.3 ± 513.9 a a a 
70d I CF3 F CH3 183.7 ± 186.5 a a a 
71a H CF3 H CH3 230.7 ± 1.2 a a a 

71b 
 

CF3 H CH3 3.5 ± 0.6 116 ± 20.1 a a 

71c 
 

CF3 H CH3 120.9 ± 154.7 a a a 

71d 
 

CF3 H CH3 6.7 ± 1.9 158.7 ± 43 a a 

71e 
 

CF3 H CH3 2.1 ± 0.6 24 ± 3.1 1101.6 ± 47.8 137.6 ± 2.3 

71f 
 

CF3 H CH3 5.8 ± 0.2 150.2 ± 35.3 a 2267.8 ± 105.3 

71g 
 

CF3 H CH3 1.9 ± 0.6 21.4 ± 1.2 246.6 ± 71.2 42.2 ± 13.0 

71h 
 

CF3 H CH3 3.3 ± 0.9 106.8 ± 7.2 252.5 ± 13.2 2614.3 ± 745.4 

71i 
 

CF3 H CH3 1.6 ± 0.9 72.0 ± 5.2 a a 

71j 
 

CF3 H CH3 2 ± 0.5 29.8 ± 1.4 777.2 ± 88.6 99.3 ± 43.3 

CF3 H CH3 5.8 ± 0.2 150.2 ± 35.3 a 2267.8 ± 105.3
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Table 10. Cont.

Compd. R1 R2 R3 R4
IC50 [nM]

KITWT KITV559D/T670I KITV559D/V654A KITD816H

71g
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modifying the substitutions in the R1–R4 regions, while the alkyne linker, benzoic acid 
moiety, and N-methylpiperazine moiety of ponatinib were all kept intact throughout the 
SAR optimization.  

The 24 synthesized derivatives were tested against various c-KIT mutants, as men-
tioned above. Similar to the potent precursor of ponatinib (70a, 6.8 nM), the alkyne pre-
cursor (71a) displayed a loss of activity (231 nM) against the wild-type KIT. Unsubstituted 
pyridine analogues (71b, 3.5 nM) and (71e, 2.1 nM) exhibited similar activity against the 
wild-type KIT and other KIT mutants. Substitution of an electron-donating group, such 
as a benzyloxy group at the five-position on the pyridine ring (71c), decreased the potency 
compared with 71b, whereas methoxy group substitution at the three-position (71d) led 
to a retained potency. Replacement of the pyridine heterocycle with 2-aminopyrimidine 
(71g) increased the potency against the wild-type KIT and the tested mutants (2–247 nM), 
whereas 3-aminopyridazine (71f) retained similar potency against the wild-type KIT but 
lost activity against all KIT mutants. Substitution of the amine group of 2-aminopyrimi-
dine with an aliphatic chain (71h) exhibited an IC50 value of 3.3 nM, but lost activity in all 
KIT mutants compared with 71g. Further replacements of pyridine, such as 2-amino-
pyridin-5-yl (71l), 2-amino-3-methylpyridin-5-yl (71j), and isoquinolin-1-amine (71m), re-
sulted in a loss of potency against the D816H and T670I mutant forms. These results sug-
gest that the 2-aminopyrimidine moiety is crucial for potency. Replacing the trifluorome-
thyl group from the most active derivatives 71a–lb, with a hydrogen atom (71n–q) and F 
atom (71r–s), resulted in a significant loss of inhibitory activity against KIT mutants. These 
results indicate that the trifluoromethyl group was necessary for inhibitory activity 
against KIT mutant forms. Shifting the methyl group from the four-position of 71g to the 
two-position on the phenyl (71t), resulted in a loss of activity against V654A and T670I 
mutants (Table 10). 

Table 10. IC50 determination of trisubstituted derivatives. 

Compd. R1 R2 R3 R4 
IC50 [nM] 

KITWT KITV559D/T670I KITV559D/V654A KITD816H 
70a I CF3 H CH3 6.8 ± 21 a a a 
70b H CF3 F CH3 555.7 ± 41.6 a a a 
70c I CF3 Et CH3 1039.3 ± 513.9 a a a 
70d I CF3 F CH3 183.7 ± 186.5 a a a 
71a H CF3 H CH3 230.7 ± 1.2 a a a 

71b 
 

CF3 H CH3 3.5 ± 0.6 116 ± 20.1 a a 

71c 
 

CF3 H CH3 120.9 ± 154.7 a a a 

71d 
 

CF3 H CH3 6.7 ± 1.9 158.7 ± 43 a a 

71e 
 

CF3 H CH3 2.1 ± 0.6 24 ± 3.1 1101.6 ± 47.8 137.6 ± 2.3 

71f 
 

CF3 H CH3 5.8 ± 0.2 150.2 ± 35.3 a 2267.8 ± 105.3 

71g 
 

CF3 H CH3 1.9 ± 0.6 21.4 ± 1.2 246.6 ± 71.2 42.2 ± 13.0 

71h 
 

CF3 H CH3 3.3 ± 0.9 106.8 ± 7.2 252.5 ± 13.2 2614.3 ± 745.4 

71i 
 

CF3 H CH3 1.6 ± 0.9 72.0 ± 5.2 a a 

71j 
 

CF3 H CH3 2 ± 0.5 29.8 ± 1.4 777.2 ± 88.6 99.3 ± 43.3 

CF3 H CH3 1.9 ± 0.6 21.4 ± 1.2 246.6 ± 71.2 42.2 ± 13.0

71h
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modifying the substitutions in the R1–R4 regions, while the alkyne linker, benzoic acid 
moiety, and N-methylpiperazine moiety of ponatinib were all kept intact throughout the 
SAR optimization.  

The 24 synthesized derivatives were tested against various c-KIT mutants, as men-
tioned above. Similar to the potent precursor of ponatinib (70a, 6.8 nM), the alkyne pre-
cursor (71a) displayed a loss of activity (231 nM) against the wild-type KIT. Unsubstituted 
pyridine analogues (71b, 3.5 nM) and (71e, 2.1 nM) exhibited similar activity against the 
wild-type KIT and other KIT mutants. Substitution of an electron-donating group, such 
as a benzyloxy group at the five-position on the pyridine ring (71c), decreased the potency 
compared with 71b, whereas methoxy group substitution at the three-position (71d) led 
to a retained potency. Replacement of the pyridine heterocycle with 2-aminopyrimidine 
(71g) increased the potency against the wild-type KIT and the tested mutants (2–247 nM), 
whereas 3-aminopyridazine (71f) retained similar potency against the wild-type KIT but 
lost activity against all KIT mutants. Substitution of the amine group of 2-aminopyrimi-
dine with an aliphatic chain (71h) exhibited an IC50 value of 3.3 nM, but lost activity in all 
KIT mutants compared with 71g. Further replacements of pyridine, such as 2-amino-
pyridin-5-yl (71l), 2-amino-3-methylpyridin-5-yl (71j), and isoquinolin-1-amine (71m), re-
sulted in a loss of potency against the D816H and T670I mutant forms. These results sug-
gest that the 2-aminopyrimidine moiety is crucial for potency. Replacing the trifluorome-
thyl group from the most active derivatives 71a–lb, with a hydrogen atom (71n–q) and F 
atom (71r–s), resulted in a significant loss of inhibitory activity against KIT mutants. These 
results indicate that the trifluoromethyl group was necessary for inhibitory activity 
against KIT mutant forms. Shifting the methyl group from the four-position of 71g to the 
two-position on the phenyl (71t), resulted in a loss of activity against V654A and T670I 
mutants (Table 10). 
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71k 
 

CF3 H CH3 2.5 ± 0.9 2147.2 ± 213.1 a a 

71l 
 

CF3 H CH3 2.0 ± 0.6 28.8 ± 1.3 908.3 ± 165.0 140 ± 13.4 

71m 
 

CF3 H CH3 4 ± 0 18.2 ± 6.8 313.5 ± 132.2 104.3 ± 8.7 

71n 
 

H H CH3 239.6 ± 307.6 a a a 

71o 
 

H H CH3 3.3 ± 1.8 a a a 

71p 
 

H H CH3 100.3 ± 84.2 a a a 

71q 
 

H H CH3 2.6 ± 1.0 a a a 

71r 
 

F H CH3 2.3 ± 0.5 a a a 

71s 
 

F H CH3 6.5 ± 1.1 a a 1706.6 ± 803.4 

71t 
 

CF3 CH3 H 6.2 ± 2.3 21 ± 3.6 1084.7 ± 304.0 325.8 ± 111.1 

Ponatinib     1.7 ± 0.7 17.4 ± 9.8 136.0 ± 39.9 20 ± 2.2 
a No inhibition. 

These derivatives were further screened for their inhibitory activity against GIST-T1, 
GIST-T1-T670I, GIST430-V654A, and GIST-T1-D816E cells. The results revealed that com-
pounds 71b, 71d–j, and 71l–m exhibited excellent activity against imatinib-resistant GIST-
T1-T670I cells. Compounds 71g, 71j, and 71l demonstrated potent antiproliferative activ-
ity (GI50 = 141 nM, 474 nM, and 221 nM, respectively) against GIST-T1-D816E cells. In ad-
dition, it exhibited improved inhibitory potency against GIST430-V654A cells compared 
with ponatinib (51 vs. 149 nM). The precursor compounds 70a–d and 71a did not reduce 
the cell viability in all tested GIST cell lines. The tested compounds did not exhibit inhib-
itory activity against KIT-negative GIST-48B cell lines. Compounds 71n–s demonstrated 
weak inhibitory activity over all KIT-positive and KIT-negative cells. Interestingly, com-
pound 71t retained an inhibitory activity against GIST430-V654A (308 nM) and GIST-T1-
D816E cells (381 nM) and showed a decreased activity against KIT-negative GIST cells. A 
SAR analysis of this series revealed that the trifluoromethyl group at the R2 position was 
an important structural feature for activity. Additionally, the replacement of the imid-
azo[1,2-b]pyridazine heterocycle with 2-aminopyrimidine significantly improved the ac-
tivity against all tested KIT mutants, and also against the wild type c-KIT. In addition, the 
repositioning the methyl group of the phenylcarboxamide moiety resulted in a significant 
loss of activity against the secondary mutant V654A and T670I mutant (Figure 11). 
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tivity against all tested KIT mutants, and also against the wild type c-KIT. In addition, the 
repositioning the methyl group of the phenylcarboxamide moiety resulted in a significant 
loss of activity against the secondary mutant V654A and T670I mutant (Figure 11). 
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These derivatives were further screened for their inhibitory activity against GIST-
T1, GIST-T1-T670I, GIST430-V654A, and GIST-T1-D816E cells. The results revealed that
compounds 71b, 71d–j, and 71l–m exhibited excellent activity against imatinib-resistant
GIST-T1-T670I cells. Compounds 71g, 71j, and 71l demonstrated potent antiproliferative
activity (GI50 = 141 nM, 474 nM, and 221 nM, respectively) against GIST-T1-D816E cells. In
addition, it exhibited improved inhibitory potency against GIST430-V654A cells compared
with ponatinib (51 vs. 149 nM). The precursor compounds 70a–d and 71a did not reduce the
cell viability in all tested GIST cell lines. The tested compounds did not exhibit inhibitory
activity against KIT-negative GIST-48B cell lines. Compounds 71n–s demonstrated weak
inhibitory activity over all KIT-positive and KIT-negative cells. Interestingly, compound 71t
retained an inhibitory activity against GIST430-V654A (308 nM) and GIST-T1-D816E cells
(381 nM) and showed a decreased activity against KIT-negative GIST cells. A SAR analysis
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of this series revealed that the trifluoromethyl group at the R2 position was an important
structural feature for activity. Additionally, the replacement of the imidazo[1,2-b]pyridazine
heterocycle with 2-aminopyrimidine significantly improved the activity against all tested
KIT mutants, and also against the wild type c-KIT. In addition, the repositioning the methyl
group of the phenylcarboxamide moiety resulted in a significant loss of activity against the
secondary mutant V654A and T670I mutant (Figure 11).
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Western blot analysis demonstrated that 71g was the most effective compound for
inhibiting autophosphorylation in GIST430-V654A and GIST-T1-D816E cells. A pharma-
cokinetics study of the potent compound 71g displayed satisfactory clearance in human
liver microsomes (CLint, 1 µL min−1 mg−1), 91% human plasma stability, 98.4% to 99.6%
plasma protein binding, and good permeability in Caco-2 cells. These data are in the same
range as ponatinib and the FDA-approved KIT inhibitors (Table 11).

Table 11. GI50 determination of trisubstituted derivatives.

Compd.
GI50 [nM]

GIST-48B GIST-T1 GIST-T1-T670I GIST-T1-D816E GIST430-V654A

70a 4877 ± 358 896 ± 175 3342 ± 282 9891 ± 1741 3905 ± 1799

70b a 10,019 ± 1870 15,291 ± 2665 a a

70c 9942 ± 1049 11,006 ± 825 7609 ± 286 a 15,858 ± 498

70d 3627 ± 1346 5729 ± 705 9512 ± 403 a a

71a a 7840 ± 891 10,136 ± 2058 a a

71b 3627 ± 532 55 ± 9 97 ± 19 1673 ± 328 697 ± 76

71c 1860 ± 250 121 ± 320 4375 ± 1985 a 2005 ± 890

71d 3793 ± 525 82 ± 115 165 ± 33 991 ± 95 564 ± 32

71e 2705 ± 296 51 ± 13 76 ± 18 332 ± 77 333 ± 1

71f 6247 ± 242 54 ± 11 89 ± 17 580 ± 141 459 ± 47

71g 2024 ± 545 23 ± 6 44 ± 8 141 ± 12 51 ± 5

71h 5132 ± 511 119 ± 21 198 ± 25 704 ± 110 481 ± 6

71i 3037 ± 620 59 ± 12 184 ± 26 2289 ± 382 723 ± 45

71j 2087 ± 147 59 ± 11 117 ± 29 474 ± 37 307 ± 2
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Table 11. Cont.

Compd.
GI50 [nM]

GIST-48B GIST-T1 GIST-T1-T670I GIST-T1-D816E GIST430-V654A

71k 4146 ± 1116 282 ± 78 2971 ± 1150 a 4145 ± 94

71l 2237 ± 156 42 ± 8 67 ± 12 221 ± 42 404 ± 335

71m 2065 ± 288 191 ± 64 301 ± 68 645 ± 744 926 ± 385

71n a 7097 ± 522 12,473 ± 3527 a a

71o a 150 ± 37 6352 ± 1825 9610 ± 1089 4032 ± 97

71p a 4189 ± 727 a a a

71q 6877 ± 1409 33 ± 6 1224 ± 758 1269 ± 53 2063 ± 1294

71r 11,966 ± 2280 57 ± 15 3294 ± 314 5358 ± 1309 1639 ± 176

71s 8285 ± 2983 31 ± 16 1362 ± 576 904 ± 490 920 ± 105

71t 15,832 ± 390 35 ± 3 51 ± 1 381 ± 33 308 ± 26

Ponatinib 2000 ± 450 17 ± 8 40 ± 19 106 ± 60 149 ± 36
a No inhibition.

The molecular docking of potent compound 71g and SAR analysis demonstrated that
the main hinge binder was a pyrimidine heterocycle. Compound 71g established two
hydrogen bond interactions with Cys673 and Glu640. The amine group of the pyrimidine
moiety formed an additional hydrogen bond to the hinge region of the kinases. The
trifluoromethyl group was anchored in the back subpocket. The nitrogen atom of the
N-methylpiperazine moiety displayed H-bond interactions with the carbonyl groups of
Ile789/His790 residues (Figure 12).
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Kettle et al. designed and synthesized a potent derivative and tested it against the
KIT mutant Ba/F3 and PDGFR cell lines to treat GISTs [45]. Screening of previously
developed quinazoline-based compounds as PDGFR and VEGFR inhibitors against KIT
mutant Ba/F3 cell lines, along with the KDR cell line, resulted in the identification of the
lead compound AZD2932 [46], which exhibited excellent inhibitory activity in this panel
along with the KDR cell line. A selective PDGFR inhibitor, compound I-a [47], which has a
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central phenoxy ring, displayed less inhibitory activity against KIT mutants and the KDR
cell line but showed activity against the parental cell line. Compound I-b, which has an
amine linker instead of a phenoxy linker (I-a), showed a decreased potency against all
the tested cell lines. Methoxy substitution at the meta position on the phenoxy ring (I-c)
led to retained potency, as well as improved KDR selectivity. Replacement of the phenyl
ring with meta-pyridine (I-d) displayed a high selectivity against KDR and an excellent
potency against KIT-mutant Ba/F3 cell lines. Quinazoline to quinoline modification (I-e)
led to a retained potency against KIT mutants, but a decreased selectivity against KDR. The
combination of quinoline with a meta-methoxyphenol linker (I-f) resulted in nanomolar
activity in all tested cell lines. Compound II and its reverse amide (II-a) (ref. [16,26])
from the PDGFR program demonstrated similar activity against V654A and D816H, but
the reverse amide showed a decreased activity against T6701 and improved selectivity
against KDR. Methoxy substitution on the central ring (II-b) did not improve the activity.
Quinoline analogues (III and III-a) showed a significant loss of activity in KIT mutants
(Table 12; Figure 1).

Table 12. SAR of the literature PDGFR inhibitors in KIT-mutant Ba/F3 cell lines and their effect
on KDR.

Compd. Structure
Ba/F3 GI50 (µM)

Parental Exon 11 Del + V654A Exon 11 Del + D816H Exon 11 Del + T670I KDR

AZD2932
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By screening various heterocyclic portions for the modification of isopropyl pyra-
zole, the N-linked triazole compound (IV) was found to exhibit potent inhibition.
When the methoxy group was relocated from the six-position to the five-position (V),
a three-fold loss of activity was observed. Replacement of the ether-linked aromatic
ring with the amine-linked aromatic ring (V-a) led to potent inhibition against KIT mu-
tants along with a 113-fold improved selectivity against KDR. When the five-position
methoxy group was replaced with an F atom (V-b), the activity against KIT mutants
was retained, and the selectivity against KDR was improved to a greater extent, but the
compound had a 99.7% protein binding. The addition of a methoxyethoxy group (75),
rather than a methoxy group, retained KIT mutant inhibitory activity and selectivity
over KDR. The lead compound, AZD2932, which was identified from their previous
work as a PDGFR and VEGFR inhibitor, was utilized to design a potent c-KIT inhibitor.
A SAR study of this series revealed that the incorporation of the fluoro group at the
five-position of the quinoxaline core improved the potency. Additionally, modifying
the methoxy group with an methoxyethoxy group at the seven-position of the core
improved the activity against mutant c-KIT. In addition, replacing the quinoxaline
ether linker with an amine linker resulted in the retention of the mutant potency and a
significant improvement in selectivity over KDR (Figure 13).
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The ADME results of 75 indicate that it has good bioavailability (mouse, rat,
dog, human: 4.9, 2.2, 6.8, 3.5%), low clearance (mouse, rat, dog, human: 5, 17, <1,
<1 µL/min/10–6 cells) and low hERG activity (IC50 = 33.3 µM). Compound 75 showed
excellent growth inhibition in all KIT-mutant Ba/F3 cell lines and PDGFR-driven cell
lines relevant to the subsets of GISTs, including the clinically GIST-relevant D842V mu-
tant compared with clinically approved and unapproved KIT inhibitors. The in vivo re-
sults of compound 75 in a Ba/F3 KIT-exon 11 del/D816H mouse allograft tumor model
revealed that there was a 5% inhibition, and tumor size was not affected. However, at
a dosage of 20 mg/kg b.i.d., 75 showed excellent regression of tumor volume (75%),
and the data are encouraging when compared with regorafenib (39%) at 100 mg/kg
q.d. In a Ba/F3 KIT-exon 11 del/V654A mouse allograft tumor model, 75 displayed
strong regression (85%) at a dosage of 20 mg/kg b.i.d., but sunitinib showed similar
regression (87%) at a dosage of 80 mg/kg q.d.

The cocrystal structure of 75 indicates that the triazolo group binds in the DFG
pocket, and there is a water-mediated interaction at the gatekeeper, encouraging
selectivity. The C7 side chain was oriented outside of the active site and into the
solvent pocket (Figure 14).

Wu et al. designed and synthesized a series of 5-phenyl-thiazol-2-ylamine deriva-
tives, and the 14 synthesized compounds as well as compound 81a were evaluated
for c-KIT kinase activity and GIST-T1 cell proliferation [48]. This demonstrated that
2-methylpyrimidine 81b had comparable inhibitory effects on both the wild type c-KIT
kinase and GIST-T1 cells to compound 81a (Table 13), while phenyl-substituted urea 81 dis-
played strong inhibition against c-KIT kinase. Modifications, such as the removal of the
5-ethylisoxazole moiety in 81a (81d) and replacement of the urea component of 81a with a
sulfonamide (81e) or an amide (81f), led to a reduced cellular potency, but there was no
significant impact on c-KIT kinase inhibitory activity. Insertion of a nitrogen atom (81g) on
the phenyl ring in 81a, saturation of the phenyl ring (90), and replacement of the aromatic
ring with an aliphatic chain (93 and 95) with the urea component intact did not result in a
significant change in inhibitory activity against both c-KIT kinase and GIST-T1 cells. Methyl
group substitution at the four-position on the thiazole ring in compound 81h resulted in a
slight decrease in activity against c-KIT kinase and GIST-T1 cells. Shifting the phenylurea
tail four-position of the thiazole ring (84) led to loss of enzymatic and cellular activity. When
the pyrimidine component of 81a was changed to 2-methyl-1,3,5-triazine (81i), it resulted
in a six-fold decrease in activity against GIST-T1 cells, revealing the significance of the
pyrimidine component in 81a. Compound 81j, which has an N-(2-hydroxyethyl)piperazine
group, demonstrated comparable potency to 81a in both assays, while compound 81k,
which has a pyrrolidin-3-ylamine group, enhanced enzymatic inhibition against c-KIT
but showed lower cellular activity than 81a. Among the tested compounds, compound
81g only exhibited slightly improved activity, compared with 81a, in both enzymatic and
cellular assays, but it had a lower synthetic yield (Figure 15).
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Table 13. c-KIT enzymatic inhibitory activity and GIST-T1 cell proliferation with the synthe-
sized compounds.

Compd. Structure
IC50 (nM) GI50 (nM)

c-KIT GIST-T1
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Table 13. Cont.
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mL/min/kg plasma clearance rate (Cl) with intravenous administration. The antitumor ef-
ficacy of 81a at 40 and 25 mg/kg dosages in a GIST430 tumor xenograft model was supe-
rior to the FDA-approved sunitinib and showed 59% reduction in tumor size on day 14. 

The molecular interactions of 81a in the unactivated c-KIT kinase domain displayed 
type II binding mode (Figure 16). The thiazolylamine formed two hydrogen bonds in the 
hinge-binding area of c-KIT with the backbone of Cys673. The back pocket of the ATP-
binding site was occupied by the tail group, which formed three more H-bonds with the 
urea group, backbone of Asp810, and side chain of Glu640. The phenyl ring of 81a formed 
an aromatic interaction with Phe811, while the ethylpiperazine was oriented toward the 
solvent region. 
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Figure 14. Cocrystal structure of 75 bound to c-KIT (PDB code: 6GQM). Reprinted with permission
from Ref. [45].

5-Phenyl-thiazol-2-ylamine pyrimidine template was utilized to design and develop a
potent c-KIT inhibitor. A SAR study of this series revealed that substituted phenyl urea
was an important structural feature for activity. Additionally, the pyrimidine component
was necessary for maintaining the inhibitory activity. In addition, modification of the
ethylisoxazole or urea moiety did not affect the c-KIT inhibitory activity (Figure 15).
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Figure 15. SAR summary and pharmacophore description of 81a.

Notably, compounds 81c and 81k exhibited potent inhibition against c-KIT but had
unfavorable pharmacokinetic profiles. Thus, compound 81a was selected for its biological
activity and in vivo efficacy. Compound 81a exhibited potent antiproliferative activity
against GIST882, GIST430, and GIST48 (GI50 = 3, 1, and 2 nM, respectively).

The pharmacokinetics of compound 81a in a mouse model demonstrated moderate
bioavailability (F = 38%), AUC (2796 ng/mL·h) and a short half-life (t1/2 = 2.8 h) with oral
administration. Compound 81a exhibited a 7.1 L/kg volume of distribution (Vss) and a
20.2 mL/min/kg plasma clearance rate (Cl) with intravenous administration. The antitumor
efficacy of 81a at 40 and 25 mg/kg dosages in a GIST430 tumor xenograft model was superior
to the FDA-approved sunitinib and showed 59% reduction in tumor size on day 14.

The molecular interactions of 81a in the unactivated c-KIT kinase domain displayed
type II binding mode (Figure 16). The thiazolylamine formed two hydrogen bonds in the
hinge-binding area of c-KIT with the backbone of Cys673. The back pocket of the ATP-
binding site was occupied by the tail group, which formed three more H-bonds with the
urea group, backbone of Asp810, and side chain of Glu640. The phenyl ring of 81a formed
an aromatic interaction with Phe811, while the ethylpiperazine was oriented toward the
solvent region.
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Figure 16. Chemical structure of 81A and in complex with the unactivated c-KIT kinase domain (PDB
6ITT). Reprinted with permission from Ref. [48].

Lin et al. continued their research from their previous compound 81a by rational
design, and the team synthesized a series of five-aromatic substituted thiazol-2-
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ylamine pyrimidine derivatives [49]. The 14 synthesized compounds were evalu-
ated against c-KIT and wt-FLT3 kinases GIST-T1 and MOLM-13 cell lines (Table 14).
Compound 102 had a higher inhibitory effect against c-KIT (IC50 = 24 nM) than
I (GI50 = 35 nM), but lost its antiproliferative activity against MOLM-13 cells. Chang-
ing the phenyl ring in 102 to a pyridine ring, led to compound 103, which had
a similar inhibitory potency against c-KIT and FLT3, but decreased cellular po-
tencies (GI50 = 42 and 36 nM for GIST-T1 and MOLM-13, respectively) relative
to I. When the nitrogen atom was shifted to the third position, compounds 104a
(R2 = CH3) and 104b (R2 = H) exhibited similar inhibitory effects against the kinases
as compound I but were less active in the cellular assays (GI50 values of 26–140 nM).
Compound 105a (R2 = CH3) had single-digit nanomolar activity against GIST-T1
(GI50 = 7.1 nM) and MOLM-13 (GI50 = 9.4 nM) cell lines and exhibited similar in-
hibitory activities against c-KIT and FLT3 compared with I. As compared with 105a,
105b (R2 = H) displayed no improvement in cellular potency (GI50 > 10 nM); however,
it exhibited potent inhibitory activities against c-KIT and FLT3 (IC50 < 30 nM). Next,
the effect of water-solubilizing substituents on the pyrimidine ring four-position
was evaluated, and the potency of compounds 105c–f was compared to that of the
N-ethylpiperazine analog 105a. Limited water-solubilizing groups were considered
in this study. Analogs 105g and 106 were produced by inserting a methyl group
on the pyridine ring of 105a and changing the pyridine ring of 105a to a pyrimi-
dine ring, respectively. N-(2-fluoroethyl)piperazine, N-(2-hydroxyethyl)piperazine,
N,N-dimethylpiperidin-4-amine, and 4-(2-hydroxyethyl)morpholine derivatives (105c, 105d,
105e, and 105f, respectively) did not affect the activity against the kinases c-KIT
and FLT3. The N,N-dimethylpiperidin-4-amine group in 105e increased the cellu-
lar activities slightly (GIST-T1 GI50 = 1.5, MOLM-13 GI50 = 3.5 nM), whereas the
morpholine group linked by a two-carbon ether in 105f led to decreased cellular
potency (GIST-T1 GI50 = 27 nM, MOLM-13 GI50 = 42 nM). The study considered only
a few water-soluble groups since the impact of some groups on biological activities,
in vivo toxicities, and pharmacokinetics had been well-established during the devel-
opment of 5-phenylthiazol-2-ylamine-based inhibitors. Analogs 105g and 106, with
a single methyl substituent on the pyridine ring of 105a and a pyrimidine moiety
instead of pyridine, respectively, were produced. The 2-methylpyridine compound
105g had a two- to four-fold decrease in potency against c-KIT, FLT3, and MOLM-13
cells compared with 105a, but retained activity (GI50 = 7.7 nM) against GIST-T1 cells.
Pyrimidine 106 had a moderate inhibitory activity for c-KIT (IC50 = 123 nM) and FLT3
(IC50 = 163 nM), but a significantly reduced cellular potency (GI50 > 100 nM). Opti-
mization of the 5-pyridin-4-yl-thiazol-2-yl series of pyrimidines (compound 105) was
performed by investigating the effects of substitutions on 2-aminothiazole. When the
pyridine ring in 104a was moved from the five- to the four-position on the thiazole
ring (109), compounds 109 and 111 showed a significant decrease in both enzymatic
activities (IC50 > 1000 nM) and cellular potencies (GI50 > 1000 nM), compared with
104a. In response to previous studies that demonstrated the ability of 2-aminothiazole
to form hydrogen bonds with the hinge region of the ATP pocket, benzamide 111
was produced by replacing the pyrimidine ring with a solubilized para-substituted
benzamide ring, which is a recognized scaffold for FLT3 kinase inhibitors. Ben-
zamide 111 was found to have submicromolar activities against MOLM-13 cells
(GI50 = 544 nM) and GIST-T1 (GI50 = 647 nM), but showed moderate inhibitory activ-
ity against c-KIT/FLT3. Therefore, no further modification of lead 111 was conducted.
The pyridine-substituted 2-aminothiazole analogs 105a and 150c–e exhibited potent
dual inhibition of c-KIT and FLT3 with cellular antiproliferative activities of less than
10 nM (Figure 17).
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A SAR study of this series suggested that altering the phenyl urea moiety with a pyr-
idine ring, with its four-position to thiazole, led to the identification of the most potent 
derivative with a favorable pharmacokinetic profile (Figure 17). 

 
Figure 17. Rational design, SAR summary, and pharmacophore description of compound 105a. 

The pharmacokinetics, antitumor activities, and toxicities of 105a and 150c–e in SCID 
mouse xenografts or normal mice showed that 105a has a greater impact on GIST430 xen-
ografts than 105c and 105d, as well as a lower toxicity and more favorable pharmacoki-
netic profile than 105c and 105e. 

The pharmacokinetics of the potent compound 105a in male Sprague–Dawley rats 
and ICR mice demonstrated a bioavailability of 36% in rats and 68% in mice, and a mod-
erate half-life (t1/2) of 3.9 h in rats and 4.1 h in mice when administered orally. When used 
via intravenous administration, 105a displayed high volumes of distribution (Vss = 14.7 
L/kg in mice and 10.1 L/kg in rats) and plasma clearances (Cl = 70.7 mL/min/kg in mice 
and 393.6 mL/min/kg in rats). The antitumor effect of 105a at 10, 20, and 40 mg/kg dosages 
in NOD/SCID mice bearing GIST430 tumors showed rapid tumor regression. 

The crystal structure of c-KIT, in complex with compound 105a (Figure 18), revealed 
that thiazolylamine formed two hydrogen bonds with Cys673 and established hydropho-
bic interactions with Leu595, Tyr672, Cys673, and Leu799. The ethylpiperazine group was 
oriented toward the solvent exposed region. The pyridine moiety formed additional hy-
drophobic interactions with Leu799 and Ala621. 
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oriented toward the solvent exposed region. The pyridine moiety formed additional hy-
drophobic interactions with Leu799 and Ala621. 
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A SAR study of this series suggested that altering the phenyl urea moiety with a
pyridine ring, with its four-position to thiazole, led to the identification of the most potent
derivative with a favorable pharmacokinetic profile (Figure 17).

The pharmacokinetics, antitumor activities, and toxicities of 105a and 150c–e in SCID
mouse xenografts or normal mice showed that 105a has a greater impact on GIST430
xenografts than 105c and 105d, as well as a lower toxicity and more favorable pharmacoki-
netic profile than 105c and 105e.

The pharmacokinetics of the potent compound 105a in male Sprague–Dawley rats and
ICR mice demonstrated a bioavailability of 36% in rats and 68% in mice, and a moderate
half-life (t1/2) of 3.9 h in rats and 4.1 h in mice when administered orally. When used via
intravenous administration, 105a displayed high volumes of distribution (Vss = 14.7 L/kg
in mice and 10.1 L/kg in rats) and plasma clearances (Cl = 70.7 mL/min/kg in mice and
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393.6 mL/min/kg in rats). The antitumor effect of 105a at 10, 20, and 40 mg/kg dosages in
NOD/SCID mice bearing GIST430 tumors showed rapid tumor regression.

The crystal structure of c-KIT, in complex with compound 105a (Figure 18), revealed
that thiazolylamine formed two hydrogen bonds with Cys673 and established hydrophobic
interactions with Leu595, Tyr672, Cys673, and Leu799. The ethylpiperazine group was
oriented toward the solvent exposed region. The pyridine moiety formed additional
hydrophobic interactions with Leu799 and Ala621.
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Lu et al. designed structural modifications to linifanib and synthesized a series of
3-methyl-1H-pyrazolo[3,4-b]pyridine derivatives [50]. The structural modification of a
linifanib (I) resulted in the generation of 58 derivatives, which were screened for their
inhibitory potency (IC50) against PDGFRα, VEGFR2, and FGFR1. Based on their initial
optimization (Table 15), compound 122d, the most potent PDGFRα inhibitor, was selected
to explore its activity against other RTKs as it showed potent inhibitory activity against
c-KIT with an IC50 value of 2.1 nM (Table 16).

Table 15. Structures and kinase inhibitory activities of compounds 116a–122b.
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This led to the development of a dual inhibitor against c-KIT and PDGFRα, and
VEGFR2 kinase was used as a reference to monitor selectivity. To evaluate the impact of
various three-position substituents of the pyrazolo[3,4-b]pyridine scaffold, the 3-methyl
group was replaced with hydroxymethyl (126a, 126b) and trifluoromethyl groups (122g,
122h). The replacement of the 3-methyl group with a hydroxymethyl group (126a vs. 122d)
resulted in a two-fold activity reduction in PDGFRα (IC50 = 87 vs. 40 nM), while the c-KIT
inhibition remained relatively potent (IC50 = 2.4 vs. 2.1 nM) (Table 17).
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The trifluoromethyl group (122g) resulted in complete loss of activity in all kinases
(IC50 > 50,000 nM). These results revealed that for the dual inhibition of c-KIT and PDGFRα,
the optimal pharmacophore was the 3-methyl-pyrazolo[3,4-b]pyridine moiety. As a poten-
tial template, the urea linker and the 3-methyl-1H-pyrazolo[3,4-b]pyridine scaffold were
used to identify a dual c-KIT/PDGFRα inhibitor. Next, the substitution effect (R2) on the
phenyl ring linked to terminal nitrogen of urea was investigated. Shifting the methyl group
from the three-position (122d) to the two- (122j) or four-position (122k) resulted in a signifi-
cant activity loss against c-KIT/PDGFRα. The 3-methyl group was found to be the most
effective substituent among several 3-substituents (112d–f, 122l–n, and 130a) for inhibiting
c-KIT/PDGFRα. Interestingly, when an N-methyl piperazinyl group was substituted at
the three-position, the inhibitory activity against c-KIT/PDGFRα was moderately reduced.
Compounds 130b–d were synthesized with a combination of a 3-methyl group and either
an N-methyl piperazinyl or a morpholinyl group on the terminal phenyl ring. Compound
130d showed the most potent inhibitory activity against both c-KIT and PDGFRα kinases
(IC50 = 2.4 and 7.2 nM, respectively) and maintained selectivity for VEGFR2, suggest-
ing that compound 130d was a promising candidate for further development as a dual
inhibitor. Changing the combination of the N-methyl piperazinyl or the morpholinyl
or methyl groups (130e–h) resulted in a significant loss of activity against all three ki-
nases. The introduction of a diethylamino group (130i and 130j) or a dimethylamino
group (130k and 130l) on the terminal phenyl ring partially restored this dual activity,
but the potency was lower than that achieved with compound 130d. The replacement
of the 3-dimethylamino group with a 3-dimethylaminomethyl group (130m) displayed
a complete loss of activity against all three kinases. Further screening of the R2 group
(127a–y) was performed to identify more potent compounds (Table 18). While increasing
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the length of the linear alkyl groups (127a–e) improved the c-KIT/PDGFRα inhibition
activity, replacing the linear alkyl group with a branched (127f and 127g) or cycloalkyl
(127h–k) group did not result in an improved inhibitory activity compared with the origi-
nal compound (122d). Heteroarylmethyl groups (127l–n) exhibited better c-KIT/PDGFRα
inhibitory activity than the phenylmethyl group (127o), but the inhibitory activity was
lower than that which was advised with 122d. By varying the chain length of phenylalkyl
groups (127o–s), the potency against c-KIT/PDGFRα increased in the following order:
phenylpropyl (122q) > phenylethyl (127p) > 2,3-dihydro-indene (127s) > phenylbutyl (127r).
Compound 127q had better c-KIT inhibitory activity than 122d and 130d but showed
weaker PDGFRα inhibitory activity than 130d (IC50 = 24 nM vs. 7.2 nM). Heteroaryl
groups (127t–v) reduced the kinase potency by over six-fold when replacing the aryl group
(R2). Fused aryl rings (127w–y) improved c-KIT/PDGFRα inhibition compared with 122d
but not to single-digit nanomolar concentration. The structural optimization generated
several novel compounds with an improved potency against the tested kinases. Com-
pound 130d was particularly notable for its 17-fold improvement in potency, compared
with the benchmark imatinib for c-KIT and for its dual potent activity against both c-KIT
(IC50 = 2.4 nM) and PDGFRα (IC50 = 7.2 nM). Other promising compounds include 127e,
127q, and 127w, which also exhibited a high dual-target potency and appropriate selectivity
against VEGFR2.

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine
pharmacophore was an important structural feature for the dual inhibition of c-KIT and
PDGFRα. Additionally, it was observed that there was a correlation between the activity
and the terminal amines. In addition, the introduction of the morpholine group para to the
phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 19).
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Figure 19. Design strategy, SAR summary, and pharmacophore description of compound 130d.

The antiproliferation activity of 130d showed significant improvement against the
GIST-T1 (GI50 < 0.003 µM) and GIST-882 cell lines (GI50 < 0.020 µM).The pharmacoki-
netics of compound 130d in a rat model displayed a short half-life (t1/2) of 0.69 h, a
small volume distribution (Vss) of 0.97 L/kg, and a moderate plasma clearance (Cl) of
0.95 L/h/kg at a dosage of 2 mg/kg via intravenous administration, while intraperi-
toneal injection at a dosage of 100 mg/kg improved the plasma exposure and half-life
(T1/2 = 10.97 h). In contrast, the lack of absorption at the 10 mg/kg dosage during oral
administration prevented 130d from being utilized for oral administration in the animal
model. The in vivo efficacy of 130d at a dosage of 100 mg/kg in a BaF3-TEL-c-KIT-T670I
cell-inoculated xenograft mouse model displayed 41.9% tumor growth inhibition and a
good safety profile.
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases.

Compd. R2
IC50 (nM)

Compd. R2
IC50 (nM)

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2

122j
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A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 

10,890 305 4322 127e

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 35 of 45 
 

 

Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 

1.4 27 10,462

122k

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 35 of 45 
 

 

Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 

1831 65 5613 127f

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 35 of 45 
 

 

Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 

320 1123 8634

122l

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 35 of 45 
 

 

Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 

4794 262 6228 127g

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 35 of 45 
 

 

Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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130c
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 

6438 4077 36,890 127q

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 35 of 45 
 

 

Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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130k
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
 

1949 1779 3940 127k  >50,000 >50,000 >50,000 

130c 
 

7.2 127 3695 127l 
 

51 387 3503 

130d 
 

2.4 7.2 2280 127m  26 157 1791 

130e 
 

2225 1101 6816 127n  78 472 4079 

130f 
 

4581 928 4164 127o 
 

46,064 >50,000 >50,000 

130g 
 

397 18,925 26,163 127p 
 

3.7 82 9760 

130h 
 

6438 4077 36,890 127q 
 

1.7 24 3857 

130i 
 

12 136 41,966 127r 
 

6.2 135 10,917 

130j 
 

12 176 5352 127s 
 

8.7 83 >50,000 

130k  2.6 83 6920 127t  120 411 2391 

130l 
 

9.3 309 9046 127u  20 401 >50,000 

130m  22,056 4608 15,935 127v  14 313 3109 

127a  38,667 >50,000 >50,000 127w 
 

1.9 22 1845 

127b  21,432 >50,000 >50,000 127x 
 

20 124 >50,000 

127c  20,556 43,877 >50,000 127y 
 

3.6 97 >50,000 

127d  3.5 164 >50,000      

A SAR study of this series revealed that the 3-methyl-1H-pyrazolo[3,4-b]pyridine 
pharmacophore was an important structural feature for the dual inhibition of c-KIT and 
PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Table 18. Inhibitory activities of compounds 122j–n, 130a–m, and 127a–y against kinases. 

Compd. R2 
IC50 (nM) 

Compd. R2 
IC50 (nM) 

c-KIT PDGFRα VEGFR2 c-KIT PDGFRα VEGFR2 

122j  10,890 305 4322 127e  1.4 27 10,462 

122k  1831 65 5613 127f  320 1123 8634 
122l  4794 262 6228 127g  1416 1465 11,382 

122m  2402 182 4050 127h  553 1133 4523 
122n  201 21,400 >50,000 127i  318 732 5002 

130a 
 

19 215 6235 127j  144 576 6229 

130b 
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PDGFRα. Additionally, it was observed that there was a correlation between the activity 
and the terminal amines. In addition, the introduction of the morpholine group para to 
the phenyl urea moiety improved activity by retaining selectivity over VEGFR2 (Figure 
19). 
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Andreas et al. designed and synthesized 3-(pyrimidin-4-yl)imidazo[1,2-a]pyridine
derivatives as selective c-KIT inhibitors for the treatment of GISTs [51]. A high-throughput
screening of derivatives supplied by the European Lead Factory resulted in the identifi-
cation of an imidazopyridine derivative as a hit against KIT (V654A). The hit compound
displayed high selectivity against KIT autophosphorylation at Y703 in a GIST430 cancer
cell line over 28 kinases. Except for its microsomal stability, the hit compound had good
solubility and permeability. The pyrrolidine and benzylic positions were the reason for the
high metabolism. At first, hit-to-lead optimization was performed, and the SAR exploration
was mainly concentrated on improving cellular potency and metabolic stability. The intro-
duction of 4,6-substituted pyrimidine (III) in place of a three-position substitution on the
pyridine ring improved the cellular potency, and it was identified as an ideal replacement.
Linker region modification (II and IV) resulted in a three-fold decreased potency. When
the pyrrolidine substituted pyridine moiety was replaced with a fused ring system and an
aliphatic moiety (V and VI), there was a complete loss of potency, but the phenyl ring (VII)
showed a slight increase in cellular potency (Table 19).

Modification of the pyrrolidine moiety with a phenyl ring (VIII) led to a further in-
crease in both cellular potency and metabolic stability. Substitution at the six-position of
imidazopyridine with electronic-donating groups for ether (IX) resulted in increased cellu-
lar potency. Increasing the length of the ether linker along with methyl ether substitution
in the tail part further increased the cellular potency (X). Basic substitutions at the tail part
of the extended ether linker increased the water solubility by maintaining the potency (XI).
Bipheylmethanamine in the benzylic part, in combination with 6-methoxy substitution
and 4,6-pyrimidine in the central core, resulted in the identification of compound (XII),
which had an improved cellular potency. When the terminal part of the phenyl ring was
replaced with a five-membered heterocycle (XIII), the metabolic stability was retained, and
the cellular potency was further improved. The extended ether linker (135a) maintained
metabolic stability and cellular potency (Table 20). Based on the SAR results, 135a was
identified as a lead compound.

The lead optimization of 135a was focused on improving the solubility, permeability,
and hERG inhibition. Terminal pyrazole ring replacement with additional five-membered
heterocycles, such as triazole (136a and 136b) and oxazole (137), led to a retained cellular
potency. The introduction of polar groups at the tail part of the extended ether linker
(135b and 135c) reduced the permeability and increased the efflux; however, for 135d and
135e, the hERG activity was improved. All the derivatives displayed superior cell potency
and kinase selectivity (Figure 20) (Table 21).
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Figure 20. Design strategy, SAR summary, and pharmacophore description of compound 135j.
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Table 19. SAR overview for 3-position imidazopyridine modifications.

Compd. Structure IC50 [nm] Cell IC50 [nm] Clint
HLM/MLM

Solubility
[µM]

I
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Table 20. SAR overview for six-position imidazopyridine modifications.

Compd. Structure IC50 [nm] Cell IC50 [nm] Clint
HLM/MLM

Solubility
[µM]

IX 13 300 h/h 81

X 12 110 h/h 9

XI 11 290 m/h 100

XII 4.6 160 m/L <2

XIII 8.6 55 m/L <2

135a 7.3 48 m/h <2
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Table 21. SAR overview of advanced c-KIT inhibitors.

Compd. Cell IC50
(nM)

hHEP
[µL/min/106 cells]

CACO-2 [106 cm/s]
(Efflux)

FaSSiF
[µg/mL]

hERG
[%inh] at 10 µM LogD pKa

135a 48 18 12 (0.9) 2 1% 3.8 -

136a 78 8 9.5 (0.7) 4 - 4.0 -

136b 46 4 6.4 (0.8) - - 3.0 -

135b 93 16 3.1 (4.7) 16 −15% 4.4 6.9

135c 61 <4 5.7 (57) 97 −59% 1.9 9.5

135d 43 - - - −86% 2.5 nd

135e 70 18 12 (5.4) - −78% 2.9 9.1

135f 75 9 21 (5.0) 13 −23% 3.0 -

135g 76 <4 7.6 (18) 10 −8% 2.8 5.8

135h 56 10 9.5 (15) 16 −19% 1.5 7.3

135i 73 10 1.8 (1.3) 2 −4% 4.3 8.3

137 54 6 7.6 (7.5) 10 −7% 3.2 6.3

135j 59 21 5.7 (14) 374 −86% 2.6 9.7

The HTS screening of the European Lead Factory derivatives resulted in the identi-
fication of an imidazopyridine derivative as a hit against KIT. A SAR study of this series
revealed that the 4,6-pyrimide moiety was an important structural feature for cellular
potency. In addition, the introduction of an ethylene or propylene ether linker at the
six-position of the imidazopyridine core and the replacement of the pyrrolidine ring on the
terminal phenyl ring with a N-methyl pyrazole improved the cellular potency. Further-
more, it was observed that the pyrrolidin-1-yl propylene ether linker resulted in improved
solubility and strong hERG inhibition (Figure 20).

Across all preclinical species, the pharmacokinetics of 135j demonstrated great metabolic
stability, a good half-life, and a high volume of distribution. Compound 135j displayed
excellent cellular potency (IC50 = 4 ± 1 nM) against the imatinib-sensitive GIST430 cell line.
In addition, it exhibited good cellular potency in the imatinib-resistant cell line GIST430/654
and the AML cell line Kasumi-1 (IC50 = 48 ± 21 and 4 ± 1 nM, respectively). The in vivo
results on GIST430/654 xenografts indicated that 132j strongly inhibited tumor growth. The
compound was further evaluated in in vivo studies in dogs and guinea pigs, which revealed
its long half-life and lack of accumulation. The compound was nominated for a phase 1
clinical study in humans with metastatic and surgically unresectable GISTs.

The molecular docking study of 135j revealed that it could adopt a DFG-out confor-
mation of c-KIT kinase with typical type II binding. The nitrogen of the imidazopyridine
established a hydrogen bond with Cys673 in the kinase hinge region. The side chain of the
ether linker was oriented toward the solvent exposure region. The benzylic NH formed an
interaction with the Thr670 side chain, and the benzylic substituent was deeply embedded
via π-interactions with Trp557. One of the pyrimidine nitrogen atoms was seen to engage
with the Asp810 backbone carbonyl and the terminal amino group of the Lys623 side chain
via the water-mediated process (Figure 21).

Nam et al. designed and reported the synthesis of thiazolo[5,4-b]pyridine-based
derivatives targeting antiproliferative activities [52].The 31 synthesized compounds were
evaluated for their enzymatic inhibitory activity against c-KIT (Table 22). Imatinib and suni-
tinib were used as standard references with IC50 values of 0.27 µM and 0.14 µM, respectively.
SAR analysis showed that among the compounds 142a–j, the 3-(trifluoromethyl)phenyl
group (142h) only exhibited moderate enzymatic inhibitory activity (IC50 = 9.87 µM). Ex-
tension of the amide and introduction of a urea linkage led to a loss of activity. The addition
of polar moieties in the para position to the amide group on the 3-(trifluoromethyl)phenyl
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group resulted in a two- to six-fold improved inhibitory activity, whereas addition of the
meta position led to decreased inhibitory activity. By further exploring para substitution
with various moieties, the (4-methylpiperazin-1-yl)methyl analog 142r was found to be
the most potent derivative (IC50 = 0.14 µM). Modification of the amino group of 142r with
cyclohexyl (143a) and phenyl amide (143b) led to decreased inhibitory activity compared
with 142r (IC50 = 0.14 µM vs. 1.51 µM and 0.74 µM, respectively). The acetamide analog
(143c) displayed little improvement in activity with an IC50 value of 0.10 µM. Additional
acetamide derivatives (143f–h) with various para substitutions on the 3-trifluoromethyl
phenyl amide moiety were more potent than their precursor compounds (142p, 142v, and
142w) (Figure 22).

Table 22. c-KIT enzymatic inhibitory activities of thiazolo[5,4-b]pyridine derivatives.

Compd. R1 R2 IC50 (µM) a Entry R1 R2 IC50
(µM) a

imatinib - - 0.27 142p
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trifluoromethyl phenyl amide moiety were more potent than their precursor compounds 
(142p, 142v, and 142w) (Figure 22). 

Table 22. c-KIT enzymatic inhibitory activities of thiazolo[5,4-b]pyridine derivatives. 

Compd. R1 R2 IC50 (μM) a Entry R1 R2 
IC50 

(μM) a 

imatinib - - 0.27 142p  - 5.72 

sunitinib - - 0.14 142q 
 

- 3.23 

142a 
 

- inactive b 142r  - 0.14 

142b 
 

- inactive b 142s  - 0.37 

142c 
 

- inactive b 142t  - 1.25 

142d 
 

- inactive b 142u 
 

- 4.56 

142e 
 

- inactive b 142v 
 

- 0.39 

142f 
 

- inactive b 142w 
 

- 0.25 

142g 
 

- inactive b 143a 
 

cyclohexyl 1.51 

142h 
 

- 9.87 143b 
 

phenyl 0.74 

142i  - inactive b 143c 
 

methyl 0.1 

142j 
 

- inactive b 143d 
 

cyclohexyl inactive b 

142k 
 

- 4.31 143e 
 

methyl 0.88 

142l 
 

- 1.76 143f  methyl 3.63 

142m 
 

- 2.17 143g 
 

methyl 0.18 

142n 

 

- inactive b 143h 
 

methyl 0.10 

142o 

 

- 5.03     

a Radiometric biochemical kinase assay results. b less than 50% inhibition at a concentration of 10 
μM. 

A SAR study of this series revealed that the thiazolo[5,4-b]pyridine core was an im-
portant structural feature for enzymatic and anti-proliferative activities. Additionally, the 
introduction of polar groups to the para-position of phenyl amide improved activity. 
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trifluoromethyl phenyl amide moiety were more potent than their precursor compounds 
(142p, 142v, and 142w) (Figure 22). 

Table 22. c-KIT enzymatic inhibitory activities of thiazolo[5,4-b]pyridine derivatives. 

Compd. R1 R2 IC50 (μM) a Entry R1 R2 
IC50 

(μM) a 

imatinib - - 0.27 142p  - 5.72 

sunitinib - - 0.14 142q 
 

- 3.23 

142a 
 

- inactive b 142r  - 0.14 

142b 
 

- inactive b 142s  - 0.37 

142c 
 

- inactive b 142t  - 1.25 

142d 
 

- inactive b 142u 
 

- 4.56 

142e 
 

- inactive b 142v 
 

- 0.39 

142f 
 

- inactive b 142w 
 

- 0.25 

142g 
 

- inactive b 143a 
 

cyclohexyl 1.51 

142h 
 

- 9.87 143b 
 

phenyl 0.74 

142i  - inactive b 143c 
 

methyl 0.1 

142j 
 

- inactive b 143d 
 

cyclohexyl inactive b 

142k 
 

- 4.31 143e 
 

methyl 0.88 

142l 
 

- 1.76 143f  methyl 3.63 

142m 
 

- 2.17 143g 
 

methyl 0.18 

142n 

 

- inactive b 143h 
 

methyl 0.10 

142o 

 

- 5.03     

a Radiometric biochemical kinase assay results. b less than 50% inhibition at a concentration of 10 
μM. 

A SAR study of this series revealed that the thiazolo[5,4-b]pyridine core was an im-
portant structural feature for enzymatic and anti-proliferative activities. Additionally, the 
introduction of polar groups to the para-position of phenyl amide improved activity. 
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trifluoromethyl phenyl amide moiety were more potent than their precursor compounds 
(142p, 142v, and 142w) (Figure 22). 

Table 22. c-KIT enzymatic inhibitory activities of thiazolo[5,4-b]pyridine derivatives. 

Compd. R1 R2 IC50 (μM) a Entry R1 R2 
IC50 

(μM) a 

imatinib - - 0.27 142p  - 5.72 

sunitinib - - 0.14 142q 
 

- 3.23 

142a 
 

- inactive b 142r  - 0.14 

142b 
 

- inactive b 142s  - 0.37 

142c 
 

- inactive b 142t  - 1.25 

142d 
 

- inactive b 142u 
 

- 4.56 

142e 
 

- inactive b 142v 
 

- 0.39 

142f 
 

- inactive b 142w 
 

- 0.25 

142g 
 

- inactive b 143a 
 

cyclohexyl 1.51 

142h 
 

- 9.87 143b 
 

phenyl 0.74 

142i  - inactive b 143c 
 

methyl 0.1 

142j 
 

- inactive b 143d 
 

cyclohexyl inactive b 

142k 
 

- 4.31 143e 
 

methyl 0.88 

142l 
 

- 1.76 143f  methyl 3.63 

142m 
 

- 2.17 143g 
 

methyl 0.18 

142n 

 

- inactive b 143h 
 

methyl 0.10 

142o 

 

- 5.03     

a Radiometric biochemical kinase assay results. b less than 50% inhibition at a concentration of 10 
μM. 

A SAR study of this series revealed that the thiazolo[5,4-b]pyridine core was an im-
portant structural feature for enzymatic and anti-proliferative activities. Additionally, the 
introduction of polar groups to the para-position of phenyl amide improved activity. 
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trifluoromethyl phenyl amide moiety were more potent than their precursor compounds 
(142p, 142v, and 142w) (Figure 22). 

Table 22. c-KIT enzymatic inhibitory activities of thiazolo[5,4-b]pyridine derivatives. 

Compd. R1 R2 IC50 (μM) a Entry R1 R2 
IC50 

(μM) a 

imatinib - - 0.27 142p  - 5.72 

sunitinib - - 0.14 142q 
 

- 3.23 

142a 
 

- inactive b 142r  - 0.14 

142b 
 

- inactive b 142s  - 0.37 

142c 
 

- inactive b 142t  - 1.25 

142d 
 

- inactive b 142u 
 

- 4.56 

142e 
 

- inactive b 142v 
 

- 0.39 

142f 
 

- inactive b 142w 
 

- 0.25 

142g 
 

- inactive b 143a 
 

cyclohexyl 1.51 

142h 
 

- 9.87 143b 
 

phenyl 0.74 

142i  - inactive b 143c 
 

methyl 0.1 

142j 
 

- inactive b 143d 
 

cyclohexyl inactive b 

142k 
 

- 4.31 143e 
 

methyl 0.88 

142l 
 

- 1.76 143f  methyl 3.63 

142m 
 

- 2.17 143g 
 

methyl 0.18 

142n 

 

- inactive b 143h 
 

methyl 0.10 

142o 

 

- 5.03     

a Radiometric biochemical kinase assay results. b less than 50% inhibition at a concentration of 10 
μM. 

A SAR study of this series revealed that the thiazolo[5,4-b]pyridine core was an im-
portant structural feature for enzymatic and anti-proliferative activities. Additionally, the 
introduction of polar groups to the para-position of phenyl amide improved activity. 

- 0.39

142f

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 40 of 45 
 

 

trifluoromethyl phenyl amide moiety were more potent than their precursor compounds 
(142p, 142v, and 142w) (Figure 22). 

Table 22. c-KIT enzymatic inhibitory activities of thiazolo[5,4-b]pyridine derivatives. 

Compd. R1 R2 IC50 (μM) a Entry R1 R2 
IC50 

(μM) a 

imatinib - - 0.27 142p  - 5.72 

sunitinib - - 0.14 142q 
 

- 3.23 

142a 
 

- inactive b 142r  - 0.14 

142b 
 

- inactive b 142s  - 0.37 

142c 
 

- inactive b 142t  - 1.25 

142d 
 

- inactive b 142u 
 

- 4.56 

142e 
 

- inactive b 142v 
 

- 0.39 

142f 
 

- inactive b 142w 
 

- 0.25 

142g 
 

- inactive b 143a 
 

cyclohexyl 1.51 

142h 
 

- 9.87 143b 
 

phenyl 0.74 

142i  - inactive b 143c 
 

methyl 0.1 

142j 
 

- inactive b 143d 
 

cyclohexyl inactive b 

142k 
 

- 4.31 143e 
 

methyl 0.88 

142l 
 

- 1.76 143f  methyl 3.63 

142m 
 

- 2.17 143g 
 

methyl 0.18 

142n 

 

- inactive b 143h 
 

methyl 0.10 

142o 

 

- 5.03     

a Radiometric biochemical kinase assay results. b less than 50% inhibition at a concentration of 10 
μM. 

A SAR study of this series revealed that the thiazolo[5,4-b]pyridine core was an im-
portant structural feature for enzymatic and anti-proliferative activities. Additionally, the 
introduction of polar groups to the para-position of phenyl amide improved activity. 

- inactive b 142w
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trifluoromethyl phenyl amide moiety were more potent than their precursor compounds 
(142p, 142v, and 142w) (Figure 22). 

Table 22. c-KIT enzymatic inhibitory activities of thiazolo[5,4-b]pyridine derivatives. 

Compd. R1 R2 IC50 (μM) a Entry R1 R2 
IC50 

(μM) a 

imatinib - - 0.27 142p  - 5.72 

sunitinib - - 0.14 142q 
 

- 3.23 

142a 
 

- inactive b 142r  - 0.14 

142b 
 

- inactive b 142s  - 0.37 

142c 
 

- inactive b 142t  - 1.25 

142d 
 

- inactive b 142u 
 

- 4.56 

142e 
 

- inactive b 142v 
 

- 0.39 

142f 
 

- inactive b 142w 
 

- 0.25 

142g 
 

- inactive b 143a 
 

cyclohexyl 1.51 

142h 
 

- 9.87 143b 
 

phenyl 0.74 

142i  - inactive b 143c 
 

methyl 0.1 

142j 
 

- inactive b 143d 
 

cyclohexyl inactive b 

142k 
 

- 4.31 143e 
 

methyl 0.88 

142l 
 

- 1.76 143f  methyl 3.63 

142m 
 

- 2.17 143g 
 

methyl 0.18 

142n 

 

- inactive b 143h 
 

methyl 0.10 

142o 

 

- 5.03     

a Radiometric biochemical kinase assay results. b less than 50% inhibition at a concentration of 10 
μM. 

A SAR study of this series revealed that the thiazolo[5,4-b]pyridine core was an im-
portant structural feature for enzymatic and anti-proliferative activities. Additionally, the 
introduction of polar groups to the para-position of phenyl amide improved activity. 

- 0.25
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trifluoromethyl phenyl amide moiety were more potent than their precursor compounds 
(142p, 142v, and 142w) (Figure 22). 

Table 22. c-KIT enzymatic inhibitory activities of thiazolo[5,4-b]pyridine derivatives. 

Compd. R1 R2 IC50 (μM) a Entry R1 R2 
IC50 

(μM) a 

imatinib - - 0.27 142p  - 5.72 

sunitinib - - 0.14 142q 
 

- 3.23 

142a 
 

- inactive b 142r  - 0.14 

142b 
 

- inactive b 142s  - 0.37 

142c 
 

- inactive b 142t  - 1.25 

142d 
 

- inactive b 142u 
 

- 4.56 

142e 
 

- inactive b 142v 
 

- 0.39 

142f 
 

- inactive b 142w 
 

- 0.25 

142g 
 

- inactive b 143a 
 

cyclohexyl 1.51 

142h 
 

- 9.87 143b 
 

phenyl 0.74 

142i  - inactive b 143c 
 

methyl 0.1 

142j 
 

- inactive b 143d 
 

cyclohexyl inactive b 

142k 
 

- 4.31 143e 
 

methyl 0.88 

142l 
 

- 1.76 143f  methyl 3.63 

142m 
 

- 2.17 143g 
 

methyl 0.18 

142n 

 

- inactive b 143h 
 

methyl 0.10 

142o 

 

- 5.03     

a Radiometric biochemical kinase assay results. b less than 50% inhibition at a concentration of 10 
μM. 

A SAR study of this series revealed that the thiazolo[5,4-b]pyridine core was an im-
portant structural feature for enzymatic and anti-proliferative activities. Additionally, the 
introduction of polar groups to the para-position of phenyl amide improved activity. 

- inactive b 143a
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trifluoromethyl phenyl amide moiety were more potent than their precursor compounds 
(142p, 142v, and 142w) (Figure 22). 

Table 22. c-KIT enzymatic inhibitory activities of thiazolo[5,4-b]pyridine derivatives. 

Compd. R1 R2 IC50 (μM) a Entry R1 R2 
IC50 

(μM) a 

imatinib - - 0.27 142p  - 5.72 

sunitinib - - 0.14 142q 
 

- 3.23 

142a 
 

- inactive b 142r  - 0.14 

142b 
 

- inactive b 142s  - 0.37 

142c 
 

- inactive b 142t  - 1.25 

142d 
 

- inactive b 142u 
 

- 4.56 

142e 
 

- inactive b 142v 
 

- 0.39 

142f 
 

- inactive b 142w 
 

- 0.25 

142g 
 

- inactive b 143a 
 

cyclohexyl 1.51 

142h 
 

- 9.87 143b 
 

phenyl 0.74 

142i  - inactive b 143c 
 

methyl 0.1 

142j 
 

- inactive b 143d 
 

cyclohexyl inactive b 

142k 
 

- 4.31 143e 
 

methyl 0.88 

142l 
 

- 1.76 143f  methyl 3.63 

142m 
 

- 2.17 143g 
 

methyl 0.18 

142n 

 

- inactive b 143h 
 

methyl 0.10 

142o 

 

- 5.03     

a Radiometric biochemical kinase assay results. b less than 50% inhibition at a concentration of 10 
μM. 

A SAR study of this series revealed that the thiazolo[5,4-b]pyridine core was an im-
portant structural feature for enzymatic and anti-proliferative activities. Additionally, the 
introduction of polar groups to the para-position of phenyl amide improved activity. 

cyclohexyl 1.51
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trifluoromethyl phenyl amide moiety were more potent than their precursor compounds 
(142p, 142v, and 142w) (Figure 22). 

Table 22. c-KIT enzymatic inhibitory activities of thiazolo[5,4-b]pyridine derivatives. 

Compd. R1 R2 IC50 (μM) a Entry R1 R2 
IC50 

(μM) a 

imatinib - - 0.27 142p  - 5.72 

sunitinib - - 0.14 142q 
 

- 3.23 

142a 
 

- inactive b 142r  - 0.14 

142b 
 

- inactive b 142s  - 0.37 

142c 
 

- inactive b 142t  - 1.25 

142d 
 

- inactive b 142u 
 

- 4.56 

142e 
 

- inactive b 142v 
 

- 0.39 

142f 
 

- inactive b 142w 
 

- 0.25 

142g 
 

- inactive b 143a 
 

cyclohexyl 1.51 

142h 
 

- 9.87 143b 
 

phenyl 0.74 

142i  - inactive b 143c 
 

methyl 0.1 

142j 
 

- inactive b 143d 
 

cyclohexyl inactive b 

142k 
 

- 4.31 143e 
 

methyl 0.88 

142l 
 

- 1.76 143f  methyl 3.63 

142m 
 

- 2.17 143g 
 

methyl 0.18 

142n 

 

- inactive b 143h 
 

methyl 0.10 

142o 

 

- 5.03     

a Radiometric biochemical kinase assay results. b less than 50% inhibition at a concentration of 10 
μM. 

A SAR study of this series revealed that the thiazolo[5,4-b]pyridine core was an im-
portant structural feature for enzymatic and anti-proliferative activities. Additionally, the 
introduction of polar groups to the para-position of phenyl amide improved activity. 

- 9.87 143b
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trifluoromethyl phenyl amide moiety were more potent than their precursor compounds 
(142p, 142v, and 142w) (Figure 22). 

Table 22. c-KIT enzymatic inhibitory activities of thiazolo[5,4-b]pyridine derivatives. 

Compd. R1 R2 IC50 (μM) a Entry R1 R2 
IC50 

(μM) a 

imatinib - - 0.27 142p  - 5.72 

sunitinib - - 0.14 142q 
 

- 3.23 

142a 
 

- inactive b 142r  - 0.14 

142b 
 

- inactive b 142s  - 0.37 

142c 
 

- inactive b 142t  - 1.25 

142d 
 

- inactive b 142u 
 

- 4.56 

142e 
 

- inactive b 142v 
 

- 0.39 

142f 
 

- inactive b 142w 
 

- 0.25 

142g 
 

- inactive b 143a 
 

cyclohexyl 1.51 

142h 
 

- 9.87 143b 
 

phenyl 0.74 

142i  - inactive b 143c 
 

methyl 0.1 

142j 
 

- inactive b 143d 
 

cyclohexyl inactive b 

142k 
 

- 4.31 143e 
 

methyl 0.88 

142l 
 

- 1.76 143f  methyl 3.63 

142m 
 

- 2.17 143g 
 

methyl 0.18 

142n 

 

- inactive b 143h 
 

methyl 0.10 

142o 

 

- 5.03     

a Radiometric biochemical kinase assay results. b less than 50% inhibition at a concentration of 10 
μM. 

A SAR study of this series revealed that the thiazolo[5,4-b]pyridine core was an im-
portant structural feature for enzymatic and anti-proliferative activities. Additionally, the 
introduction of polar groups to the para-position of phenyl amide improved activity. 

phenyl 0.74
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trifluoromethyl phenyl amide moiety were more potent than their precursor compounds 
(142p, 142v, and 142w) (Figure 22). 

Table 22. c-KIT enzymatic inhibitory activities of thiazolo[5,4-b]pyridine derivatives. 

Compd. R1 R2 IC50 (μM) a Entry R1 R2 
IC50 

(μM) a 

imatinib - - 0.27 142p  - 5.72 

sunitinib - - 0.14 142q 
 

- 3.23 

142a 
 

- inactive b 142r  - 0.14 

142b 
 

- inactive b 142s  - 0.37 

142c 
 

- inactive b 142t  - 1.25 

142d 
 

- inactive b 142u 
 

- 4.56 

142e 
 

- inactive b 142v 
 

- 0.39 

142f 
 

- inactive b 142w 
 

- 0.25 

142g 
 

- inactive b 143a 
 

cyclohexyl 1.51 

142h 
 

- 9.87 143b 
 

phenyl 0.74 

142i  - inactive b 143c 
 

methyl 0.1 

142j 
 

- inactive b 143d 
 

cyclohexyl inactive b 

142k 
 

- 4.31 143e 
 

methyl 0.88 

142l 
 

- 1.76 143f  methyl 3.63 

142m 
 

- 2.17 143g 
 

methyl 0.18 

142n 

 

- inactive b 143h 
 

methyl 0.10 

142o 

 

- 5.03     

a Radiometric biochemical kinase assay results. b less than 50% inhibition at a concentration of 10 
μM. 

A SAR study of this series revealed that the thiazolo[5,4-b]pyridine core was an im-
portant structural feature for enzymatic and anti-proliferative activities. Additionally, the 
introduction of polar groups to the para-position of phenyl amide improved activity. 

- inactive b 143c
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trifluoromethyl phenyl amide moiety were more potent than their precursor compounds 
(142p, 142v, and 142w) (Figure 22). 

Table 22. c-KIT enzymatic inhibitory activities of thiazolo[5,4-b]pyridine derivatives. 

Compd. R1 R2 IC50 (μM) a Entry R1 R2 
IC50 

(μM) a 

imatinib - - 0.27 142p  - 5.72 

sunitinib - - 0.14 142q 
 

- 3.23 

142a 
 

- inactive b 142r  - 0.14 

142b 
 

- inactive b 142s  - 0.37 

142c 
 

- inactive b 142t  - 1.25 

142d 
 

- inactive b 142u 
 

- 4.56 

142e 
 

- inactive b 142v 
 

- 0.39 

142f 
 

- inactive b 142w 
 

- 0.25 

142g 
 

- inactive b 143a 
 

cyclohexyl 1.51 

142h 
 

- 9.87 143b 
 

phenyl 0.74 

142i  - inactive b 143c 
 

methyl 0.1 

142j 
 

- inactive b 143d 
 

cyclohexyl inactive b 

142k 
 

- 4.31 143e 
 

methyl 0.88 

142l 
 

- 1.76 143f  methyl 3.63 

142m 
 

- 2.17 143g 
 

methyl 0.18 

142n 

 

- inactive b 143h 
 

methyl 0.10 

142o 

 

- 5.03     

a Radiometric biochemical kinase assay results. b less than 50% inhibition at a concentration of 10 
μM. 

A SAR study of this series revealed that the thiazolo[5,4-b]pyridine core was an im-
portant structural feature for enzymatic and anti-proliferative activities. Additionally, the 
introduction of polar groups to the para-position of phenyl amide improved activity. 
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trifluoromethyl phenyl amide moiety were more potent than their precursor compounds 
(142p, 142v, and 142w) (Figure 22). 

Table 22. c-KIT enzymatic inhibitory activities of thiazolo[5,4-b]pyridine derivatives. 

Compd. R1 R2 IC50 (μM) a Entry R1 R2 
IC50 

(μM) a 

imatinib - - 0.27 142p  - 5.72 

sunitinib - - 0.14 142q 
 

- 3.23 

142a 
 

- inactive b 142r  - 0.14 

142b 
 

- inactive b 142s  - 0.37 

142c 
 

- inactive b 142t  - 1.25 

142d 
 

- inactive b 142u 
 

- 4.56 

142e 
 

- inactive b 142v 
 

- 0.39 

142f 
 

- inactive b 142w 
 

- 0.25 

142g 
 

- inactive b 143a 
 

cyclohexyl 1.51 

142h 
 

- 9.87 143b 
 

phenyl 0.74 

142i  - inactive b 143c 
 

methyl 0.1 

142j 
 

- inactive b 143d 
 

cyclohexyl inactive b 

142k 
 

- 4.31 143e 
 

methyl 0.88 

142l 
 

- 1.76 143f  methyl 3.63 

142m 
 

- 2.17 143g 
 

methyl 0.18 

142n 

 

- inactive b 143h 
 

methyl 0.10 

142o 

 

- 5.03     

a Radiometric biochemical kinase assay results. b less than 50% inhibition at a concentration of 10 
μM. 

A SAR study of this series revealed that the thiazolo[5,4-b]pyridine core was an im-
portant structural feature for enzymatic and anti-proliferative activities. Additionally, the 
introduction of polar groups to the para-position of phenyl amide improved activity. 

- inactive b 143d

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 40 of 45 
 

 

trifluoromethyl phenyl amide moiety were more potent than their precursor compounds 
(142p, 142v, and 142w) (Figure 22). 

Table 22. c-KIT enzymatic inhibitory activities of thiazolo[5,4-b]pyridine derivatives. 

Compd. R1 R2 IC50 (μM) a Entry R1 R2 
IC50 

(μM) a 

imatinib - - 0.27 142p  - 5.72 

sunitinib - - 0.14 142q 
 

- 3.23 

142a 
 

- inactive b 142r  - 0.14 

142b 
 

- inactive b 142s  - 0.37 

142c 
 

- inactive b 142t  - 1.25 

142d 
 

- inactive b 142u 
 

- 4.56 

142e 
 

- inactive b 142v 
 

- 0.39 

142f 
 

- inactive b 142w 
 

- 0.25 

142g 
 

- inactive b 143a 
 

cyclohexyl 1.51 

142h 
 

- 9.87 143b 
 

phenyl 0.74 

142i  - inactive b 143c 
 

methyl 0.1 

142j 
 

- inactive b 143d 
 

cyclohexyl inactive b 

142k 
 

- 4.31 143e 
 

methyl 0.88 

142l 
 

- 1.76 143f  methyl 3.63 

142m 
 

- 2.17 143g 
 

methyl 0.18 

142n 

 

- inactive b 143h 
 

methyl 0.10 

142o 

 

- 5.03     

a Radiometric biochemical kinase assay results. b less than 50% inhibition at a concentration of 10 
μM. 

A SAR study of this series revealed that the thiazolo[5,4-b]pyridine core was an im-
portant structural feature for enzymatic and anti-proliferative activities. Additionally, the 
introduction of polar groups to the para-position of phenyl amide improved activity. 
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142k
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trifluoromethyl phenyl amide moiety were more potent than their precursor compounds 
(142p, 142v, and 142w) (Figure 22). 

Table 22. c-KIT enzymatic inhibitory activities of thiazolo[5,4-b]pyridine derivatives. 

Compd. R1 R2 IC50 (μM) a Entry R1 R2 
IC50 

(μM) a 

imatinib - - 0.27 142p  - 5.72 

sunitinib - - 0.14 142q 
 

- 3.23 

142a 
 

- inactive b 142r  - 0.14 

142b 
 

- inactive b 142s  - 0.37 

142c 
 

- inactive b 142t  - 1.25 

142d 
 

- inactive b 142u 
 

- 4.56 

142e 
 

- inactive b 142v 
 

- 0.39 

142f 
 

- inactive b 142w 
 

- 0.25 

142g 
 

- inactive b 143a 
 

cyclohexyl 1.51 

142h 
 

- 9.87 143b 
 

phenyl 0.74 

142i  - inactive b 143c 
 

methyl 0.1 

142j 
 

- inactive b 143d 
 

cyclohexyl inactive b 

142k 
 

- 4.31 143e 
 

methyl 0.88 

142l 
 

- 1.76 143f  methyl 3.63 

142m 
 

- 2.17 143g 
 

methyl 0.18 

142n 

 

- inactive b 143h 
 

methyl 0.10 

142o 

 

- 5.03     

a Radiometric biochemical kinase assay results. b less than 50% inhibition at a concentration of 10 
μM. 

A SAR study of this series revealed that the thiazolo[5,4-b]pyridine core was an im-
portant structural feature for enzymatic and anti-proliferative activities. Additionally, the 
introduction of polar groups to the para-position of phenyl amide improved activity. 

- 4.31 143e
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trifluoromethyl phenyl amide moiety were more potent than their precursor compounds 
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μM. Additional acetamide derivatives (143f–h) with various para substitutions on the 3-

Figure 21. X-ray structure of 135j (2.1 A resolution, PDB-ID: 7ZW8) in complex with the kinase
domain of c-KIT. Reprinted with permission from Ref. [51].

A SAR study of this series revealed that the thiazolo[5,4-b]pyridine core was an
important structural feature for enzymatic and anti-proliferative activities. Additionally,
the introduction of polar groups to the para-position of phenyl amide improved activity.
Similarly, the substitution of an acetyl group on thiazolo[5,4-b]pyridine amine further
improved the activity (Figure 22).

The compounds were further screened for their antiproliferative activity against c-
KIT-dependent GIST-T1 and HMC1.2 cancer cell lines (Table 23). The results showed
that compounds 142r (GI50 = 0.01 ± 0.00 µM), 142s (GI50 = 0.02 ± 0.00 µM), and 143c
(GI50 = 0.01 ± 0.00 µM) exhibited similar antiproliferative activity against GIST-T1 cells
compared with sunitinib (GI50 = 0.01 ± 0.00), but 142s (GI50 = 1.33 ± 0.43 µM), and 143c
(GI50 = 1.52 ± 0.43 µM) displayed a potent antiproliferative activity against HMC1.2 cells
(GI50 = 1.15 ± 0.96 µM) compared with imatinib (GI50 = 27.10 ± 3.36 µM). The enzy-
matic inhibitory activities revealed that the active compounds showed a five- to eight-fold
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improved activity against c-KIT V560G/D816V double mutant compared with imatinib
(IC50 = 37.93 µM). On the other hand, these compounds displayed similar activity to suni-
tinib (IC50 = 3.98 µM). In addition, they exhibited similar activity against c-KIT D816V
Ba/F3 cells, while having a higher cytotoxicity window for c-KIT D816V Ba/F3 cells com-
pared with parental Ba/F3 cells than sunitinib.

Table 23. Antiproliferative activities of thiazolo[5,4-b]pyridine derivatives.

Compd.
GI50 (µM) a

Entry
GI50 (µM) a

GIST-T1 HMC1.2 GIST-T1 HMC1.2

imatinib 0.02 ± 0.01 27.10 ± 3.36 142p 0.66 ± 0.10 8.55 ± 2.40

sunitinib 0.01 ± 0.00 2.53 ± 0.35 142q 0.42 ± 0.07 15.53 ± 3.97

142a >50 Inactive b 142r 0.01 ± 0.00 1.15 ± 0.96

142b 33.05 ± 7.09 Inactive b 142s 0.02 ± 0.00 1.33 ± 0.43

142c 33.69 ± 3.45 Inactive b 142t 0.12 ± 0.03 6.62 ± 0.75

142d 16.36 ± 2.73 25.18 ± 2.21 142u 0.66 ± 0.08 11.31 ± 0.34

142e 3.45 ± 0.41 11.53 ± 0.62 142v 0.05 ± 0.01 6.81 ± 0.67

142f 20.94 ± 2.00 Inactive b 142w 0.02 ± 0.01 4.99 ± 0.43

142g 10.84 ± 1.06 36.77 ± 10.9 143a 0.08 ± 0.01 4.58 ± 0.32

142h 0.96 ± 0.10 7.26 ± 4.13 143b 0.10 ± 0.01 5.22 ± 0.59

142i 7.16 ± 0.87 9.65 ± 1.06 143c 0.01 ± 0.00 1.52 ± 0.43

142j 3.31 ± 0.73 6.35 ± 0.32 143d 8.13 ±1.81 Inactive b

142k 0.18 ± 0.03 2.27 ± 0.84 143e 0.23 ± 0.07 14.04 ± 10.2

142l 0.08 ± 0.01 4.34 ± 1.31 143f 0.30 ± 0.06 28.39 ± 13.3

142m 0.27 ± 0.17 3.41 ± 1.49 143g 0.07 ± 0.01 4.88 ± 1.18

142n 0.55 ± 0.09 7.00 ± 2.68 143h 0.02 ± 0.00 4.98 ± 0.32

142o 0.28 ± 0.08 2.36 ± 0.58
a Radiometric biochemical kinase assay results. b less than 50% inhibition at a concentration of 10 µM.
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Figure 22. SAR summary and chemical structures of compounds 142r and 143c.

A molecular docking study was performed to elucidate the binding mode of the potent
compounds 142r and 143c. Both compounds established hydrogen bonding at the hinge
region with a Cys673 backbone, as well as with a Glu640/Asp810 and an Ile789/His790
backbone. The thiazolo[5,4-b]pyridine fragment was involved in hydrophobic interactions
with Leu799, Val603, Ala621, and Val654, and the hydrophobic pocket was occupied by the
3-trifluoromethyl group (Figure 23).
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3. Conclusions 
In conclusion, c-KIT has emerged as a promising target in drug development for the 
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Figure 23. (A,B) Docking model of compound of 142r and 143c on c-KIT (PDB code: 1T46). Reprinted
from Ref. [52].

3. Conclusions

In conclusion, c-KIT has emerged as a promising target in drug development for the
treatment of GISTs, and the emergence of resistance to imatinib has highlighted the need
for more potent and selective inhibitors. Various sub-structural modifications have been
explored to discover a potent inhibitor, and in this review, we focused on the synthesis
and the SAR optimization of various scaffolds for c-KIT inhibitors for GISTs. Several
compounds have demonstrated potent c-KIT inhibitory activity and antitumor efficacy,
including compounds 6e, 22aa, 35h, 57d, 71g, 75, and 130d. Compounds 81a and 105a
have also shown promise as next-generation therapeutic candidates for GISTs. In addition,
compound 135j (IDRX-42) has been designated as a clinical candidate and is undergoing
testing in a phase 1 trial. The results of these studies provide insight for medicinal chemists
to design new scaffolds targeting c-KIT-driven GISTs.
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