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Abstract: Stomata are one of the important structures for plants to alleviate metal stress and improve
plant resistance. Therefore, a study on the effects and mechanisms of heavy metal toxicity to stomata
is indispensable in clarifying the adaptation mechanism of plants to heavy metals. With the rapid
pace of industrialization and urbanization, heavy metal pollution has been an environmental issue
of global concern. Stomata, a special physiological structure of plants, play an important role in
maintaining plant physiological and ecological functions. Recent studies have shown that heavy
metals can affect the structure and function of stomata, leading to changes in plant physiology and
ecology. However, although the scientific community has accumulated some data on the effects of
heavy metals on plant stomata, the systematic understanding of the effects of heavy metals on plant
stomata remains limited. Therefore, in this review, we present the sources and migration pathways of
heavy metals in plant stomata, analyze systematically the physiological and ecological responses of
stomata on heavy metal exposure, and summarize the current mechanisms of heavy metal toxicity on
stomata. Finally, the future research perspectives of the effects of heavy metals on plant stomata are
identified. This paper can serve as a reference for the ecological assessment of heavy metals and the
protection of plant resources.
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1. Introduction

“Heavy metals” is a general term for metals and metalloids with an atomic number
above 20 and a relative density greater than 4 g/cm3. Common heavy metals include lead
(Pb), cadmium (Cd), copper (Cu), zinc (Zn), chromium (Cr), arsenic (As), and mercury
(Hg), etc. [1,2]. With the rapid development of industrialization and urbanization, human
activities lead to the release of heavy metals into the environment through various path-
ways. Heavy metal pollution has become a global environmental issue because of its long
residual time in the environment and its non-degradable physical and chemical properties.
An increasing amount of studies have confirmed that heavy metals can cause a series of
negative environmental and ecological impacts [3-5].

Stomata are the specialized pores in the epidermis of plant cells, and are involved in
the implementation of these functions (e.g., photosynthesis, respiration, and transpiration).
Given their direct contact with the external environment, stomata are considered to be
an important apparatus for plants to adapt to environmental stress [6-9]. An increasing
number of studies have shown that heavy metal exposure can cause damages in the
structure and function of plant stomata, and ultimately lead to changes in plant physiology
and ecology [4,10-12]. Our analysis revealed an increasing interest in the study of stomata
under heavy metal stress (Figure 1); the systematic understanding of the effects of heavy
metals on plant stomata is still limited because research on the interactions between heavy
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metals and stomata is still in its infancy. Thus, the purpose of this work is to systematically
understand the effects of heavy metals on plant stomata. We have reviewed the progress
of the current research on the effects of heavy metals on plant stomata, including the
effects and mechanisms of toxicity at the apparent, cellular, and molecular levels, and have
outlined the areas of research that need to be expanded and deepened. It is anticipated
that this paper will contribute to a better understanding of plant stomatal function and its
interaction with heavy metals, and thus provide a reference for the subsequent evaluation
of plant tolerance or adaptation to heavy metal stress.
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Figure 1. Number of articles published between 1970 and 2020 involving stomatal effects. The data
are based on the use of “stomata” and “heavy metal” as keywords and were retrieved from the Web
of Science.

2. Structure and Function of Stomata

Stomata are specialized apparatus in plants, and play a vital role in maintaining plant
growth and development [13]. To create stomata, epidermal cells first differentiate to
form meristemoid mother cells (MMC), which are then divided asymmetrically to create
meristemoid cells (MC), and finally differentiated once more to form guard mother cells
(GMC). Two kidney-shaped guard cells are formed by the symmetrical division of GMCs,
which eventually form a stomatal complex (Figure 2) [14-16]. Guard cells can regulate
the behavior of stomata by ion-driven expansion, opening or closing, resulting in higher
photosynthetic efficiency [17]. In addition, the transpiration of water is controlled by
the regulation of the micro-pores of stomata [18]. Stomata differ markedly in structure
and function in different plant species, possibly as a result of evolutionary adaptation to
different environmental changes in different plants [19-23]. Stomata play a very important
role in plant growth and development, and thus there are many studies on stomata under
different conditions, such as those mediated by carbon dioxide, those under drought stress,
those mediated by high and low temperatures, those mediated by care, and those mediated
by phytohormones that regulate stomata (Figure 3) [23-29].



Int. . Mol. Sci. 2023, 24, 9302

30f16

@ Heavy metals (HMs)

® Heavy metals (HMs) £ Stomata diagram
Leaf Epidermal cell —
()
Stem . . Guard cell ° l.
b | Stoma >
Root
—  Nucleus —j
Stomatal opening Stomatal closure

Figure 2. Sources of heavy metals in plant stomata. There are three main sources of heavy metals
in plant stomata: the air, soil, and water cycles. Heavy metals can be enriched on the plant surface
through atmospheric deposition, and thus enter the stomata. They can also enter the stomata through
the uptake of surface water and soil nutrients by the plant roots.
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Figure 3. Schematic diagram of the toxic effects and mechanisms of heavy metals on stomata. Heavy
metals can induce an increase in ABA (abscisic acid) and ROS (reactive oxygen species), which can
lead to stomatal closure. Moreover, heavy metals can affect stomatal photosynthesis and energy
metabolism disorders by damaging the structure and function of mitochondria and chloroplasts,
ultimately causing stomatal dysfunction. Glc: glucose; TCA: tricarboxylic acid; Citric acid: citrate;
IsoC: isocitrate; 2—OG, 2—ketoglutarate; Succ: succinate; Fum: fumarate; Mal: malic acid; OAA: o
—aloacetate; Glutamate: glutamic acid; Glutamine: glutamine.
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3. Role of Stomata in Heavy-Metal-Induced Plant Damage

Stomata are key tissue structures or organs in plants that respond to heavy metal
stress. An increasing number of studies have shown that heavy metals can be enriched in
plants through biogeochemical cycles, thereby causing damage to the stomatal morphology
and structure, and ultimately interfering with several physiological metabolic processes
in plants (Figure 2). Cd can inhibit photosynthesis in wolfsbane by reducing stomatal
conductance and causing a reduction in carbon dioxide uptake [5]. Cd can increase the
availability of intracellular CO, by increasing stomatal conductance and pore size in mus-
tard, leading to an increase in photosynthetic rate [30]. Stomatal resistance of silver maple
seedlings is reduced when stimulated by Cd at low concentrations, thereby increasing
transpiration; when Cd concentration exceeds a certain value, stomatal resistance increases
or stomata close, thereby reducing transpiration intensity [31]. Pb affects plant transpiration
by reducing stomatal conductance, and thus the transpiration rate in wheat [32]. Cd can
improve the water use efficiency of soybean by increasing the stomatal area and decreas-
ing the stomatal size [33]. These results suggest that changes in stomatal morphological
and structural characteristics play an important role in heavy metal-induced changes in
the plant physiological metabolism. Therefore, the elucidation of the stomatal damage
effect and its mechanism is essential for understanding the stress mechanisms of plants in
response to heavy metals.

4. Toxic Effects and Mechanisms of Heavy Metals on Plant Stomata
4.1. Effect of Heavy Metals on Stomatal Behavior

The effects of heavy metals on different plants are different, and many studies of heavy
metal-induced plant stomatal closure have been conducted (Table 1). Lead can induce
stomatal closure in tobacco, Leucaena leucocephala, black gram, and soybean plants [11,34-36];
Cd can induce the stomata closure of Monochoria hastata, rice, Brassica juncea, Calophyllum
brasiliense Cambess, cowpea, Hordeum Vulgare, and Pennisetum sp. [5,37-42]; Hg can induce
spruce stomata to close [43]; Zn can induce stomata closure in cowpea plants [12]; Cu and
Ni can induce tomato stomata to close [44,45]; Ba can induce soybean stomata to close [17];
Sb can induce stomata closure in Acorus calamus [46]; and Al exposure can lead Quercus
glauca Thumb plant stomata to close [47]. These results suggest that different heavy metal
exposures can lead to stomatal closure in different plant species, which is likely to be one
of the compensatory mechanisms by which plants respond to heavy metal stress.

Although an increasing number of studies have shown that exposure to heavy metals
can lead to stomatal closure, the causes of stomatal closure are not fully understood.
A previous study has suggested that heavy-metal-induced stomatal closure may be linked
to changes in plant abscisic acid (ABA) levels, which is a plant hormone, also known as
a “stress hormone”, that plays an important role in the regulation of stomata [48]. Heavy
metal stress has been shown to increase ABA levels in plants, which causes water loss in
guard cells and thus promotes stomatal closure [48]. Another study has shown that the
stomatal closure caused by heavy metals was not related to the change of ABA content, and
heavy metals can cause an ion imbalance by affecting the calcium channel of guard cells,
thereby changing stomatal behavior [49]. A recent study showed that heavy metals may
also be transported via plant root uptake to stomatal guard cells for direct interaction with
stomata, thus causing stomatal closure. Clearly, the causes of heavy metal-induced stomatal
closure in plants are extremely complex, which may be related to the concentration and
duration of heavy metal exposure. When plants are exposed to low concentrations of metal
stress for a short period of time, the increase in stomatal resistance leads to changes in
stomatal behavior. When plants are exposed to low concentrations of metal stress for a long
period of time, this leads to an increase in ABA, which in turn causes stomatal closure.
However, when plants are subjected to high concentrations of metal stress, this can lead to
wilting and water-passive stomatal closure.
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Table 1. Effects of heavy metals on stomata.
Heavy Metal Processing Time and Concentration Plant Species Plant Type Toxic Effect References
Cd 50, 100 mg/kg; 3 months Pennisetum sp. C3 Stomatal closure [27]
0.6 Nm/L; 7 days Brassica juncea C3 Stomatal closure [30]
15mg/L; 10 days Monochoria hastata C3 Stomatal closure [37]
Brassica campestris ssp.
24 mg/kg; 40 days Brassica juncea C3 Decreased stomatal conductance [50]
Czernajew
0.2Mm/L; 12 days Arachis hypogaea cv C3 Pores become smaller [51]
50 mg/kg; 10 days Glycine max C3 Decreased of number stomata [33]
) Increased stomatal conductance (high)

510,30, 50 mg/kg; 7 days Zea mays L. 4 Decreased stomatal conductance (logw) (52,531
100 mg/kg; 28 days Calendula officinalis C4 Decreased stomatal conductance [8]
10 uM/L; 8 h Beta vulgar C3 Reduced stomatal aperture and size [54]
25,50 uM/L; 28 days Bacopa monniera Decreased stomatal conductance [49]
42 mg/kg; 10 days Hordeum vulgare L. C3 Decreased stomatal conductance [55]
100 mg/kg; 30, 60, 90 days Triticum aestivum L. C3 Decreased stomatal conductance [54]
10, 50, 100 pM/L; 21 days Vigna radiata C3 Decreased stomatal conductance [56]
25,100 mg/kg; 60, 90 days Cicer arietinum L. C3 Decreased stomatal conductance [38]
10, 50, 100 uM/L; 20 days Cucumis sativus L. C3 Decreased stomatal conductance [57]
1,10, 100 uM/L; 15 days Hordeum vulgare C3 Reducing the density and number [58]

of stomata
250 uM/L; 90 days Schinus molle Smaller stomata size [59]
7 uM/L; 40 days Eichhornia crassipes C3 Increased stomatal density [15]
. L Reduced stomatal size and reduced

30 mg/kg; 42 days Melissa officinalis L. stomatal index [58]
32 uM/L; 15 days Calophyllum brasiliense Stomatal closure [40]
100 uM/L; 15 days Vigna unguiculata (L.) Decreased stomatal conductance [41]
Pb 30.2mg/kg Brassica rapa spp. pekinensis C3 Stomatal closure [60]
700 uM/L; 21 days Leucaena leucocephala (Lam.) C3 Decreased stomatal conductance [11]
1000; mg/kg Triticum aestivum L. C3 Decreased stomatal conductance [30]
0.5,1,2,4mg/L; 20 days Eichhornia crassipes C3 Decreased stomatal conductance [61]
500 uM/L; 7 days Nicotiana tabacum L. C3 Stomatal closure [34]
500, 1000 mg/kg; 30 days Plantago asiatica L C3 Decreased stomatal conductance [62]
0.5,1,2,4,8 uM/L; 30 days Panicum aquanticum Poir C3 Increased stomatal density and [63]

Decreased stomatal size
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Table 1. Cont.

Heavy Metal Processing Time and Concentration Plant Species Plant Type Toxic Effect References
40 mg/dm; 14 days Glycine max (Linn.) Merr C3 Stomatal closure [36]
1400 mg/kg; 7 days Ligustrum lucidum Ait. Decreased stomatal conductance [47]
300 mg; 21 days Lactuca sativa L. Decreased stomatal conductance [64]
Cu different concentrations in the air Gochnatia arequipensis Sandwith C3 High stomatal density, small pores. [65]
25 mg/L; 10 days Vigna mungo (L.) C3 Stomatal restriction [33]
) . Guard cells are destroyed,
10, 100 mg/kg; 20 days Solanum lycopersicum L. C3 stomatal closure [46]
2,20,200 uM/L; 80 days Billbergia zebrina Lindl. C3 Change in stomata density [15]
50 uM/L; 14 days Coriandrum sativum C3 Decreased stomatal conductance [66]
Zn 1nM; 25 days Populus x euramericana C3 Changing thgtgrt;?ger, density of [64]
400 pg; 6 months Cajanus cajan (Linn.) Huth C3 Decreased stomatal conductance [12]
5 uM/L; 20 days Datura species C3 Stomatal closure [67]
Al 10 mM; 98 days Quercus glauca Thumb C3 Decreased stomatal conductance [48]
Cr 150 uM; 20 days Zea mays L. C4 Decreased stomatal conductance [68]
Ba 5000 uM; 20 days Glycine max C3 Stomatal closure [17]
. Stomatal conductance declined;

Ni 100 ppm; 2 years Arundo donax L. C3 increased stomatal resistance [69]
Hg 1-1000 nM; 49 days Picea asperata Mast C3 Stomatal closure [41]
Sb 2000 mg/kg; 60 days Acorus calamus L. C3 Decreased stomatal conductance [47]
Ti 20 mg/L Quercus ilex subsp ballota C3 Decreased stomatal conductance [70]

As 25 uM; 8 days Glycine max C3 Decreased stomatal conductance [33,52]
Mn 150 mg/kg; 15 days Brassica juncea (L.) Czern. C3 Stomatal closure [3]

. Caused small and abundant stomata

Fe 100 uM/L; 12 days Arachis hypogaea cv C3 on the leaf surface [52]
Ag 17.7 uM/L; 21 days Salix miyabeana C3 Decreased stomatal conductance [71]
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4.2. The Effect of Heavy Metals on Stomatal Conductance

Stomatal conductance is the degree of stomatal opening, and has a direct effect on plant
transpiration. More and more studies have shown that exposure to heavy metals mainly
induces the reduction of plant stomatal conductance, but there are also opposing findings.
Studies have shown that Cd can cause a significant decrease in the stomatal conductance
of Bacopa monniera, pakchoi (Brassica chinensis L.), mustard (B. nigra), marigolds, Holm oak,
mastic shrub, populus, riparian Salix variegata, Arundo donax L., cowpea, Ocimum basilicum L.,
Origanum vulgare L., and cucumber [4,10,30,50,57,69,70,72-74]. Pb can inhibit the stomatal
conductance of wheat and plantain [32,62]. Cr can induce the decrease of stomata conductance
of corn and sunflower [68,75]; Zn can induce a decrease in the stomatal conductance of
cowpea and Datura plants [12,66]. As can induce a significant decrease in soybean stomatal
conductance [52], and Cu can induce a decrease in the stomata conductance of coriander [76].
However, other studies have found that Cd can induce increased stomatal conductance in
mustard, maize, water hyacinth, and Lactuca sativa L. [30,64,77,78], which is probably due
to two reasons. First, when heavy metals cause a low concentration of carbon dioxide in
plants, the plants can increase their stomatal conductance to obtain more carbon dioxide to
meet their respiratory needs and resist the stress of the external environment [64]. Second,
the accumulation of heavy metals may lead to a leakage of potassium ions from the plant,
thus weakening the plant’s ability to regulate stomatal closure and thus increasing stomatal
conductance [64].

4.3. The Effect of Heavy Metals on the Amount and Density of Stomata

Changes in the number of stomata are reliable for assessing the level of accumulation
and the translocation of heavy metals in plants. An increase in the number of stomata
indicates that the enrichment and translocation of heavy metals are occurring within
a plant, and the increase may be a way to alleviate heavy metal stress (Figure 3). To
maintain the physiological and metabolic functions, plants enhance their heavy metal
tolerance by increasing the number of stomata, thereby increasing the surface area of
stomata and improving CO, uptake and water availability. Many studies have shown that
different heavy metal exposures can increase the number of plant stomata. Specifically, Cd
exposure has been shown to induce an increase in the number of stomata in tobacco, shore
quinoa, cowpea, and mung bean [56,79]; Pb, Zn, and Cu have been shown to induce an
increase in the number of stomata in sunflower [80]; As increases the number of stomata in
soybean [33], and Pb causes an increase in the number of stomata in plantain [62]. However,
a small number of studies have found that exposure to heavy metals can also lead to
reduced stomatal numbers. High levels of exposure to Cu, Cd, and Cr cause a reduction
in stomatal numbers in wheat and tomato [81-83]. This is likely related to heavy metal
concentrations [84]. High heavy metal concentrations can disrupt mitosis in plant cells,
leading to damage during cell division, and thereby reducing the number of stomata [85,86].

Stomatal density is also one of the most important indicators for assessing heavy metal
stress. Numerous studies have shown that heavy metals cause inconsistent changes in plant
stomatal density. For example, Cd stress has been shown to cause a decrease in stomatal
density in plants (e.g., Picris) [87]. Low concentrations of lead have been shown to lead
to an increase in stomatal density in water hyacinth leaves, while high concentrations of
lead have been shown to lead to a decrease in their stomatal density [63]. Cu reduced the
stomatal density of Qilian grass [65], and increased the stomatal density of Billbergia zebrina
(Bromeliaceae) [18]. The main reason for the variation in stomatal density may be related
to the compensatory mechanism of plant adaptation to heavy metal stress. An increase in
stomatal density and a decrease in stomatal size can reduce the transpiration area and thus
avoid excessive water loss. Conversely, a decrease in stomatal density and an increase in
stomatal size can maintain CO; flux. In summary, differences in the amount, density, and
size of stomata may be an adaptive mechanism of plants to heavy metal stress [67].
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4.4. The Effect of Heavy Metals on Stomatal Guard Cells

Guard cells are the main component cells of the stomatal complex, and are extremely
important for maintaining stomatal function [88,89]. The toxicity of heavy metals to
guard cells has therefore attracted much attention. Cd induces a reduction in the length,
an increase in the width, and a decrease in the circumference of guard cells in pea plants [90].
Similarly, Pb induces a decrease in the diameter of stomatal guard cells in soybean plants,
causing the production of large amounts of starch grains and plastid globules in the guard
cell plastids [36]. In addition, Cu can disrupt tomato guard cell membranes, and causes
an irregular arrangement of guard cells [45,52]. As can induce a thickening of the cell
wall of soybean stomatal guard cells. Pb and Cd can induce ultrastructural changes in
rice guard cells, causing a significant distortion and malformation in the shape of guard
cells [74]. These results suggest that exposure to different heavy metals can disrupt guard
cell morphology and structure, which in turn affects guard cell activity [68].

Whether heavy metal interactions with guard cells are direct or indirect remains
controversial. Heavy metals can alter the morphology and structure of guard cells by
accumulating in guard cells and interacting directly with intracellular material [41], and
Al exposure can lead to the significant accumulation of aluminum in guard cells, which
disrupts the cell structure [91]. However, other studies found that the Cd, Cu, and As can
cause morphological and structural changes in guard cells, but no accumulation of metals
in guard cells has been observed [45,52,92]. In addition, heavy metals can also affect guard
cell development by disrupting microtubule tissue, which plays an important role in the
development and differentiation of guard cells [93], and can regulate turgor pressure by
interfering with potassium channels on guard cell membranes, thereby causing guard cell
damage [66].

4.5. The Mechanisms of Heavy-Metal-Induced Stomatal Damage

Although studies of heavy metal damage to plant stomata have been widely reported,
the mechanisms of heavy metal toxicity to stomata are still not fully understood (Figure 4),
such as the genetic level, the protein level, and the metabolic level of the stomata. Numerous
studies have found that one of the mechanisms of toxicity of heavy metal stress to plants is
the generation of oxidative stress (Figure 3) [3-5,41]. Excess reactive oxygen species (ROS)
accumulate in plant cells under heavy metal stress, thereby causing oxidative stress [46,65,94,95].
ROS are usually produced in plant cell chloroplasts, mitochondria, and subcellular structures,
such as peroxisomes, and primarily consist of superoxide anion radicals (O~2), hydrogen
peroxide (H,Oy), and hydroxyl radicals (HO) [96]. To counteract oxidative stress, plants
adapt to or scavenge ROS by altering the activity of a range of antioxidant enzymes in their
bodies [97,98]. Plants catalyze the production of the disproportionation product H;O, by
O~2.through superoxide dismutase (SOD), followed by the further scavenging of H,O, by
catalase (CAT) and peroxidase (POD) [96,99]. Low levels of ROSs can act as signalling molecules
in plant defense reactions, sending signals to the antioxidant defense system, leading to increased
antioxidant enzyme activity [100,101]. However, when ROS levels exceed the scavenging
capacity of the antioxidant defense system, oxidative damage to the antioxidant enzymes
occurs, leading to a gradual decline in antioxidant enzyme levels and the eventual destruction
of the antioxidant enzyme system itself [5,102,103]. Excess ROS in plants can further induce
morphological and structural damage to the organism in direct reaction with biomolecules such
as lipids, proteins, and nucleic acids [104]. Many studies have shown that Pb and Cd exposure
can cause oxidative stress in rice, accompanied by the severe distortion and malformation of
the stomatal guard cell shape [105]. Similarly, Cu exposure has been shown to lead to oxidative
stress in tomato, accompanied by the destruction of stomatal guard cells [45]. These results
further suggest that oxidative stress is likely to be one of the toxic mechanisms underlying
stomatal damage induced by heavy metals (Figure 3).
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Figure 4. Schematic representation of the effects of heavy metals on plant productivity. This figure
summarizes the effect of heavy metals on stomata and ultimately on plant stomata.

Ion regulation in guard cells may also be a key factor in heavy metal-induced stomatal
damage (Figure 3). The accumulation of Pb in soybean guard cells has been found to alter
the permeability of the cytoplasmic membrane, which leads to K ion efflux and ultimately
to reduced stomatal cell expansion and stomatal closure [36]. The accumulation of Ba metal
in soybean guard cells inhibits the translocation of K ions from epidermal cells to guard
cells, leading to stomatal closure and ultimately to the inhibition of stomatal photosynthesis
and plant productivity [17]. In addition, other studies have shown that Cd can disrupt the
Ca channels in Arabidopsis guard cells, thereby affecting stomatal behavior [50]. These
results further suggest that ion regulation in guard cells plays an important role in heavy-
metal-induced stomatal damage.

5. Ecological Damage of Whole Plants in Relation to Stomata Response

Heavy metals are most available in soil and aquatic ecosystems, with only relatively
small amounts present in the atmosphere in the form of particles or vapors. There are dif-
ferent sources of heavy metals in the environment, including natural sources, agricultural
sources, industrial sources, domestic sewage, and atmospheric sources, among others [2].
Low doses of heavy metals can be attributed to a wide range of activities (mineral devel-
opment, industrialization, electronic products, transportation, etc.), and the metals are
non-degradable and persistent, thereby affecting the survival of plants and the level and
pattern of biodiversity.

Stomata (number, behavior, size, and so forth) are the gateway for plants to absorb
CO; and affect the plant’s metabolic capacity (e.g., affecting respiration and element uptake)
and transpiration. Heavy metal-induced stomatal closure is likely to lead to a reduction
in plant survival and reproductive capacity (Figure 4). Survival and reproduction are the
main ways in which plants maintain and perpetuate their populations, and changes in
survival and reproductive capacity are an important expression of how plants adapt to
changes in their environment. Plant survival and reproduction are influenced by many
factors, of which water, light, and CO, are the main limiting factors affecting plant growth
and reproduction [106]. Numerous studies have shown that plants can modify their ability
to survive and reproduce by regulating photosynthesis, transpiration, and respiration.
However, changes in the trait function of stomata, the main physiological structures of
plants that regulate photosynthesis, in addition to transpiration and respiration, may play
a key role in influencing plant survival and reproduction [107]. The closure of plant stomata
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under drought or environmental stresses leads to reduced CO; fixation and reduced water
use by plants, resulting in reduced access to nutrient salts, which in turn leads to a reduction
in the survival of plant offspring and ultimately affects plant viability. In contrast, the
closure of plant stomata under drought stress or other environmental conditions leads
to the reduced transpiration or respiration of plants, resulting in reduced energy storage
for reproduction, which reduces plant reproductive capacity [108-111]. Similarly, under
heavy metal stress, plant stomata can close, leading to reduced photosynthesis in plants.
For example, it has been found that Cd stress inhibits photosynthesis in plants [51], and
Pb stress alters the transpiration rate in tobacco [34]. These findings further suggest that
heavy metals can directly or indirectly affect the ability of plants to survive and reproduce
by interfering with stomatal activity.

Heavy metals interfere with the plant metabolism, resulting in the inhibition of plant
growth and yield. The productivity of plants depends on their growth and development.
There are various functional roles undertaken by ecosystems, which are mainly expressed
in terms of productivity, energy flow, material cycling, and information transfer [110,112].
Pollutant-induced phytotoxicity impairs the function and efficiency of the photosynthetic
system, stomatal function, and cambium activity. Finally, pollution stress affects the bio-
chemical parameters of plants and inhibits the ability of plants to perform physiological
functions such as photosynthesis, transpiration, and respiration. The toxic effects caused by
pollutants can lead to significant plant damage and reduced growth and yield, ultimately
affecting plant productivity [113]. Plants are the primary producers of ecosystems, and their
functional traits are closely related to changes in ecosystem function. Plant functional traits
are those that respond to changes in the living environment or have an impact on ecosystem
function, and mainly include structural traits (e.g., leaf area, stomatal density, and stomatal
conductance) and physiological traits (e.g., the leaf photosynthetic rate and the water use
rate) [114-117]. Studies have confirmed that environmental changes can cause changes
in plant functional traits, and thus in ecosystem function [118,119]. The efficiency of light
energy utilization is a key indicator for plants to convert energy intercepted from the envi-
ronment into organic matter through photosynthesis. It is also a key factor influencing the
productivity, capacity, and quality of ecosystems [120,121]. Studies have shown that under
drought conditions, a decrease or increase in the number of stomata leads to an increase and
decrease in the leaf area, resulting in a decrease in plant primary productivity [109]. Under
drought stress, the closure of stomata causes a blockage of plant respiration, water and
nutrient uptake, thus affecting plant material and energy cycling processes [122]; Under
drought stress, stomatal closure leads to the reduced exchange of information material
inside and outside the plant, resulting in blocked information transfer [123,124]. However,
an increasing number of studies have shown that under heavy metal stress, Cu exposure
leads to a reduction in plant stomatal numbers or stomatal conductance or density, resulting
in a reduction in the leaf area, which may cause a reduction in plant productivity [65]; Cd
exposure leads to the closure of plant stomata, resulting in reduced photosynthetic or respi-
ratory rates or water use rates, which may cause impaired material and energy cycling [42];
Studies have shown that the poisoning of phytoplankton by high concentrations of heavy
metals (Cu, Cr, Pb, etc.) reduces stomatal opening and stomatal conductivity, especially
the poisoning and inactivation of enzyme systems, seriously affecting physiological and
biochemical processes such as photosynthesis, respiration, protein synthesis and cellular
organic matter synthesis, which may cause impaired information transfer [9,53,125]. These
results further suggest that heavy metals affect ecosystem function by altering the physio-
logical ecology of stomata, thereby causing changes in structural (e.g., leaf area, stomatal
density and stomatal conductance) and physiological (e.g., leaf photosynthetic rate and
water use rate) traits in plants (Figure 4).

6. Conclusions and Future Perspectives

This paper reviewed a range of biotoxic effects and mechanisms of heavy metal
stress on plant stomata. It was found that the effects occurred primarily by altering
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stomatal behavior and disrupting the morphology, structure, and function of stomatal-
associated cells. Stomata can enhance heavy metal tolerance by altering uptake behavior
and regulating cell morphology and structure. Oxidative stress is a main mechanism
by which heavy metals induce stomatal damage. Although the effects of heavy metals
on stomata have been reviewed from several perspectives in this paper, there are some
limitations. Previous studies have shown that stomatal function was regulated by various
genes (e.g., stomatal closure-related actin binding protein 1 (SCAB1I), actin 2 (ACT2) and
myosin (MYOATP)), and that the differential expression of these genes can cause changes
in stomatal function [126,127]. Unfortunately, studies on the effects of heavy metals on
specific stomatal genes are very few in number [128]. Therefore, the mechanisms of the
effects of heavy metals on stomatal functions (e.g., water utilization) have not been explored
in depth in this paper.

Previous studies have primarily focused on the effects of heavy metals on stomatal
behavior, morphology, and structure, while the mechanisms of the toxicity of heavy metals
on stomata are still unclear. Studies have focused on characterizing the toxic endpoints of
stomata under heavy metal stress, while there have been a few studies of the mechanisms
of heavy-metal-induced stomatal development. With the continuous development of omics
technology, the molecular level of stomata under heavy metal stress (genes, proteins, and
metabolites) will be explored in greater depth. Unfortunately, there have been very few
studies of the impact of heavy metals on stomata at the molecular level. To better under-
stand the stomatal response to heavy metals, a combination of multiple omics technologies
is needed to comprehensively profile the changes in stomata at the molecular level.

Most studies have used acute short-term exposure experiments with high concen-
trations of heavy metals in laboratories or greenhouses rather than investigations under
natural conditions. Low doses of heavy metals can be attributed to a wide range of activi-
ties, and the metals are invisible and persistent, with the potential to become pollutants.
Most heavy metals do not exist alone in soils but are present with other metals, which
can affect the level of plant survival and biodiversity. Given the realistic concentrations
of heavy metals in actual soils, there is an urgent need to conduct long-term soil exposure
experiments with environmentally relevant concentrations of heavy metals to obtain more
scientifically valid data. Given the multiple functions of stomata in plant physiology,
damaged stomata can alter plant photosynthesis, transpiration, water use, and even plant
metabolism, ultimately affecting plant growth and development. A key goal of future
research in this field is to determine the toxicity mechanism of the interaction between
heavy metals and stomata and revealing the mechanism of heavy metal effects on stomata
can provide a scientific basis for assessing the contamination risk of soil heavy metals. In
future studies, exogenous hormones, PGPR, and melatonin can be used to overcome heavy
metal stress and its influence on physiological behavior.
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