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Abstract: Malaria continues to be a global health threat, with approximately 247 million cases
worldwide. Despite therapeutic interventions being available, patient compliance is a problem due to
the length of treatment. Moreover, drug-resistant strains have emerged over the years, necessitating
urgent identification of novel and more potent treatments. Given that traditional drug discovery
often requires a great deal of time and resources, most drug discovery efforts now use computational
methods. In silico techniques such as quantitative structure-activity relationship (QSAR), docking,
and molecular dynamics (MD) can be used to study protein-ligand interactions and determine the
potency and safety profile of a set of candidate compounds to help prioritize those tested using
assays and animal models. This paper provides an overview of antimalarial drug discovery and
the application of computational methods in identifying candidate inhibitors and elucidating their
potential mechanisms of action. We conclude with the continued challenges and future perspectives
in the field of antimalarial drug discovery.
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1. Introduction

Malaria is an infectious disease caused by protozoan parasites belonging to the Plas-
modium genus, with about 247 million cases globally across 84 malaria-endemic countries,
including the Philippines [1]. These parasites are transmitted to humans through the bites
of infected female Anopheles mosquitoes, which inject sporozoites, the infectious form of
the parasite, into the host’s bloodstream [2,3]. Once inside the human body, sporozoites
rapidly migrate to the liver, infecting hepatocytes, and begin asymptomatic asexual repro-
duction. Subsequently, the parasites emerge into merozoites, which are released into the
bloodstream and invade red blood cells (RBCs). Within the RBCs, the parasites multiply,
destroying the cells and releasing more merozoites, which continue to infect other RBCs [2].

During the infection, Plasmodium undergoes multiple stages in its life cycle, including
the blood-stage in which the disease starts to manifest in humans. At this stage, the parasite
degrades the host hemoglobin for survival [4]. One of the products, Fe(III)-protoporphyrin
IX (Fe(III)PPIX), accumulates and causes lipid peroxidation and membrane disruption [5].
Experimental studies have been published on the mechanism of the disease [6], the devel-
opment of small-molecule therapeutic drugs [7], and the elucidation of the mechanism
of action of these drugs [7,8]. Due to rapid technological advancements, computational
studies became highly significant in further understanding the mechanisms of malarial
infection and developing anti-malarial drugs. The review paper of Muller and Hyde [8]
covers the modes of action and resistance mechanisms of antimalarial drugs, but the role of
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computational studies was not highlighted. This paper will review literature that utilized
structure- and ligand-based drug discovery methods, as well as molecular dynamics simu-
lations, over the past years that contributed to the research on malaria. This review will
discuss recent computational studies, and thus, it is important to note that the inhibitors in-
volved are all in the pre-clinical stage of the drug discovery pipeline. None of the inhibitors
have undergone therapeutic evaluation and we do not intend to suggest any prioritization
of these molecules.

2. Current Treatment Strategies and Clinical Candidates Targeting Malaria

While the incidence of malaria has notably decreased in the last two decades, a slight
increase was observed in 2020, potentially in line with the interruption of several health
and medical services as COVID-19 was prioritized. WHO aims to decrease malaria’s global
incidence and mortality by at least 90% in the next seven years. To achieve this goal, reliable
diagnosis, surveillance, and the successful application of current interventions are needed.
Existing therapeutic strategies targeting malaria include artemisinin-based combination
therapy (ACT), which often requires 3 days of treatment, leading to poor patient compliance.
Moreover, increasing artemisinin resistance due to target mutations has become a concern,
indicating the need for more research to find better and novel therapeutics to combat this
disease. Fortunately, several non-artemisinin compounds, such as tetrahydro-β-carboline
derivatives, mefloquine, and piperaquine (discussed later in the text), are currently being
evaluated for their efficacy and safety.

Antimalarial drugs can be divided into five classes: gametocides, blood schizonticides,
tissue schizonticides, sporontocides, and prophylactics (Figure 1) [9]. Gametocides can
destroy the parasites’ gametocytes in the blood stage of the malaria life cycle, resulting in
the inhibition of malaria transfer from an infected individual to an uninfected Anopheles
mosquito. This is the primary mechanism of artemisinin and chloroquine. Antimalarial
drugs such as pyrimethamine and primaquine exhibit several modes of action. These
compounds work as prophylactics, often given to prevent malarial infections in individuals
with weak immune functions. They also function as tissue schizonticides, which inhibit
infection relapse due to Plasmodium ovale and Plasmodium vivax dormant forms or hypno-
zoites in the liver stage of the malaria life cycle, and as sporontocides, which hinder the
development of oocytes in the mosquito stage, leading to inhibition of disease transmission.

Current antimalarial drug discovery research focuses on two primary goals: (1) candi-
dates that can target resistant strains and (2) highly potent candidates that can be adminis-
tered in shorter treatment regimens. One of the solutions identified for this is using partner
drugs wherein artemisinin or a derivative is partnered with another drug to produce the
intended therapeutic effect. However, further research on shortening or minimizing the
treatment to a single-dose cure is still needed. Additionally, candidates that can target both
the asexual and sexual stages, along with the hypnozoites of P. vivax and P. ovale, are of
particular interest, given that hypnozoites can potentially lead to multiple malaria episodes
in just a single infection.
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Figure 1. Some known antimalarial drugs separated into classes: gametocytocides, blood schizonti-
cides, tissue schizonticides, prophylactics, and sporontocides. 

Artemisinin-hybridized compounds (Figure 2) have been tested against malaria in 
the last several years to answer artemisinin resistance. One example is dihydroarte-
misinyl-chalcone esters, which were found to be potent against chloroquinine-resistant 
and -sensitive strains and are thermally stable, which means they can easily be stored in 
high-temperature facilities in tropical regions where malaria is often endemic [10]. An-
other set of interesting antimalarial candidates includes hybrids of artemisinin and other 
natural products, such as homoegonol and thymoquinone [11], which had high antiplas-
modial efficacy and potency, showing better activity than chloroquine. Non-artemisinin-
hybridized compounds (Figure 2) based on quinoline [12–14] showed inhibition against 
hemozoin formation and the importance of an aromatic lipophilic side chain to the inhib-
itory activity. Additionally, ferrocene-based hybrids [15–18] have also been tested, with 
ferroquine exhibiting the most potential as it was found to be safe and effective against 
resistant strains and has a high half-life while being well-tolerated even at high repeated 
dosage [18]. 

Figure 1. Some known antimalarial drugs separated into classes: gametocytocides, blood schizonti-
cides, tissue schizonticides, prophylactics, and sporontocides.

Artemisinin-hybridized compounds (Figure 2) have been tested against malaria in the
last several years to answer artemisinin resistance. One example is dihydroartemisinyl-
chalcone esters, which were found to be potent against chloroquinine-resistant and -
sensitive strains and are thermally stable, which means they can easily be stored in high-
temperature facilities in tropical regions where malaria is often endemic [10]. Another set
of interesting antimalarial candidates includes hybrids of artemisinin and other natural
products, such as homoegonol and thymoquinone [11], which had high antiplasmodial
efficacy and potency, showing better activity than chloroquine. Non-artemisinin-hybridized
compounds (Figure 2) based on quinoline [12–14] showed inhibition against hemozoin
formation and the importance of an aromatic lipophilic side chain to the inhibitory activity.
Additionally, ferrocene-based hybrids [15–18] have also been tested, with ferroquine ex-
hibiting the most potential as it was found to be safe and effective against resistant strains
and has a high half-life while being well-tolerated even at high repeated dosage [18].
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Figure 2. Artemisinin and non-artemisinin hybrid candidate compounds. Redrawn and reproduced 
with permission from Elsevier [10–12,16]. Further permissions related to the material excerpted 
should be directed to the primary source. 
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should be directed to the primary source.

3. Computer-Aided Anti-Malarial Drug Discovery
3.1. Structure-Based Methods

The availability of three-dimensional (3D) protein structural information has facilitated
drug discovery and development for numerous diseases, as the binding site information
obtained from a drug target can guide the design of potent small molecule candidates. Com-
mon structure-based methods include homology modeling, molecular docking, receptor-
based pharmacophore modeling and screening, and molecular dynamics simulation, most
of which have been applied for anti-malarial drug discovery in recent years (Table 1). These
methods have been extremely helpful in facilitating antimalarial drug discovery, especially
with the advent of artemisinin- and piperaquine-resistance, along with decreased efficacy
of artemisinin partner drugs in ACT. With the help of rational design, compounds with
novel structures and mechanisms, better pharmacokinetic properties and safety profiles,
and better potency against resistant strains can be designed and developed.

Highlighted in this article are a number of studies that took advantage of existing
software and protein and ligand information to identify antimalarial candidates.
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Table 1. Recently published computational antimalarial drug discovery studies.

Drug Target Computational Method Hit or Lead Compound Experimentally
Validated

Drug Discovery
Stage Ref.

Essential kinase
PfPK6 Pharmacophore screening Luceome Yes Lead identification [19]

Trehalase

Homology
modeling,

Virtual screening, and absorption,
distribution, metabolism, excretion,

and toxicity (ADMET) screening

(4-(hydroxymethyl)-6-{[3,4,5-trihydroxy-6-
(hydroxymethyl)oxan-2-yl]amino}-

hexahydro-[1,3]dioxolo
[4,5-c]pyran-2-one)

Uniflorine

Yes Lead optimization [20]

Dihydroorotate dehydrogenase
(PfDHODH), plasma membrane

P-type cation translocating
ATPase (PfATP4)

Structure-based
pharmacophore, Density

Functional Theory (DFT) study
Luteolin Yes Lead optimization [21]

P. falciparum 3D7 and W2 strains Deep learning, QSAR

2-(4,6-diphenyl-1,2-dihydro-1,3,5-triazin-2-
yl)phenol

4-{N-[3-(morpholin-4-yl)-1,4-dioxo-1,4-
dihydronaphthalen-2-yl]acetamido}benzoic

acid
N2-(3-fluorophenyl)-N4-[(oxolan-2-
yl)methyl]quinazoline-2,4-diamine

Yes Lead identification [22]

P. falciparum 3D7 and RKL-9 strains,
P. berghei-infected erythrocytes

Homology modeling, Reverse
docking, Drug likeness screening

(1R,3S)-methyl 1-(benzo[d][1,3]dioxol-5-yl)-
2,3,4,9-tetrahydro-1H-pyrido
[3,4-b]indole-3-carboxylate

Yes Lead optimization [23]

P. falciparum
apicoplast-targeted

proteins

Homology
modeling,

molecular docking
Rifampicin No Drug repurposing,

Lead identification [24]

36 P. falciparum
drug targets

Molecular docking, MD
simulations DrugBank Library Yes Drug repurposing,

Lead identification [25]
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Table 1. Cont.

Drug Target Computational Method Hit or Lead Compound Experimentally
Validated

Drug Discovery
Stage Ref.

P. falciparum, strain
Dd2, Enoyl-ACP (acyl carrier

protein)-reductase (FabI)
QSAR 2’-substituted triclosan

derivatives No Lead identification [26]

p53 ADMET screening,
Molecular docking

1-(1-benzyl-5-phenyl-1H-1,2,3-triazol-4-yl)-
1-(4-bromophenyl)-2-((3,4-

dimethylphenyl)amino)ethanol
No Lead identification [27]

P. falciparum
1-deoxy-d-xylulose-5-phosphate

reductoisomerase (PfDXR)

Pharmacophore
modeling,

Virtual screening,
Molecular docking, MD

simulations

Fosmidomycin
Myricetin 3-rhamnoside,
7-O-Galloyltricetiflavan

(25S)-5-beta-spirostan-3-beta-ol
3-O-beta-d-glucopyranosyl-(1->2)-beta-d-

glucopyranoside
Oleanolic acid

28-O-beta-d-glucopyranoside

No Lead identification [28]

P. falciparum glutathione reductase Molecular docking, MD
simulations

1,2,3-triazole-linked dihydropyrimidinone
quinoline hybrids Yes Optimization of

drug structure [29]

Falcipains Quantum mechanics/molecular
mechanics, MD simulations

N-[N-(1-
hydroxycarboxyethylcarbonyl)leucylaminobutyl]guanidine

(E64)
Yes Lead optimization [30]

MD simulations

N-(2H-1,3-benzodioxol-5-yl)-N’-[2(1-
methyl-1,2,3,4-tetrahydroquinolin-6-yl)

ethyl]ethanediamide
N-{3-[(biphenyl-4yl carbonyl)

amino]propyl}-1H-indole-2-carboxamide

Yes Lead optimization [31]
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3.1.1. Reverse Docking of β-Carboline Derivatives

Most structure-based virtual screening focuses on using a ligand library to identify
potential hits that can inhibit or activate a given target. However, virtual screening can
also be performed using a library of proteins to identify potential drug target/s of a given
compound in a process known as inverse or reverse docking (Figure 3) [32].
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Figure 3. Traditional ligand docking vs. Reverse docking. Traditional ligand docking employs
compound databases and screens ligand structures against one target protein, whereas reverse
docking makes use of protein databases which are screened against a compound with desirable drug
properties.

β-Carboline is a notable scaffold found in several natural products and currently
marketed drugs. Several β-Carboline compounds have also displayed potent antimalarial
activities [33]. A study tested the antimalarial activity of tetrahydro-β-carboline (THβC)
derivatives against chloroquine-sensitive and -resistant strains of P. falciparum [23]. Based
on the in vitro results, the derivatives showed better potency when the pyridine ring was
present at the C1 position of the compound. The introduction of the 1,3-dioxolane ring
also led to better potency, along with the manipulation of stereochemistry, wherein trans-
diasteromers showed better overall activity. From the series of testing and optimization,
compounds 11a, 9a, and 9b were identified as the best compounds against both the sensitive
and resistant strains of P. falciparum. Cell toxicity assays were also performed to determine
the safety of the identified leads. Compound 9a was found to be toxic against Hela cells
but nontoxic towards dermal fibroblasts (normal cells), suggesting that it has a desirable
safety profile for human consumption. To further validate the activity and safety of the
lead, in vivo testing against P. berghei was also explored. Compound 9a displayed LD50 > 4
g/kg, indicating that the compound is safe for oral administration at high dosages. As a
monotherapy, it exhibited an effective dose of 27.74 mg/kg with a high potential to inhibit
the development of the parasite and improve the chances of survival of the treated animals.
Combined with a high dose of artesunate, a chemosupression of 99.69% was observed on
day 5, with complete parasitic clearance seen in the treated mice after 28 days.
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Several studies have established the roles of phosphoenolpyruvate carboxylase (PEPC),
phosphoethanolamine methyltransferase (PMT), lactate dehydrogenase (LDH), malate
dehydrogenase (MDH), falcipain-2 (FP2), and falcipain-3 (FP3) in malarial pathogenesis.
The β-Carboline derivatives, along with artesunate, were docked against these proteins
to study their potential binding interactions and predict their specific targets. Prior to
molecular docking, the protein structures were prepared (Figure 4). The PDB structures
of the PMT (PDB ID: 3UJ9), LDH (PDB ID: 1LDG), MDH (PDB ID: 5NFR), FP2 (PDB ID:
3BPF), and FP3 (PDB ID: 3BPM) were prepared by removing water molecules and co-
crystal ligands, fixing protonation, and modeling missing residues and loops. At the same
time, homology modeling of the PEPC receptor had to be performed using the UniProt
sequence Q8ILJ7.
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While the 3D target structures solved from experimental techniques such as NMR,
X-ray crystallography, and Cryo-EM can often provide vast information that can be used
for drug design and development, thousands of potential drug targets are still without
experimentally elucidated structures. AlphaFold and other Artificial Intelligence (AI)-based
techniques in structural biology are also still in the stage of being established. Despite
the existence of all these techniques, homology or comparative modeling remains an
attractive alternative when there is no 3D structural data on hand for a drug target of
interest. Homology modeling takes advantage of the assumption that structures with
similar sequences will have similar structures and functions. Therefore, a template with a
known 3D structure can be used to model any target with a similar amino acid sequence [34],
upon which further computational experiments can be performed, such as molecular
docking or dynamics.

VLifeMDS 4.6 Bio Predicta module [35] was employed for the reverse docking. Con-
sistent with the in vitro and in vivo results, compound 9a showed an excellent docking
profile against three target proteins, FP3 (−34.27 kcal/mol), PEPC (−37.44 kcal/mol), and
LDH (−59.14 kcal/mol), compared to artesunate (−8.64, −8.24, and −51.92 kcal/mol,
respectively). Several hydrogen bonds, hydrophobic, and van der Waals interactions
were observed for compound 9a and the protein targets, accounting for the good binding
energies. Artesunate exhibited desirable binding with MDH and FP2 with energies of
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−54.62 kcal/mol and −62.45 kcal/mol, respectively, compared to 9a, which displayed
−17.24 kcal/mol and −60.32 kcal/mol, respectively, for the targets. This suggests that if
used as a combination therapy, 9a and artesunate (Figure 5) can target different proteins to
hinder malarial pathogenesis [23].
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3.1.2. Anopheles gambiae Trehalase Ab Initio Modeling and Hit Identification

One of the targets identified for malaria drug design is trehalase, an enzyme responsi-
ble for reducing trehalose, resulting in two glucose molecules. In malaria, Anopheles gambiae
carries the pathogen P. falciparum, which accounts for most malignant cases of malaria
in sub-Saharan Africa. The pathogen’s gametocytes source trehalose to protect against
desiccation and heat, stabilize membranes and proteins, and encourage reproduction by at
least a thousandth-fold [36]. Moreover, trehalase has become an attractive target for malaria
vectors due to its specificity towards insects, deeming it safe for human consumption [20].

A recent study used ab initio modeling, molecular docking, and molecular dynamics
simulations to identify potential inhibitors for Anopheles gambiae trehalase (AgTre) [37].
In theory, the structure of a protein and the way it will fold is encoded into its sequence.
This is the fundamental concept being followed by ab initio modeling, wherein a protein
structure is generated with only the amino acid sequence of the target protein [38]. Adedeji
et al. generated an ab initio 3D structure of AgTre through three web servers, namely,
RoseTTAFold [39,40], C-I-TASSER [41], and I-TASSER [42]. The RoseTTAFold server
utilizes deep learning-based modeling software that considers protein sequences, possible
protein 3D conformations, and protein interaction [40] and provided an AgTre model that
had the best confidence score, QMEAN score, and Ramachandran favorability (0.85, −0.10,
98.06%, respectively). Hence, the RoseTTAFold-based model was used for the subsequent
virtual procedures.

Active site prediction was also performed through the CASTp [43,44] and PrankWeb [45,46]
servers. Often, the binding pocket of a target is identified through the presence of a co-crystal
ligand or a deep pocket with key residues that were established through mutation studies.
However, this is not always the case, especially for proteins with no experimentally validated 3D
structures. In these cases, additional analyses in the form of binding site prediction are needed
to continue with structure-based methods such as docking or receptor-based pharmacophore
modeling. CASTp determines and measures potential binding pockets in a query protein
structure based on annotations from Protein Data Bank (PDB), Swiss-Prot, and Online Mendelian
Inheritance in Man (OMIM) [44]. PrankWeb, on the other hand, makes use of machine learning
(ML) and evolutionary sequence conservation information to predict the properties of a potential
binding site and assess its ligandability [45]. Overlapping ideal pocket scores and binding
probabilities of active site residues from both servers were used to define the active site and,
thus, the grid box.

For the virtual screening, validamycin A, a commercially available compound that
exhibits trehalase inhibition for different species, was used as a control to search for po-
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tential hits in the PubChem database. Molecular docking was performed via AutoDock
Vina [47] in PyRx [48], wherein validamycin A and other trehalase inhibitors were docked
to predict their binding affinities and interactions with the trehalase model. Molecular
docking is one of the oldest and most well-known structure-based methods that can be used
to predict the binding orientation of a ligand, as well as its interactions and affinity with a
given target [49]. Validamycin A (Figure 6) displayed an energy of −5.4 kcal/mol, which
is higher than most previously reported trehalase inhibitors, except for validoxylamine A
(Figure 6), which showed a calculated binding energy of −8.8 kcal/mol. It was discovered
that validamycin A showed poor binding to AgTre due to the presence of only a single
van der Waals interaction with active site residue Tyr507. Furthermore, the bulk of its
binding site interactions is composed of hydrogen bonds with non-active site residues.
Validoxylamine A, on the other hand, had several van der Waals interactions with active
site residues and was used to identify the top nine ligands with similar or better bind-
ing energy to trehalase (<−8.8 kcal/mol). Additionally, the ligands were screened using
Pan-Assay INterference compoundS (PAINS) [50,51], a set of substructural features that
can be employed to determine if ligand hits are promiscuous compounds or non-specific
binders. Based on the lack of PAINS alert, the identified ligands in this study are proposed
to be non-promiscuous and target-specific. Amongst the top nine hit compounds, 10406567,
10690241, and 67837201 (C13H22N2O10; C13H22N2O10; C13H23NO8; Figure 6) were pre-
dicted to be non-permeable to the blood-brain barrier, and non-toxic accounted for by its
respiratory toxicity, drug-induced liver toxicity percentage, and its metabolically stable
structure. As such, these compounds were further optimized to supply 120 inhibitory com-
pounds, wherein Compound 1 (2-[6,7-dihydroxy-5-(hydroxymethyl)-3aH,5H,6H,7H,7aH-
pyrano [2,3-d][1,3]oxazol-2-yl]amino-6-(hydroxymethyl)oxane-3,4,5-triol) and Compound
2 (4-(hydroxymethyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]amino-hexahydro-
[1,3]dioxolo [4,5-c]pyran-2-one) (Figure 6) were chosen as the best binders whilst being
non-toxic, with binding energies of −8.9 kcal/mol and −8.4 kcal/mol, respectively. Phar-
macokinetics and safety profiles of the virtual hits were also predicted using admetSAR
2.0 [52], ADMETlab 2.0 [53], and SwissADME [54], while scaffold optimization was per-
formed using ADMETopt [55] to determine if better binding affinities can be obtained.

Given that molecular docking often makes use of rigid protein structure and only
incorporates flexibility in the ligand structure, further computational analyses may be
needed to increase the reliability of the results and obtain a better understanding of how a
candidate inhibitor can affect the function of a target protein. Molecular dynamics simula-
tions using Nanoscale Molecular Dynamics (NAMD) [56] were also conducted on AgTre
bound to validamycin A, validoxylamine A, 67837201, Compound 1, and Compound 2 at
310 K to study protein-ligand interactions further while also including structural flexibility.
Molecular simulation studies protein-ligand interaction and the overall complex energy
landscape based on force fields to incorporate the effects of changing atomic positions, the
presence of solvents, ions, and other physiological parameters. Incorporating both side
chain and backbone flexibility allows a candidate ligand to explore better binding orien-
tations and interaction with the receptor pocket, leading to better elucidation of binding
affinities [49]. Based on RMSD, the binding of validamycin A, 67837201, 10406567, and
Compound 1 led to minor fluctuations compared to validoxylamine A. As for Compound
2, conformational changes of less than 3 Å were observed, indicating that the model orien-
tation varies minimally. The average RMSD of the model bound to Compounds 1 and 2
showed lower values than when bound to validamycin A and validoxylamine A, indicating
that the AgTre structure was more stable when interacting with the identified hits. From
this, 67837201, 10406567, and Compound 2 were deemed as both excellent inhibitors of
AgTre with desirable predicted safety profiles, showing future potential for malaria drug-
based vector control. Interestingly, the computational results agree with in vivo studies of
validamycin A and validoxylamine A against AgTre, wherein validoxylamine A resulted in
the complete prevention of the development of normal adult pupae, while validamycin A
resulted in only 11% of normal adult pupae being developed [57], indicating the validity of
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the experimental design. Hence, it would be interesting to establish the in vivo activities of
the top hits, 67837201 and 10406567, as well as the optimized hit, Compound 2, in the future.
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3.1.3. Drug Repurposing of FDA-Approved Drugs for Antimalarial Drug Discovery

Despite the inclusion of computational tools and improvement of the overall drug
discovery paradigm, high failure rates are still observed for leads, especially in the pre-
clinical and clinical stages of the drug development process. Therefore, drug repurposing
or repositioning has come out as an attractive strategy to minimize the risks currently
associated with drug development. In this method, drugs that have already been approved
for other indications are re-evaluated to determine their activities against other diseases.
Furthermore, given that these approved drugs would already have pre-clinical and clinical
data, including in vitro and in vivo activities, safety and toxicity properties, optimization
data, and formulation, this can greatly expedite the drug discovery process [58,59].

In a recent study, 796 compounds from the DrugBank database [60,61] were virtually
screened against 36 P. falciparum targets [25] using blind docking with QuickVina-W 1 [62].
After docking, prioritization of hits was conducted after rescoring with GRaph Interaction
Matching (GRIM) [63] and determining ligand efficiency (LE) via surface efficiency index
(SEI), binding efficiency index (BEI), and lipophilic efficiency (LipE) [64]. Ligands with
molecular interaction similarity to the co-crystallized ligands and suitable predicted LE
profiles were selected as hits. Ligand binding stability was analyzed for the best 25 protein-
ligand complexes via molecular dynamics using GROMACS 2016 [65]. From the 20 ns
trajectories obtained, the root mean square deviation (RMSD), the radius of gyration
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(Rg), and the number of H-bonds present were measured for each complex to monitor
protein structure and ligand binding stability. While prazosin exhibited the best interaction
energy profile, abacavir had the most favorable H-bond network and a good protein-ligand
interaction energy.

Sixteen virtual hits were selected for the subsequent antiplasmodial assays, resulting
in the identification of fingolimod (Plasmepsin 2 target), abiraterone (Calcium-dependent
protein kinase 2 target), prazosin (Thioredoxin reductase 2 target), and terazosin (PfPK7
target) as actives (Figure 7).
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3.2. Ligand-Based Methods

In the absence of validated 3D target structures, ligand-based drug design often helps
in the identification of potential hits. Similar compound structures are assumed to have
similar properties, and thus, using the structure of known small molecule antimalarial
compounds, new ligands can be discovered and optimized to target malaria. Ligand-based
methods include quantitative structure-activity relationship (QSAR), molecular fingerprints,
2D and 3D similarity screening, ligand-based pharmacophore modeling and screening,
and ML models. Some of these have already been in antimalarial drug discovery in recent
years (Table 1). Additionally, various artificial intelligence (AI) and ML methods have been
employed in the discovery of novel drug molecules to process big data sets of compounds
with known biological activities.

3.2.1. Machine Learning and Virtual Screening for P. falciparum Protein Kinases

Calcium-Dependent Protein Kinases, or CDPKs, are regarded as the most valuable
targets for regulating the life cycle of parasites. In particular, Pf CDPK1 and Protein Kinase
G are both active during the sporozoite invasion of parenchymal liver cells [66,67]. In the
study conducted by Lima et al. [68], shape-based and binary machine learning modeling
was utilized to identify inhibitory compounds for P. falciparum CDPK1, CDPK4, and Protein
Kinase 6 (PK6).

Advances in software and hardware have allowed for more complex calculations;
therefore, machine (ML) and deep learning (DL) models are being developed for diverse
fields. While an old technique already, machine learning has been reemerging as an
essential strategy for drug discovery, design, and development. Compared to structure-
based methods dependent on 3D structural information, machine learning uses pattern
recognition, wherein physicochemical properties are explored to establish mathematical
relationships between structure and activities. These relationships can then be employed to
design novel compound structures and predict their properties. The major requirement of
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machine learning methods, however, is the availability of a large amount of data that can be
used to “teach” a model that is being developed to increase its reliability and accuracy [69].

To apply machine learning models, data curation of the PubChem Bioassay databases
was first completed. From this, the shape-based models were designed using multiple con-
formations of known ligands under the presumption that active and inactive compounds
for the targets would be clearly differentiated using 1:36 (active:inactive) linear under-
sampling. The most potent against the kinases were loaded from the curated compounds
in the ROCS v.3.2.2.2: OpenEye Scientific software [70] to be utilized as representative
compounds to generate active and inactive compounds. These sets are evaluated and
differentiated using statistical metrics of the Receiver Operating Characteristic (ROC) curve,
the area under the curve (AUC), the Boltzmann-Enhanced Discrimination of ROC, and
the Enrichment Factor. Aside from this, another ML model was generated by balancing P.
falciparum 3D7 and W2 strains in a 1:1 (active:inactive) linear undersampling method, with
the inclusion of multiple molecular fingerprints using RDKit (i.e., FeatMorgan, Molecular
ACCess System structural keys (MACCS), AtomPair, Avalon) to differentiate the active
from inactive compounds precisely. The application of molecular fingerprint seeks to
simplify the molecular complexity often found in therapeutic molecules by incorporating
topological, physicochemical, and substructure information within a few key features [71],
making it indispensable in ligand-based computational techniques. Moreover, molecular
fingerprinting has seen increasing applications in generating artificial intelligence (AI) and
DL models in drug discovery. Random Forest algorithm was used to select the descriptors
for model building [72]. Upon validation of the ML models with varying fingerprints,
a consensus model was generated to obtain a model with a diverse range of chemical
signatures, making predictions less susceptible to error.

Following this, virtual screening and experimental evaluation were conducted to
validate compounds that can inhibit the reproduction of P. falciparum and exhibit multi-
drug resistant strain inhibitory capabilities. Virtual screening of approximately 1.1 million
compounds in the ChemBridge database (https://chembridge.com/) was performed to
prioritize compounds that may exhibit antiplasmodial activity, which was then further
assessed using Veber and Lipinski’s rules. The shape-based model was then utilized
to filter molecules that could interact with the target kinases. Using the consensus ML
model, the top 10% hits of each kinase were then filtered for an antiplasmodial inhibitory
activity for the parasitic 3D7 and W2 strains. Molecular docking of predicted top 10 hits
was also performed on the target kinases at the ATP binding site to study the binding
interactions and identify the most potent ligand. Docking calculations predicted that
LabMol-171 suitably interacts with the catalytic residues of all three target kinases, implying
its potential to be a multi-kinase inhibitor. Furthermore, results from the in vitro cytotoxic
assays using fibroblast monkey cell lines validated the anti-plasmodial effects of the top
compounds. It was concluded that amongst the top 10 hits, compound candidates, LabMol-
171, LabMol-172, and LabMol-181 were the most potent inhibitors of 3D7 and W2 strains,
with LabMol-171 and LabMol-181 showing excellent in vitro inhibition, 70.02 ± 22.16%
and 51.81 ± 23.16% ookinete conversion inhibition at 10 µM, respectively [68].

3.2.2. Artificial Neural Network-Genetic Algorithm for Fusidic Acid Derivatives

Fusidic acid is a natural tetracyclic triterpene that can be obtained from fungi. Fusidic
acid and its derivatives have established antimalarial activities [73], making it an attractive
set of compounds to explore. A study by Azmi et al. [74] applied QSAR to generate a model
that can be used to predict the antimalarial activity of novel compounds. QSAR is one of
the conventional ligand-based methods that take advantage of the fact that the activity of
a compound is related to its physicochemical properties. A statistical model is produced
from this relationship, which can then be used to predict certain properties of a set of novel
compounds, i.e., inhibition, activation, toxicity, etc. While it is a very useful technique in
the absence of 3D structural target information, it does have several restrictions: (a) there
should be sufficient bioactivity data with satisfactory activity range obtained from the

https://chembridge.com/
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same group or the same experimental protocol, (b) suitable selection of compounds for the
training and test sets to avoid bias, (c) suitable selection of descriptors to avoid overfitting,
and (d) proper model validation to evaluate the model’s applicability to the system and
avoid bias to a certain scaffold [49].

This study used 61 fusidic acid derivatives with established antimalarial activities for
the QSAR model generation. MarvinSketch was first used to sketch the 2D structures of the
compounds, and Open Babel [75] was employed to convert the files to 3D. The 3D structure
of the compounds was used to acquire molecular descriptors, which contain information
on the structure, topology, and electrostatic properties of the fusidic acid derivatives, using
Mordred [76] and Padel [77]. From this, the training and test set was built with a 7:3 ratio.
The IC50 was used as the experimental activity wherein inactive compounds (high IC50
values) were categorized as class 0, and active compounds (low IC50 values) were catego-
rized as class 1. Genetic algorithm (GA) was used for the feature selection of the QSAR
model, so descriptors with low standard deviation were removed. To further improve the
model and remove bias, the correlation among all the descriptors was also analyzed to
remove descriptors that contain similar information. After, an artificial neural network
(ANN) was employed for the model development, creating 5 models containing different
sets of descriptors. ANN has a similar architecture to the nervous system, particularly
the brain, wherein (artificial) neurons are used to acquire the signal or information (input
layer), process and pass the information to other neurons (hidden layer), and produce
decisions (output layer) (Figure 8). ANNs can study nonlinear relationships found among
parameters and help facilitate drug discovery processes [78,79]. As with traditional QSAR
modeling, validation is performed to determine model accuracy and reliability and identify
the best models. All five models underwent validation by calculating parameters including
true positives (TP), false positives (FP), true negatives (TN), false negatives (FN), sensitivity
(SE), specificity (SP), Precision (PR), accuracy (Q), and Matthew’s correlation coefficient
(MCC). Further validation using y-scrambling analysis was conducted to confirm that no
coincidental correlation was found. In the end, it was determined that model 3, consisting
of 7 descriptors and internal and external accuracies of 0.96 and 0.92, respectively, was the
best model out of the 5 that were initially generated [74].
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ANN and other ML techniques have also been applied to other compound scaffolds
used to target malaria [80,81]. However, with the current state of research for this tropical
disease, it is evident that more studies utilizing AI and ML tools are needed to increase the
information available for antimalarial compounds and potentially enhance the reliability of
these methods in malaria drug discovery research.

4. Elucidation of Anti-Malarial Drugs Mechanism of Action
4.1. Artemisinin, Its Derivatives, and Combinatorial Therapy

An aspect of drug development that is equally important to identifying drug candi-
dates is understanding their mechanisms of action. One of the well-known anti-malarial
drugs is artemisinin. Multiple experimental pieces of evidence suggest different mecha-
nisms of action of artemisinin. The common denominator among these mechanisms is the
interaction of the endoperoxide of artemisinin (Figure 9) with the prosthetic heme group
of hemoglobin. There usually is a one-electron transfer from the Fe2+ of the heme to the
peroxide, producing free radicals or electrophilic intermediates capable of reacting with
malaria-associated proteins [82–87]. A molecular docking study of artemisinin to heme
showed that O1 at the endoperoxide linkage of artemisinin interacts with the iron center of
the heme [88]. This docking study employed simulated annealing Monte Carlo simulation
using AutoDock 2.4. As there were no available Amber force fields for iron, they used a
combined Amber/MMFF force field to calculate the interaction energies. MMFF stands for
Merck Molecular Force Field, which has van der Waals parameters for hydrates of Fe2+ [89]
and must not be confused with the molecular mechanics force field. It highlighted how
the structure of the heme used in docking studies could influence the calculated energies
and distances between atoms. The choice of level of theory used for atomic charges is also
important, concluding that HF/6-311G** and HF/3-21G are the better selections for the
heme and artemisinin, respectively. A later DFT study contradicted this and calculated that
it is O2 that interacts with the heme [87]. During the reductive decomposition of heme,
the one-electron transfer will produce an anion on one of the oxygen atoms and a radical
on the other. Their results presented lower energy for the transition state where O2 has a
more negative charge, while O1 is a protonated radical having a neutral charge. The greater
negative charge in O2 suggests that this oxygen interacts with the iron center of the heme
instead of O1. This illustrates how DFT studies can be used to determine the more probable
reaction route of a drug by looking at the transition state that requires less energy to be
achieved.
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Another treatment strategy for malaria is combinatorial therapy, where two or more
drugs are administered as they may have synergistic effects. Hybrid drugs can also be devel-
oped where the components are covalently linked to each other instead of co-formulating
two or more drugs into a single tablet [90]. Artemisinin and quinoline-containing molecules
are antimalarial drugs that can inhibit heme detoxification [91]. One of the quinoline drugs,
quinine, is known to inhibit nucleic acid synthesis [92] in P. falciparum. However, the exact
mechanism of the drug still needs to be fully elucidated. An experimentally-synthesized
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hybrid molecule of artemisinin and quinine (Figure 10), including its different analogues,
was studied in silico to evaluate its binding mode and affinity to Fe(II)PPIX [90]. Unlike
the previous docking study of lone artemisinin with heme, this hybrid drug-heme docking
study [90] fixed the charge of iron to +2 and used the Optimized Potentials for Liquid
Simulations (OPLS)-2005 force field. The model of the heme assumed a planar geometry
with the carboxylic acid portion, providing a potential steric hindrance to the drug. Despite
this, artemisinin-quinine could bind to the heme via one of the oxygens of the endoper-
oxide linkage. The O2 of the linkage has the shortest distance to Fe, supporting the DFT
study discussed earlier. In general, the binding energies calculated for the hybrid drug
and its analogues were greater in magnitude than those of artemisinin alone. It may be
a poor comparison as different force fields, docking methodologies, and binding energy
calculations were employed. It is, therefore, noteworthy to know whether binding energies
or conformations can influence the synergy between artemisinin and quinine.
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4.2. Falcipains as Drug Targets

Falcipains are a family of cysteine proteases that antimalarial drugs can also target.
There are three known subclasses: FP-1, FP-2, and FP-3, which have different roles in the
infection of P. falciparum. Gene knockout studies have shown that only FP-2 and FP-3 play
an essential part in the survival of the parasite [93], making them potential targets for drug
candidates. FP-2 and FP-3 are hemoglobinases found in the vacuole of P. falciparum, which
is essential for the acquisition of amino acids by the parasite from the cleavage of proteins in
erythrocytes. Experiments have shown that FP-2 preferentially cleaves hemoglobin during
its early trophozoite stage, while the late trophozoite stage shows a marked increase in the
cleavage of membrane skeletal proteins [94]. Either way, FP-2 and FP-3 cause hemolysis
and, thus, play a significant role in the pathogenesis of malaria. As such, inhibiting its
activity is a potential treatment mechanism.

An inhibitor of falcipain, studied using molecular dynamics, is the compound N-[N-(1-
hydroxycarboxyethylcarbonyl)leucylaminobutyl]guanidine, also known as Epoxysuccinate
E64 [30]. This compound has two possible mechanisms of inhibition, both of which involve
the attack of Cys42 on FP-2 to either C2 or C3 of the epoxide, leading to ring opening and
protein complex stabilization (Figure 11). Its mechanism of action for inhibiting FP-2 was
elucidated via MD simulation using hybrid AM1d/MM and M06-2X/MM potentials. The
side chains of FP-2 were optimized at pH 5.5 using the empirical PROPKA 3.1 program,
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simulating the pH inside the food vacuole. The protein, except for the quantum mechanics
(QM) region, along with the water molecules, was described by the OPLS-AA and TIP3P
force fields, while the semi-empirical Hamiltonian AM1d described the QM region. The
fDYNAMO library was used for all quantum mechanics/molecular mechanics (QM/MM)
calculations in this study. The results of this study indicate that the attack of Cys42
on the alpha-chain of FP-2 to C2 of the epoxide is kinetically favored by approximately
1.3 kcal/mol (5.44 kJ/mol). Still, the attack of Cys42 to C3 is thermodynamically favored
by 47.7 kcal/mol (200 kJ/mol). This means that the attack on C3 yields a more stable
enzyme-inhibitor complex and, thus, yields better binding and more potent inhibition.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 19 of 36 
 

 

 
Figure 11. General mechanism of FP–2 inhibition by E64 [30]. Redrawn and reproduced with per-
mission from Biochemistry. 

Another example of falcipain inhibition is exhibited by N-(2H-1,3-benzodioxol-5-yl)-
N’-[2(1-methyl-1,2,3,4-tetrahydroquinolin-6-yl) ethyl]ethanediamide, a quinolinyl ox-
amide derivative (QOD), and N-{3-[(biphenyl-4yl carbonyl) amino]propyl}-1H-indole-2-
carboxamide, an indole carboxamide derivative (ICD) (Figure 12) [31]. These molecules 
have been observed to have a strong inhibitory property against FP-2 and FP-3. The mech-
anism of inhibition using these molecules was elucidated via MD simulations using 
GROMACS 2021.3. The structure of FP-2 and FP-3 were obtained from RCSB PDB, while 
the structures for QOD and ICD were obtained from the MolPort database in SDF format 
and then converted to PDB format. The structures were then used to generate an Amber 
forcefield using AmberTools22. The compounds were then solvated using the TIP3P water 
model, neutralized with 150 mM NaCl, and the ligand parameters defined with the help 
of the GAFF forcefield. The results of this study show that both QOD and ICD ligands 
occupy the same binding pocket at the active site of FP-2. In addition, they are coordinated 
by nearly the same residues. Specifically, QOD forms interactions with residues Q36, N38, 
A157, W206, Q209, and W210. This interaction is also highly stabilized by a hydrogen 
bond between residues Q209 and W206 with an oxygen atom on the dioxanyl ring and the 
carbonyl oxygen of the ethanediamide ligand backbone. In the same vein, ICD interacts 
with the residues Q36, A157, W206, and W210. In addition, hydrogen bonding is observed 
between the formamide carbonyl oxygen of the ligand and residues D35 and K37, with an 
additional hydrogen bond formed between a side chain of oxygen on D35 and the nitro-
gen atom on the indoyl ring of ICD. In contrast, QOD and ICD are not fully embedded in 
the active site of FP-3, but the interactions between them are enough to block substrate 
binding. The ligand QOD interacts with FP-3 via a hydrogen bond between a nitrogen 
atom on the side chain of N86 and the amide oxygen of the ethanediamide backbone. Two 
additional hydrogen bonds form between backbone oxygen on Y90 and N and O atoms 
in the ethanediamide. QOD also forms interactions with C51, H183, Y93, I94, N96, S158, 
A184, and E243. ICD, on the other hand, forms a hydrogen bond only between a side chain 
oxygen of D163 and the nitrogen atom of the indonyl substituent of the ligand. It also 
forms interactions with A46, A166, N182, H183, W215, and W219. In essence, both QOD 
and ICD inhibit hemolysis by preventing its access to the active site of FP-2 and FP-3. 

Figure 11. General mechanism of FP–2 inhibition by E64 [30]. Redrawn and reproduced with
permission from Biochemistry.

Another example of falcipain inhibition is exhibited by N-(2H-1,3-benzodioxol-5-
yl)-N’-[2(1-methyl-1,2,3,4-tetrahydroquinolin-6-yl) ethyl]ethanediamide, a quinolinyl ox-
amide derivative (QOD), and N-{3-[(biphenyl-4yl carbonyl) amino]propyl}-1H-indole-2-
carboxamide, an indole carboxamide derivative (ICD) (Figure 12) [31]. These molecules
have been observed to have a strong inhibitory property against FP-2 and FP-3. The
mechanism of inhibition using these molecules was elucidated via MD simulations using
GROMACS 2021.3. The structure of FP-2 and FP-3 were obtained from RCSB PDB, while
the structures for QOD and ICD were obtained from the MolPort database in SDF format
and then converted to PDB format. The structures were then used to generate an Amber
forcefield using AmberTools22. The compounds were then solvated using the TIP3P water
model, neutralized with 150 mM NaCl, and the ligand parameters defined with the help
of the GAFF forcefield. The results of this study show that both QOD and ICD ligands
occupy the same binding pocket at the active site of FP-2. In addition, they are coordinated
by nearly the same residues. Specifically, QOD forms interactions with residues Q36, N38,
A157, W206, Q209, and W210. This interaction is also highly stabilized by a hydrogen
bond between residues Q209 and W206 with an oxygen atom on the dioxanyl ring and the
carbonyl oxygen of the ethanediamide ligand backbone. In the same vein, ICD interacts
with the residues Q36, A157, W206, and W210. In addition, hydrogen bonding is observed
between the formamide carbonyl oxygen of the ligand and residues D35 and K37, with an
additional hydrogen bond formed between a side chain of oxygen on D35 and the nitrogen
atom on the indoyl ring of ICD. In contrast, QOD and ICD are not fully embedded in
the active site of FP-3, but the interactions between them are enough to block substrate
binding. The ligand QOD interacts with FP-3 via a hydrogen bond between a nitrogen
atom on the side chain of N86 and the amide oxygen of the ethanediamide backbone. Two
additional hydrogen bonds form between backbone oxygen on Y90 and N and O atoms
in the ethanediamide. QOD also forms interactions with C51, H183, Y93, I94, N96, S158,
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A184, and E243. ICD, on the other hand, forms a hydrogen bond only between a side chain
oxygen of D163 and the nitrogen atom of the indonyl substituent of the ligand. It also forms
interactions with A46, A166, N182, H183, W215, and W219. In essence, both QOD and ICD
inhibit hemolysis by preventing its access to the active site of FP-2 and FP-3.
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4.3. Interaction of Antimalarial Drugs with Serum Albumin

The transport of antimalarial drugs via blood circulation is another aspect that can
be investigated in the drug discovery process. Serum albumin is a blood plasma protein
that has an essential role in the in vivo circulation and distribution of endogenous ligands
and exogenous drugs [95,96]. Strong interaction between the carrier protein and the
drug will lower the availability of the drug in the plasma, while a weak interaction will
distribute the drug poorly in vivo. Thus, the interaction of antimalarial drugs with plasma
proteins is important in their pharmacodynamics and pharmacokinetics. In this section,
different drugs that are evaluated for their binding interactions with serum albumin will
be discussed.

Human serum albumin (HSA) is a carrier protein with 585 amino acids that can
transport hydrophobic molecules in plasma [97]. HSA has three homologous α-helical
domains (Figure 13), further divided into subdomains A and B. In these domains are two
primary ligand binding sites located in subdomains IIA and IIIA, also known as Sudlow’s
Site I and Sudlow’s Site II, respectively [98,99].
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Mefloquine (Figure 14) is an FDA-approved anti-malarial quinine derivative drug
that attacks Plasmodium during the blood-stage of the parasite’s life cycle [30–32]. In the
study of Musa and coworkers [101], the docking calculations supported that Mefloquine
prefers to bind to Site I based on a more negative lowest binding energy upon binding
to Site I (approximately −27 kJ mol−1) than to Site II (approximately −23 kJ mol−1).
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Amino acids Tyr150 and Arg257 were seen to form hydrogen bonds with mefloquine [101].
Another drug, Lumefantrine (Figure 14), is used in combination with other antimalarial
drugs to treat malaria. In a similar study by the same group, Lumefantrine was found
to have a preferred binding site to HSA in Site I [102]. Furthermore, there were more
hydrogen bonding interactions (one with Cys448) and a greater hydrophobic effect when
the drug binds to Site I [102]. These were also observed in the binding characterization
of Mefloquine with HSA [101]. These agreed with the observed preferential binding of
Lumefantrine to Site I in site marker fluorescence displacement experiments. The average
free binding energy of binding Lumefantrine to Site I calculated using molecular docking
studies (−29.83 kJ mol−1) is close to the obtained free binding energy using fluorescence
titration (−27.31 kJ mol−1). However, it is essential to note that the experimental value is
even more comparable to the calculated binding energy to Site II (−26.95 kJ mol−1) [102].
Determining the binding site preference based on average binding energy calculations
is more reliable than merely comparing the lowest binding energy among the sampled
conformations. MD simulations might be helpful in this aspect to increase the sampling
size of the complexes and determine the stability of the drug in both sites.
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Figure 14. Structures of mefloquine and lumefantrine, which were investigated for their binding with
human serum albumin for blood transport.

The transport and pharmacokinetics of the developed artemisinin analogues, TO1
and TO2 (Figure 15), will be better understood by looking at their binding with HSA.
Molecular docking studies revealed that TO1 and TO2 bind better to Sudlow’s Site I, similar
to Lumefantrine and Mefloquine. Furthermore, the conformers with the lowest binding
energy for each analogue showed that hydrogen bonding (with Asp324 and Lys212) and
hydrophobic interactions are also significant in the binding.
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between the antimalarial drug dispirotetraoxanes and human serum albumin: A combined study
with spectroscopic methods and computational studies, published by ACS Omega, 2020 [103].
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Analogues of artemisinin, referred to as TO1 and TO2 in this paper (Figure 12), were
synthesized and developed by the group of Awasthi [103] as lead candidates of antimalarial
drugs that carry the vital endoperoxide. DFT calculations were conducted to determine
which is more reactive. Molecules with smaller HOMO–LUMO gaps were correlated to
more reactive molecules [104]. The smaller gap for TO1 suggests that this is more reactive
than TO2 and supports the more excellent antiplasmodial activity of TO1 in vitro [105].

Piperaquine (PQ) is an antimalarial drug used therapeutically in combination with
artemisinin [106]. Its metabolites, as it is biotransformed, were seen to have antimalarial
activity (Figure 16) [107]. Among PQ and its five metabolites, only M3 has comparable
free binding energy values for both sites (−32 kJ mol−1 for Site I, −33 kJ mol−1 for Site
II). The other metabolites and PQ all have favorable binding energies for Site I, ranging
from −28 to −41 kJ mol−1. However, only M3 and M5 reported binding energies for both
sites, as the site marker experiments needed to provide their preferential binding sites
clearly. In addition to the hydrogen bonding and hydrophobic effects observed from the
previously discussed antimalarial drugs, the docking conformations exhibited π-π stacking
interactions and cation-π interactions due to the presence of aromatic rings in PQ and its
metabolites [108].
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Bovine serum albumin (BSA) is another carrier protein derived from cows. The mature
protein contains 583 amino acids, with 75.6% sequence identity with HSA [109]. Like HAS,
BSA has three homologous domains (I–III), with two subdomains A and B (Figure 17). It is
more commonly used as a model protein for evaluating binding between drugs and serum
albumin because it is less expensive than HSA.
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ture protein contains 583 amino acids, with 75.6% sequence identity with HSA [109]. Like 
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Artemether (Figure 18) is an artemisinin derivative of the peroxide sesquiterpenoides
drug class. It is used as a treatment against multiple resistant strains of P. falciparum.
Molecular docking was conducted, in tandem with site marker competitive experiments,
to identify the binding sites of artemether. Using Autodock 4.2, the drug was docked to the
BSA based on the binding sites of phenylbutazone and ibuprofen, which are drugs known
to bind to Sites I and II, respectively. The binding of artemether to the hydrophobic cavity
in Site II (−32.40 kJ mol−1) has more negative free energy as compared to its binding to
Site I (−28.01 kJ mol−1) [110]. This is different from the binding mechanism of the four
drugs discussed earlier. While all these drugs were surrounded with hydrophobic residues,
no hydrogen bonding interactions were seen in artemether, unlike in the Mefloquine and
Lumefantrine.
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GOLD, which stands for Genetic Optimization for Ligand Docking [111–113], is a
docking program based on a genetic algorithm that can also be used in docking ligands
to proteins. AutoDock, conversely, uses a Lamarckian genetic algorithm combined with
an empirical force field [114]. GOLD v3.2 was used to evaluate the binding mode of an
antimalarial drug, tri-methoxy flavone (TMF) (Figure 18), to HSA. This drug binds to Site II
of the HSA (−26 kJ mol−1) with three hydrogen bond interactions, stabilizing the complex,
involving Asn391, Arg410, and Tyr411 [115]. However, the study should have mentioned if
TMF was attempted to be docked to Site I.

As summarized in Table 2, antimalarial drugs may also be screened using molecular
docking by evaluating their binding interactions with sites of either BSA or HSA. The
binding free energy ranges from −26 kJ mol−1 to −32.40 kJ mol−1, which may be a good
benchmark for transporting antimalarial drugs via serum albumin. It should be noted that
when conducting molecular docking of antimalarial drugs to serum albumin, it is better to
evaluate the binding free energy for both sites and identify the present hydrogen bonding
interactions, as these may be important in the binding characterization of the drug. Based
on the studies reviewed, it has been highlighted that the hydrophobic nature of the cavity
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in the Sudlow sites is significant in binding antimalarial drugs, suggesting the critical role
of hydrophobic regions in these small molecules.

Table 2. Binding energies of different antimalarial drugs in the two known binding sites of BSA
and HSA.

Drug Name
Binding Free Energy (kJ mol−1) a

Ref.
Site I Site II

Lumefantrine −29.83 −26.95 [102]

TO1 b −28.6 -
[103]

TO2 b −26.1 -

Piperaquine −40 -

[108]

M1 c −28 -

M2 c −29 -

M3 c −32 −33

M4 c −41 -

M5 c −42 −36

Artemether - −26 [110]

Tri-methoxy flavone −28.01 −32.40 [115]
a Dash line indicates that the data was not reported. b Artemisinin analogues. c Piperaquine derivatives.

4.4. Molecular Mechanism of Anti-Malarial Drug Resistance

One of the pressing problems in therapeutic research is the development of resistance
against drugs that are commercially available and easily accessible. Most antimalarial
agents were reported to be ineffective against drug-resistant strains of P. falciparum [116].
This led scientists to quickly develop new antimalarial drugs and look for novel drug
targets [117]. Concomitantly, molecular mechanisms of this resistance should be elucidated
to understand better how we can develop drugs that will minimize resistance development.

Chloroquine (CQ) (Figure 1) is a well-known antimalarial drug that prevents heme
detoxification by binding to Fe(II)-protoporphyrin-IX (Fe(II)PPIX), thereby killing the
parasite with its own waste [118]. Surprisingly, no computational studies were conducted
on the interaction of chloroquine with heme and hematin. The mechanism of action of
this drug was mainly unraveled from experimental results [119]. As of writing, the only
computational study we have seen looks at the resistance mechanism of P. falciparum against
chloroquine. As there is no available solved structure for P. falciparum chloroquine resistance
transporter protein (PfCRT), homology modeling was conducted using MODELLER, and
the selected models were validated using PROCHECK and Swiss-Model servers. A Lys to
Thr mutation (K76T) in PfCRT was thought to increase the resistance of the parasite against
chloroquine; thus, the mutant protein was also modeled. Upon molecular docking, the
protonated forms of the chloroquine did not bind to the wild-type protein, supporting the
hypothesis that electrostatic repulsion between positively charged lysine and protonated
chloroquine will result in unfavorable binding. No alternative conformations resulted in
a favorable interaction between the two molecules. On the other hand, the protonated
chloroquine became bound to the mutant protein due to the loss of repulsion. The binding
energy between the neutral form of chloroquine and mutant PfCRT was even greater
than that of the wild-type [118]. The digestive vacuole of the parasite is where heme
detoxification occurs, making it a good target for chloroquine. Whether PfCRT is a channel
or a transporter, the enhancement in the binding affinity of both forms of chloroquine to
the mutant PfCRT makes it easier for the parasite to remove the unwanted drug from its
system, enabling drug resistance.

Pyrimethamine is an antimalarial agent that inhibits dihydrofolate reductase (DHFR),
a crucial enzyme for replicating the malaria parasite within the human body [120]. The pro-
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tein is critical in the folate biosynthesis pathway, essential for the parasite’s survival. Upon
entering the host, the malaria parasite takes up folate from the human body. It relies on
DHFR to convert dihydrofolate (DHF) to tetrahydrofolate (THF), which is necessary for its
growth and replication. Antifolate drugs such as pyrimethamine and trimethoprim target
DHFR and are commonly used to treat and prevent malaria. However, the effectiveness of
these drugs has been compromised in recent years due to the emergence of drug-resistant
strains of the malaria parasite, which possesses DHFR mutations, reducing its binding
affinity to antifolate drugs [121].

MD simulations may be combined with other computational techniques to under-
stand drug resistance mechanisms. For example, dynamic residue network analysis
(DRNA) was combined with MD simulations to provide some mechanistic insights into
the pyrimethamine drug resistance against P. falciparum [122]. Four-point mutations were
selected (N51I, C59R, S108N, and I164L), and different protein mutants, ranging from sin-
gle mutants to quadruple mutants, were generated using homology modeling. Molecular
docking results showed that the S108N mutation induced steric clash to pyrimethamine. In
contrast, N51I and I164L mutations increased the size of the active site, which decreased the
binding affinity of small inhibitors [122]. Free energy calculations were conducted using
Molecular Mechanics Poisson–Boltzmann Surface Area (MM/PBSA) method [123]. As
the number of mutations increases, the total binding free energy becomes more positive
relative to the wild-type (−127.2 kJ mol−1). DRNA is a tool that identifies significant
residues involved in intra-protein communication by computing two parameters, average
shortest path and betweenness centrality (BC), as a running average across an MD trajec-
tory [124,125]. BC indicates the frequency of residue participation in the shortest paths
between all residue pairs. Different residues have enhanced or decreased BC values for
the wild-type and quadruple mutants, serving as molecular fingerprints that may give
clues on the degree of resistance. A specific residue, Cys59, was identified to have a high
average BC value for the wild-type strain, which may be affected in the strains that contain
mutations at Cys59 [122].

Steric constraints in the DHFR, caused by an S1089 mutation, resulted in resistance
to antifolate drugs [126]. A lead antimalarial compound, P218, binds similarly to both
quadruple and double DHFR models and wild-type counterparts (−34.90, −34.15, and
−34.93 kcal mol−1, respectively) but differently to human DHFR (−22.14 kcal mol−1),
suggesting that developing a more selective DHFR inhibitor that only targets the parasite
DHFR is possible. Evidence from molecular dynamics also shows that the differentiating
hydrogen bond between pfDHFR and human DHFR (hDHFR) is the terminal carboxyl
group of P218 hydrogen bond interactions with Arg122. Per-residue decomposition study
in H-bonds shows that P218–hDHFR interactions (which contain Arg122 homolog) do not
express favorable interactions compared to mutated and wild-type counterparts [127].

The threat of antifolate resistance arising from key mutations, such as S108N, suggests
that a new approach is needed to address the attenuation of the pharmacokinetic activity of
antifolate drugs. Inhibitors that contain rigid and flexible pharmacophores were developed
and predicted to be effective and highly selective to DHFR [128]. Introducing flexible
moieties at either meta- and para-phenyl substituent end (Figure 19), as well as developing
a hybrid rigid bearing end, displays remarkable selectivity and inhibition activity to both
wild-type and pyrimethamine resistant DHFR strains based on in vitro and in vivo assays.
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4.5. Other Potential Targets for Inhibition of Resistant Malarial Strains

The application of hybrid compounds was further proven effective in antimalarial
scenarios. Other than DHFR inhibition properties, compounds such as quinoline hybrids
were also synthesized and assessed in both in vitro and in silico experiments [29]. One
potential drug target is the glutathione reductase enzyme (GRE). The malaria parasite is
sensitive to oxidative stress caused by reactive oxygen species, which is why antioxidants
are vital for the malarial parasite in its host. GRE plays a crucial role in the redox metabolism
of P. falciparum by reducing oxidized glutathione (GSSG) to its reduced form (GSH). This
conversion helps maintain the redox homeostasis of the parasite and protects it from
oxidative stress. Inhibition of glutathione reductase activity can lead to an accumulation
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of GSSG and ultimately cause oxidative stress, which can be lethal to the parasite making
GRE a viable therapeutic target [129,130].

Dihydropyrimidinone–quinoline hybrids were synthesized and subjected to in vitro
antimalarial sensitivity and inhibition activity assays utilizing K1 chloroquine (CQ)-resistant
and NF54 CQ-sensitive strains [29]. Quinoline hybrids with amino functionalities show
significant inhibition against P. falciparum strains. These are also comparably potent with
CQ in antimalarial assays involving CQ-sensitive strains. Remarkable inhibition activity
was also seen for K1 CQ-resistant strains with IC50 ranging between 421 and 567 nM
concentrations. In silico techniques were employed to assess the binding activity and
molecular dynamics of the effective quinoline hybrids. These were further optimized for
competitive inhibition of GRE against the flavine adenine dinucleotide (FAD) cofactor.
Researchers came to this rational optimization approach to ultimately design more potent
hybrid products based on compounds with significant activity assessed from inhibitory
assays conducted in vitro. This also provides substantial information for future researchers
on designing potent antimalarial drugs. Moreover, this research has implicitly demon-
strated the versatility and significance of in silico methods, particularly in their ability to
facilitate post-assay optimization. This could enable time and cost efficiency for subsequent
optimization experiments and improved lead generation.

5. MD Simulations of Peptide Immunogens for Vaccine Development

The onset of malaria brought about by P. falciparum may be prevented through peptide
sequences that elicit the body’s immune response [131]. These peptide sequences must
therefore be antigenic, capable of binding to B-cell receptors on antibodies and activating
adaptive immunity, which should offer lasting protection against the disease. These
antigenic peptide sequences are known as B-cell epitopes (BCEs), which bind to structures
on the antibodies known as paratopes [132]. These epitopes may be identified from different
accessible proteins in P. falciparum. Given the multitude of proteins that can be targeted and
the number of amino acid residues on each protein, computational methods are used to aid
this process. This happens through B-cell epitope prediction and mechanistic elucidation
of the epitope-paratope binding [133].

5.1. Circumsporozoite Protein

The protein from which the most promising epitopes come from in P. falciparum is the
circumsporozoite protein (PfCSP) found on the pathogen surface in the sporozoite stage
of the parasite [134]. This protein is crucial for parasite motility, sporozoite development,
and the ability to invade liver cells. Eliciting an immune response at this stage is the
primary focus since it can prevent infection and eventual transition to symptomatic malaria.
There are two significant peptides obtained from epitopes of this protein that elicit a strong
immune response: KQPADGNPDPNANPNV (junctional peptide) and NPNANPNANPNA
(NANP peptide) [135]. When these peptides were injected into transgenic mice, they
produced a total of 2588 antibodies. Out of these, only 15 antibodies yielded a positive
result in ELISA, and only two of these (mAb667 and mAb668) displayed significant anti-
malaria activity.

The binding of the junctional peptide with the fragment antigen-binding region (Fab)
of mAb668 was then elucidated via molecular dynamics (MD) simulations [135]. This
was performed to determine precisely which residues contribute to the epitope-paratope
binding the most. The NANP peptide was no longer analyzed since the junctional peptide
also contains a NANP sequence. At the same time, Fab667 was also excluded since it did
not show significant binding with the junctional peptide. These MD simulations were
performed using the Protein Preparation Wizard in Maestro (Schrödinger) at neutral pH.
A cubic box of TIP4P-EW water and 150 mM KCl with a 10 Å buffer in AMBERTools
was used to solvate the models of the MD simulation. Heating, equilibration steps, and
energy minimization of the system were conducted via AMBER16. The molecular mechan-
ics/generalized Born solvent accessibility (MM/GBSA) approach was used to estimate



Int. J. Mol. Sci. 2023, 24, 9289 26 of 33

the energy of peptide bonding to Fab668. To dissect the specific binding behaviors of
different segments of the junctional peptide, MD simulations were conducted using five
epitope registers containing either one or two repeats suspected to bind Fab668. These
are: 1NPDPNANP8, 1NANPNVDP8, 1NVDPNANP8, 1NANPNANP8, and 1PADGNPDP8.
Among these, 1NPDPNANP8 has the lowest root mean square fluctuation (RMSF) from the
MD simulations, which corresponds well with the observed crystal structure of the complex
of Fab-668-junctional peptide. It may also be caused by the conformational restriction given
to Asn1 by Pro2, something non-existent in the other epitope registers. A noteworthy obser-
vation is that the 1NPDP4 has a much higher RMSF than 5NANP8 when present in the same
peptide. This indicates that the binding of the second repeat has a more significant impact
on the overall binding than the first. The substitution of 5NANP8 for 5NVDP8 also increases
the RMSF of individual amino acid residues by 1 Å, suggesting preferential binding with
Fab-668 with the first repeat. Comparisons of relative ∆G contributions via (MM/GBSA)
also provide insight into residue importance. In all five epitope registers, all amino acid
sequences show differences except for Asn5 and Pro8. Considering this, the results show
that neither Asn1 nor Pro1 contributes to the overall binding. In contrast, positions two and
three contribute more than position one but less than positions four to eight, with position
three slightly preferred for Asn than Asp. Pro4 was also observed to contribute more
than Gly4, indicating unfavorable Fab-668-1PADGNPDP8 binding. There is also a slight
preference for Val6 and Pro6 compared with Ala6, but the most drastic change is observed
when Asn7 is replaced by Asp7, which causes an absence in contribution to favorable
binding ∆G. This may be due to the lack of hydrogen bonding with Fab668 experienced by
the negatively charged Asp7, which leads it to take an out-of-pocket orientation, in contrast
to the in-pocket orientation taken by the neutral Asn7. The absence of this H-bond network
with Fab668 is the most probable reason that the NVDP repeats on the junctional peptide
are unlikely to bind to the NANP paratopes on Fab667 and Fab668, and thus eliciting a
weaker immune response compared with the NANP peptide.

5.2. Ring-Infected Erythrocyte Surface Antigen

Another protein of interest where significant epitopes can be found is the ring-infected
erythrocyte surface antigen (RESA). This protein likely facilitates the malaria parasite’s sur-
vival in living organisms due to its omnipresence in field isolates of P. falciparum [136]. This
protein is stored in dense granules, which are apical organelles in individual merozoites,
after being produced in the final stages of the development of the schizont [137]. RESA is
secreted into a parasitophorous vacuole (PV) after the host cell rupture and subsequently
reinvades a new erythrocyte, where it interacts with erythrocyte spectrin to stabilize its cell
membrane, possibly aiding in its repair after invasion [138].

Virtual screening via immunoinformatics has been applied to determine the most
immunogenic B-Cell epitopes found on the RESA protein. There are 10 B-Cell epitopes
of interest: TQANKQELANI, YGYDGIKQV, RWYNKYGYDGIKQV, SSSSGVQFTDRCS,
KDFTGTPQIVTLLR, NLYGETLPVNPY, AIKKTKNQEN, TEEEKDDIKNGKDI, SCYNNN-
FCNTNG, and NNKNDDSYRYD [139]. These B-Cell epitopes were virtually screened
for their antigenicity via the computational tool VaxiJen v2.0. This software possesses a
78.0% prediction accuracy and is based on the physicochemical features of a protein [140].
VaxiJen v2.0 screens epitopes by assigning them antigenicity scores, with a higher score
indicating better antigenicity. Using this tool, the NLYGETLPVNPY epitope obtained the
highest antigenicity score (1.8128), with the TEEEKDDIKNGKDI epitope being a close
second (1.2106). However, other relevant parameters, such as allergenicity and water
solubility, must also be considered when screening for these epitopes to obtain the whole
picture. Allergenicity was computationally determined via AllerTOP v2.0, a tool based
on comparing the sequences of allergens and non-allergens while incorporating the k-
nearest neighbors (kNN) concept [141]. On the other hand, the solubility in water of the
screened epitopes was evaluated via Protein-Sol. This server predicts the solubility of
proteins obtained from Escherichia coli in a cell-free expression system based on the protein
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sequence [142]. Using these tools, the NLYGETLPVNPY epitope was found to be allergenic
and have poor water solubility. In contrast, the TEEEKDDIKNGKDI epitope was found to
be non-allergenic and highly soluble in water. Thus, despite its slightly lower antigenicity
score, the TEEEKDDIKNGKDI epitope was the optimal B-Cell epitope found on RESA via
this virtual screening using immunoinformatics.

6. Conclusions

Antimalarial computational drug discovery continues to be an important field of
research, given that malaria still affects millions of people globally. One of the major
hurdles in this field is still the complexity of the parasite and its lifecycle, paired with
the emergence of resistant strains that have started to evade current treatment strategies,
and thus, requiring an urgent search for new therapeutic agents. Another challenge is the
limited amount of data and resources for this field since this disease is often endemic to
developing countries.

Even with these difficulties, the ongoing antimalarial research, combined with the
constant advances in technology and computational tools, provides an excellent outlook for
developing new antimalarial agents. With the availability of high-performance computing
facilities, computational and ML methods, and new AI tools, more and larger data sets can
now be produced and/or analyzed for malaria. Current pharmaceutical research, both
in academia and the industry, also often integrates computational and wet lab tools. For
example, ML algorithms can help produce models that can predict drug properties and
activities, as well as optimize potential leads. AI tools can then be used to analyze immense
amounts of data, facilitating the identification or design of new antimalarial hits. These data
analytics tools are best utilized when the drug discovery process is still in the early stage
and the number of potential drug targets needs to be reduced greatly. Once the number
of compounds is manageable, which is highly dependent on the available computational
resources, molecular docking techniques can be employed to predict the binding affinity of
the compounds to the protein target. The binding stability of the docked conformations can
then be assessed using MD simulations. Furthermore, drug transport in the bloodstream
can be predicted by docking compounds to serum albumin, followed by MD simulations.
In general, computational tools help expedite the drug discovery process by identifying
which compounds are to be prioritized for the expensive experimental assays, allowing for
more rational use of resources.

Overall, the future of antimalarial drug discovery research is positive. With continued
resource investment and advances in research technologies, there is hope that several novel
and highly effective antimalarial drugs can be discovered, designed, and developed in the
following years to help alleviate the global burden of malaria.
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