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Abstract: Agricultural plants are continuously exposed to environmental stressors, which can lead to
a significant reduction in yield and even the death of plants. One of the ways to mitigate stress impacts
is the inoculation of plant growth-promoting rhizobacteria (PGPR), including bacteria from the genus
Azospirillum, into the rhizosphere of plants. Different representatives of this genus have different
sensitivities or resistances to osmotic stress, pesticides, heavy metals, hydrocarbons, and perchlorate
and also have the ability to mitigate the consequences of such stresses for plants. Bacteria from the
genus Azospirillum contribute to the bioremediation of polluted soils and induce systemic resistance
and have a positive effect on plants under stress by synthesizing siderophores and polysaccharides
and modulating the levels of phytohormones, osmolytes, and volatile organic compounds in plants,
as well as altering the efficiency of photosynthesis and the antioxidant defense system. In this review,
we focus on molecular genetic features that provide bacterial resistance to various stress factors as
well as on Azospirillum-related pathways for increasing plant resistance to unfavorable anthropogenic
and natural factors.

Keywords: Azospirillum; stress; hydrocarbons; heavy metals; phytopathogens; pesticides; perchlorate;
drought; salinization

1. Introduction

Farming is a risky industry, the result of which largely depends on environmen-
tal factors. Agricultural plants are regularly exposed to a variety of stress factors. This
may be drought, infection by pathogenic micro-organisms, growth on saline soils or on
soils contaminated with hydrocarbons, heavy metals, pesticides, radioactive elements,
or perchlorate. One of the ways to reduce the stress impact on plants and increase their
productivity is the use of plant growth-promoting rhizobacteria (PGPR) [1]. PGPR are
the rhizosphere bacteria that can enhance plant growth via a wide variety of mechanisms,
such as phosphate solubilization, siderophore production, biological nitrogen fixation,
rhizosphere engineering, the production of 1-Aminocyclopropane-1-carboxylate deami-
nase (ACC), the quorum sensing signal interference, the inhibition of biofilm formation,
phytohormone production, exhibiting antifungal activity, the production of volatile or-
ganic compounds, the induction of systemic resistance, promoting beneficial plant–microbe
symbioses, interference with pathogen toxin production, etc. [2,3].

Depending on the degree of association of bacteria with plant root cells, PGPR can
be divided into extracellular plant growth-promoting rhizobacteria (ePGPR) and intra-
cellular plant growth-promoting rhizobacteria (iPGPR) [4]. ePGPR includes such genera
as Agrobacterium, Arthrobacter, Azotobacter, Azospirillum, Bacillus, Burkholderia, Caulobac-
ter, Chromobacterium, Erwinia, Flavobacterium, Micrococcus, Pseudomonas, and Serratia [5].
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iPGPR includes endophytes (Allorhizobium, Azorhizobium, Bradyrhizobium, Mesorhizobium,
and Rhizobium) and Frankia species [6].

Microbial inoculants consisting of PGPR are the most widely used in Latin America,
Southeast Asia, and Africa, where inoculated seeds are sown on a large scale, with mil-
lions of hectares of Fabaceae (e.g., soybean or bean) and Poaceae (e.g., maize, sorghum, or
wheat) inoculated through PGPR, belonging mainly to the genera Bacillus, Paenibacillus,
Pseudomonas, or Azospirillum [7]. Each of the most commonly used genera is most effective
in some way for plant growth promotion: phytohormone production (e.g., Azospirillum
spp., Pseudomonas spp.), phosphate dissolution (e.g., Bacillus spp.), or biological control
(e.g., Pseudomonas spp., Bacillus spp.) [8].

A number of reviews on the use of bacteria from the genera Bacillus [9–16], Paenibacil-
lus [17,18], and Pseudomonas [19–21] for plant growth promotion have been published in
the last decade. In particular, the role of these bacteria in the protection against biotic and
abiotic stresses [9,12,19] and molecular mechanisms that determine their interactions with
plants [14,15,21] were considered.

As for bacteria from the genus Azospirillum, the last review on the molecular basis of
the interaction of the representatives of this genus with plants was published in 2012 [22]. In
2019, a review was published on the use of Azospirillum as inoculants in crop plants [8], but
it focused more on the effectiveness of using commercial inoculants in different countries
rather than the molecular mechanisms of their effect on plants. In 2018, a review was
published on the role of azospirilla in the protection against biotic stress as well as two
types of abiotic stress, namely osmotic and oxidative [23]. In this review, we describe
the role of azospirilla in mitigating stress in plants caused by hydrocarbons, perchlorate,
radiation, heavy metals, and pesticides and add information about the latest data on the
mechanisms of biotic and osmotic stress mitigation.

2. Bacteria from the Genus Azospirillum

The genus Azospirillum currently includes 28 species, 24 of which have validly pub-
lished names (https://lpsn.dsmz.de/genus/azospirillum accessed on 25 April 2023). Most
azospirilla species were isolated from the soil or plant rhizosphere, although individual
species were isolated from water bodies, oil-producing mixtures, discarded tar, fermented
cattle products, fermenter, microbial fuel cells, and karst caves.

Azospirillum is one of the most studied genera of PGPR, and species of this genus are
recognized as biofertilizers due to their ability to stimulate plant growth and productiv-
ity [24]. Bacteria of this genus are resistant to many types of biotic and abiotic stress and are
also capable of activating plant defense mechanisms upon inoculation into the rhizosphere,
increasing crop yields in stress conditions (Table 1).

Table 1. Influence of inoculation with Azospirillum strains on the yield of agricultural plants under
stress.

The Crop Stress Type Azospirillum Species The Percentage of Improved
Growth or Yield Reference

wheat arsenic A. brasilense

plant height 2.36–3.21%
spike length 11.42–22.19%
number of spikelets per spike
4.46–6.60%
number of grains per spike
4.67–5.69%
1000 grain weight 5.17–9.63%
grain yield per plant 3.42–17.6%

[25]

arabidopsis cadmium A. brasilense shoot fresh weight about 100% [26]

https://lpsn.dsmz.de/genus/azospirillum
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Table 1. Cont.

The Crop Stress Type Azospirillum Species The Percentage of Improved
Growth or Yield Reference

pak choi cadmium A. brasilense biomass 26–255% [27]

barley cadmium A. lipoferum root biomass 22.22%
root elongation 12.5% [28]

pak choi cadmium A. brasilense shoot biomass 16.2%
root biomass 12.2% [29]

cucumber copper A. brasilense
root weight 55.32%
root length 73.65%
root tips 35.85%

[30]

tomato
Pseudomonas syringae pv.
tomato, the causal agent of
bacterial speck on tomato

A. brasilense dry weight about 100% [31]

tomato
Pseudomonas syringae pv.
tomato, the causal agent of
bacterial speck on tomato

A. brasilense dry weight 7.81–28.79% [32]

green gram nematode disease A. lipoferum
shoot length 10.26%
fresh weight 18.28%
dry weight 18.45%

[33]

cherry tomato

Clavibacter michiganensis
subsp. michiganensis
(bacterial canker),
Xanthomonas campestris pv.
vesicatoria (bacterial spot)

A. brasilense and
Azospirillum sp. BNM-65

leaves 32–43%
shoot height 12–143%
shoot dry weight 81–107%
root dry weight 37–80%

[34]

teosinte
fungal diseases caused by
Alternaria, Bipolaris and
Fusarium

A. brasilense total dry mass from −8.6 to
73.0% [35]

komatsuna radioactive 137Cs Azospirillum sp. strain TS13 dry weight 40–51% [36]

wheat drought A. lipoferum wheat yield up to 109% [37]

arabidopsis drought A. brasilense
rosettes diameter 7.7%
rosettes DW 86.21%
seed yield 328.66%

[38]

maize drought A. brasilense total biomass 26% [39]

maize drought A. lipoferum height 35.33–43.89% [40]

coriander salinization A. brasilense and Azotobacter
chroococcum

grain yield 11.6%
stem fresh weight 11.3%
stem dry weight 17.2%
total plant fresh weight 6.1%
total plant dry weight 10.2%

[41]

flax salinization A. brasilense

shoot length 16.5%
root length 36.6%
fresh weight of shoot 17.07%
dry weight of shoot 13.43%
fresh weight of root 57.7%
dry weight of root 78.6%
number of leaves 10.5%

[42]

white clover salinization A. brasilense shoot height 57.8–70%
root length 58.82–70.85% [43]

tomato salinization A. brasilense root biomass 118% [44]
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Azospirillum Response to Stress

The stress response in many bacteria is activated via the extracytoplasmic function
σ factors (ECF). Due to their diversity and relative simplicity of the mechanism of action,
they stand out as a versatile and powerful bacterial tool for the effective activation of
stress responses [45]. They are subunits of the RNA polymerase holoenzyme required for
transcription initiation. ECFs belong to group IV σ factors and consist of two domains,
σ2 at the N-terminus and σ4 at the C-terminus. Upon transcription initiation, σ2 binds
to the −10-box in the promoter, while σ4 binds to the −35-box, and two-stranded DNA
begins to melt in the−10-box. ECF activity can be regulated through anti-σ factors, through
serine/threonine protein kinases, and through C- and N-terminal extensions. In addition,
some ECFs may be regulated only by controlling their production at the transcriptional
level [45].

The regulation of the stress response in the representatives of the genus Azospirillum
was studied using the strains of the species A. brasilense. It was shown that adaptation
to many types of stress is mediated through ECF, which can be regulated by anti-sigma
factors (Figure 1). The role of ECF, known as RpoE or σ E, in the adaptation to salt, ethanol,
and methylene blue stress was shown for A. brasilense Sp7 [46].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 21 
 

 

Azospirillum Response to Stress 
The stress response in many bacteria is activated via the extracytoplasmic function σ 

factors (ECF). Due to their diversity and relative simplicity of the mechanism of action, 
they stand out as a versatile and powerful bacterial tool for the effective activation of stress 
responses [45]. They are subunits of the RNA polymerase holoenzyme required for tran-
scription initiation. ECFs belong to group IV σ factors and consist of two domains, σ2 at 
the N-terminus and σ4 at the C-terminus. Upon transcription initiation, σ2 binds to the 
−10-box in the promoter, while σ4 binds to the −35-box, and two-stranded DNA begins to 
melt in the −10-box. ECF activity can be regulated through anti-σ factors, through ser-
ine/threonine protein kinases, and through C- and N-terminal extensions. In addition, 
some ECFs may be regulated only by controlling their production at the transcriptional 
level [45]. 

The regulation of the stress response in the representatives of the genus Azospirillum 
was studied using the strains of the species A. brasilense. It was shown that adaptation to 
many types of stress is mediated through ECF, which can be regulated by anti-sigma fac-
tors (Figure 1). The role of ECF, known as RpoE or σ E, in the adaptation to salt, ethanol, 
and methylene blue stress was shown for A. brasilense Sp7 [46]. 

 
Figure 1. Scheme of ECF regulation in Azospirillum. (A) Inactive state. ECF is associated with the 
anti-sigma factor. (B) Active state. The σ 2 domain binds to the promoter at the −10 box and the σ4 
domain at the −35 box. DNA begins to melt from the −10 to the start codon. 

The synthesis of carotenoids in response to stress in A. brasilense is regulated by ECF 
rpoE, which, in turn, is regulated by the anti-sigma factor chrR [47,48]. Kumar et al., 2012, 
showed that ECF RpoH2 controls the response to photooxidative stress in A. brasilense 
[49]. Gupta et al., 2014, showed that A. brasilense contains two redox-sensitive zinc-binding 
anti-sigma factors (ZAS) (ChrR1 and ChrR2), which negatively regulate the activity of 
their related ECFs (RpoE1 and RpoE2), blocking their binding to bovine enzyme. At the 
same time, two A. brasilense ZAS anti-σ factors also interact with their unrelated ECFs and 
affect gene expression [50]. 

Figure 1. Scheme of ECF regulation in Azospirillum. (A) Inactive state. ECF is associated with the
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domain at the −35 box. DNA begins to melt from the −10 to the start codon.

The synthesis of carotenoids in response to stress in A. brasilense is regulated by ECF
rpoE, which, in turn, is regulated by the anti-sigma factor chrR [47,48]. Kumar et al., 2012,
showed that ECF RpoH2 controls the response to photooxidative stress in A. brasilense [49].
Gupta et al., 2014, showed that A. brasilense contains two redox-sensitive zinc-binding
anti-sigma factors (ZAS) (ChrR1 and ChrR2), which negatively regulate the activity of their
related ECFs (RpoE1 and RpoE2), blocking their binding to bovine enzyme. At the same
time, two A. brasilense ZAS anti-σ factors also interact with their unrelated ECFs and affect
gene expression [50].
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ECF RpoH2 in A. brasilense regulates the use of ethanol as an additional carbon source
when growing on fructose or glycerol [51]. Pandey et al., 2022 described a new ECF RpoE7-
RpoH3 regulatory cascade that negatively regulates ampicillin resistance in A. baldaniorum
Sp245 by controlling the expression of β-lactamase and lytic transglycosylase [52].

Authors also paid attention to ECF-encoding genes in works on the sequencing and
analysis of the genomes of azospirilla. The genome of A. brasilense Sp7 encodes one home
and twenty-two alternative ECFs, consisting of ten RpoE, five RpoH, one RpoN, and six
FecI sigma factors [53]. Fourteen rpoE genes and five rpoH genes were found in the genome
of A. brasilense Az19 [54].

3. Azospirillum Participation in Plants’ Defense against Stress Factors
3.1. Hydrocarbon Pollution

Hydrocarbons are the largest group of organic pollutants. The increasing dependence
of humanity on fossil fuels, especially petroleum hydrocarbons, has led to the pollution
of agricultural lands through the spillage of crude oil during extraction and processing
operations in many oil producing countries [55]. These hydrocarbons are highly resistant,
can accumulate in plants, as well as in humans and animals, and exhibit carcinogenic and
neurotoxic properties [56]. One of the ways to effectively remove hydrocarbons from the
soil is microbial biodegradation.

Bacteria from the genus Azospirillum are found in microbial communities that break
down hydrocarbons [57]. There are few data on the ability of individual strains to remove
oil. Some Azospirillum strains have been shown to biodegrade crude oil [58], phenol, and
benzoate [59], as well as polycyclic organic compounds [57,60–64]. Additionally, representa-
tives of the genus Azospirillum were found in biofilms that decompose hydrocarbons [65,66]
and, as part of the microbiome in the maize rhizosphere, bioremediate soil contaminated
with crude oil [67]. It has been suggested that this bacterium appears to enrich biofilms
with nitrogenous compounds known to enhance the microbiological degradation of hydro-
carbons [66].

In addition, two Azospirillum species isolated from oil-bearing samples, A. rugosum [68]
and A. oleiclasticum [24], were described. For the latter species, the ability to biodegrade
crude oil was shown [24].

Thus, the metabolic potential of the genus Azospirillum allows its representatives to par-
ticipate in the biodegradation of hydrocarbons, thereby contributing to the bioremediation
of polluted soil and, consequently, reducing the damaging effect of this pollutant on plants.

3.2. Heavy Metal Pollution

Heavy metals are an essential part of the environment, but in places of active anthro-
pogenic activity, their concentration significantly exceeds the permissible limits, which
adversely affects agriculture [69]. In plants, heavy metal stress has both direct and indirect
effects, including oxidative stress through various indirect mechanisms (e.g., the depletion
of glutathione or its binding to protein sulfhydryl groups) or through the inhibition of
antioxidant enzymes, thereby inducing ROS (reactive oxygen species)-producing enzymes
(for example, NADPH oxidases) [70].

PGPR biostimulants are incredibly effective at reducing heavy metal toxicity in plants.
They inhibit the transfer of heavy metals to various areas of the plant, changing their
mobilization through complexation, precipitation, redox processes, chelation, and adsorp-
tion [71–73]. In addition, rhizospheric bacteria produce extracellular polymeric substances
(EPS) [74,75], such as polysaccharides, glycoproteins, lipopolysaccharides, and soluble
peptides, which contain many anion binding sites, and thus contribute to the displacement
or recovery of heavy metals from the rhizosphere through biosorption [76].

Bacteria from the genus Azospirillum are able to tolerate high concentrations of heavy
metals: arsenic [77–79], cadmium [26,27,80], copper [81], and lead [80]. Moreover, bacteria
can reduce the negative effects of heavy metals on plants growing in contaminated soil
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(Figure 2). Vezza et al., 2019, showed that arsenic-resistant genes can mediate the redox
transformation of As and its displacement outside the cell [77].
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Figure 2. Heavy metals, such as iron, arsenic, copper, cadmium, zinc, and lead, have negative effects
on plant growth and vitality. However, at the same time, certain Azospirillum strains can be resistant
to these metals. Azospirillum produces antioxidants that neutralize oxidative stress induced by heavy
metals. Azospirillum also promotes the transport of heavy metals from plant cells, preventing its
intracellular accumulation. In addition, Azospirillum produces plant hormones that promote the
formation of photosynthetic pigments. Together, the reduction of oxidative stress, the removal of
metals from plants, and the synthesis of photosynthetic pigments contribute to an increase in plant
resistance to heavy metal stress.

Peralta et al., 2021, showed different effects of different strains of A. brasilense on the
content of photosynthetic pigments in maize in the presence of arsenic: strain CD caused
their significant decrease, while strain Az39 did not affect their amount [82]. The use of
A. brasilense as biological additives reversed the effects of arsenic toxicity by increasing
wheat plant growth rate, leaf area, and photosynthesis, and yield [25]. Additionally, the
co-inoculation of soybean seeds with the bacteria Bradyrhizobium japonicum E109 and A.
brasilense Cd had a positive effect on nodule formation, photosynthetic pigment content,
and antioxidant system activity, as well as a significant reduction in the accumulation of
arsenic in plant tissues exposed to AsV and AsIII [77].

It has been shown that bacteria from the genus Azospirillum, alone or in combination
with another rhizosphere bacterium, Bacillus subtilis, are able to reduce cadmium toxicity
for arabidopsis, pakchoi, and barley [26–29]. A decrease in the concentration of cadmium
in plants and an increase in the biomass of shoots occurred due to an increase in the
concentration of abscisic acid (ABA) [26,27,29]. The action of ABA was mediated through
IRT1 (IRON-REGULATED TRANSPORTER 1) [26]. A decrease in the level of cadmium
toxicity for plants could also be due to a decrease in oxidative stress and an increase in the
activity of antioxidant enzymes [29].
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Bacteria from the species A. brasilense are able to reduce copper stress in wheat [81],
cucumber [30], and an algae Chlorella sorokiniana [83] by activating antioxidant defense
enzymes. Moreover, it has been shown for wheat that the copper content in plants increases
upon inoculation with azospirilla but its toxicity decreases [81]. For Chlorella sorokiniana, it
has also been shown that inoculation with azospirilla increases the content of chlorophyll
due to the secretion of IAA (indoleacetic acid) [83]. The ability of bacteria from the genus
Azospirillum to produce auxin affects the accumulation of zinc and iron in corn in different
ways: a low ability of azospirilla to produce auxin leads to an increase in the zinc content
in plants and a high ability leads to an increase in the iron content [84].

Thus, several main mechanisms of reducing the toxicity of heavy metals to plants by
bacteria from the genus Azospirillum can be identified: through a decrease in oxidative
stress, through an increase in the activity of antioxidant enzymes and the amount of
photosynthetic pigments, and through the regulation of the amount of phytohormones.

3.3. Infection of Plants with Phytopathogens

Plant pathogens have a negative impact on the marketable yield (i.e., quality and
quantity) of agricultural products, with an adverse impact on the economy. Approximately
14% of crops worldwide are killed by disease, and worldwide crop losses can be as high as
20–40% in sensitive strains [85]. In this regard, the issue of protecting agricultural plants
from pathogens is of great importance.

Traditional methods of controlling plant pathogens include implementing good agri-
cultural practices that prevent further infestation; the physical destruction of infected plant
tissues; the use of chemicals, such as pesticides and antibiotics, to fight bacterial infections;
the development of genetically modified plants resistant to pests and pathogens; and the
use of bacteriophages [85].

In addition to the above methods, the PGPR inoculation of agricultural plants has been
actively used in recent years to reduce the negative effect of phytopathogens. In particular,
the bacteria of the genus Azospirillum have been shown to be capable of the biological
control of phytopathogens [31–34,86]. This may be due to the synthesis of siderophores
that limit the availability of iron (Fe) to phytopathogens [86] or the induction of changes
in the host plant metabolism, which increases plant resistance to pathogen infection—the
induced systemic resistance (ISR) [23].

Siderophores are compounds with low molecular weight (<1500 Da) and high iron
affinity that allow soil micro-organisms to bind and dissolve ferric iron in iron-poor envi-
ronments. The conversion of iron into an available form and the subsequent increase in
the uptake of the available form of iron by plants can lead to the prevention of the growth
of soil pathogens due to iron deficiency. Siderophores vary greatly in chemical structure;
however, they can be divided into two main groups, namely catechols and hydroxamates,
according to the chemical group involved in iron(III) chelation [86].

Among the catechols, salicylic acid (SA) has received particular attention, because
it can be active in pathogen biocontrol in two ways. On the one hand, it can act as a
siderophore, reducing the availability of iron in an environment with a low iron con-
tent [87], and on the other hand, it can act as a signal molecule that triggers a systemic
response of plant resistance to pathogens [88]. It is the synthesis of catechol siderophores,
including SA, that allows A. brasilense to exhibit antifungal activity against Colletotrichum
acutatum, the causative agent of anthracnose, and reduce its negative effect on straw-
berry plants [86]. Additionally, the synthesis of siderophores via the bacterial strains of A.
brasilense is able to determine the resistance of the teosinte plant (Zea mays L. ssp. mexicana)
to the phytopathogenic fungi Alternaria (causative agent of Alternaria), Bipolaris (causative
agent of helminthosporiasis), and Fusarium (causative agent of Fusarium) [35].

Another form of Azospirillum limitation regarding the development of phytopathogens
is the induction of systemic resistance in plants. Plant systemic resistance can be divided
into ISR and systemic acquired resistance (SAR) induced by non-pathogenic microbes and
pathogenic microbes, respectively [89,90]. Colonization with beneficial microbes induces
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a physiological state of the host plant called “priming”. When “priming” is activated,
plants exhibit stronger and faster defense responses against the subsequent pathogen
invasion [91].

The classic difference between ISR and SAR, adopted in 1996, is the type of activated
signaling pathway. For ISR, these are the jasmonic acid (JA) and ethylene (ET) pathways,
and for SAR, these are the SA pathway and the activation of PR (pathogenesis-related)
proteins [92]. However, there have been numerous reports of the activation of both the
SA and JA/ET signaling pathways in ISR triggered by beneficial microbes [91]. As for PR
proteins, the activation of PR1, PR2, and PR5 depends on SA signaling, while PDF1.2, as
well as the PR3 and PR4 genes, are activated via an SA-independent and JA-dependent
pathway [93].

In the SA pathway, the activation/repression of PR genes is mediated by NPR1 (“non-
expressor of PR-gene1”, related to the plant’s defense system). When SA levels are low,
NPR4 (paralog of NPR1) interacts with NPR1, resulting in its degradation. Thus, when SA
levels are high, binding between NPR1 and NPR3 (paralog of NPR1) is increased, which
also leads to the removal of NPR1 [94]. When SA is intermediate, the interaction between
NPR1 and NPR3 is suppressed, resulting in the accumulation of NPR1 and the activation
of SA-dependent protective genes [95].

The major players In the JA pathway are the CORONATINE INSENSITIVE 1 (COI1)
protein, JASMONATE ZIM DOMAIN PROTEIN (JAZ), and MYC. In the absence of stress,
the endogenous level of the active form of JA, isoleucine jasmonate (JA-Ile), is very low in
plants. JAZ repressors bind to MYC2 to inhibit its transcriptional activation on downstream
genes. Under stress conditions, the endogenous level of JA-Ile is activated to a large extent,
which is perceived by the JA-receptor COI1. SKP1/CULLIN/F-box (SCF)COI1 then binds
to JAZ for ubiquitination and degradation via the 26S proteasome pathway, resulting in
the release of downstream transcription factors, such as MYC, and the activation of JA
responses [96].

The classical ET pathway is a linear sequence of the following components: the
ET receptor family; the protein kinase CTR1; the transmembrane protein with unknown
biochemical activity, EIN2; the transcription factors EIN3, EIL and ERF; and the ET response.
In the absence of ET, the receptors activate CTR1, which negatively regulates downstream
signaling [97].

There have been several attempts to identify the signaling pathways leading to the
emergence of systemic plant resistance upon inoculation with bacteria from the genus
Azospirillum. In a study of strawberries (Fragaria ananassa) inoculated with A. brasilense
REC3, Elias et al. (2018) reported increased ET synthesis and the upregulation of genes
associated with ET signaling (Faetr1, Faers1, Faein4, Factr1, Faein2, and Faaco1) [98]. Kusajima
et al., 2018, also showed that A. brasilense induces ISR in rice through the ET pathway [99].
Yasuda et al. (2009) showed that rice plants inoculated with Azospirillum sp. B510 increased
resistance to the pathogenic fungus Magnoporthe oryzae (the causative agent of blast) and
to the bacteria Xanthomonas oryzae (the causative agent of bacterial blight of rice) through
the mechanisms independent of SA signaling, without the accumulation of SA or PR
proteins [100].

However, other studies showed that PR proteins play a role in the formation of
systemic resistance in plants in response to inoculation with azospirilla. A transcriptome
study showed that Azospirillum sp. strain B510 (isolated from cv. Nipponbare) inoculated
into rice induced one and repressed five PR genes, while strain A. lipoferum 4B (isolated
from cv. Cigalon) induced more protection-related genes in rice cv. Nipponbare than in rice
cv. Cigalon [101]. In another study with Arabidopsis thaliana, PR genes were induced when
the plant was inoculated with A. brasilense Sp245 [102]. A study was also conducted using
A. brasilense Ab-V5 and Ab-V6 cells and metabolites, which led to the induction of PR-1
SAR-associated genes and PRP-4 ISR-associated genes [103].

Thus, at present, it is not possible to draw an unambiguous conclusion about the
systemic resistance pathway induced by azospirilla in inoculated plants. Most likely, this
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is a combination of different pathways, and their relationship and regulation needs to be
studied in more detail.

3.4. Pesticide Pollution

The third agricultural revolution, or green revolution, which took place in the second
half of the 20th century, made it possible to significantly increase the productivity of
many agricultural crops. Much of this was made possible through the widespread use
of pesticides [104]. However, only 1% of the pesticide reaches the pest, while the rest
accumulates in soil, water, and air and affects non-target organisms, including agricultural
plants [105]. Pesticides accumulate in the plant body and can target the electron transport
chains in photosystems in chloroplasts [106], inhibit respiratory complexes in mitochondria,
uncouple phosphorylated respiration, damage DNA [107], cause oxidative stress [108],
disrupt the metabolism of polyphenols, reduce the bioavailability of trace elements [109],
and negatively influence rhizospheric bacteria [110].

Data on pesticide toxicity for azospirilla are inconsistent and not abundant. Several
works on this subject were carried out at the end of the 20th century and beginning of the
21st century. In vitro studies showed that methidathion is able to reduce nitrogen fixation,
intracellular ATP levels, and cell growth, while profenophos also inhibits the production
of a number of hormones in A. brasilense [111]. At the same time, terbufos has little effect
on the growth of A. lipoferum on a solid medium, while carbofuran, chlormephos, and
benfuracarb do not affect it at all [112]. Bromopropylate and diazinon are also completely
harmless to A. brasilense [111].

Under field conditions, the population of Azospirillum sp. decreased in vigna treated
with thiram but not in plants treated with carbendazim, Bordeaux mixture, carbofuran,
and phorate. A mixture of thiram and carbofuran and phorate reduced the population of
azospirilla, but after treatment, a gradual accumulation of bacteria was observed in the
rhizosphere [113]. Additionally, the soil isolates of Azospirillum sp. were able to degrade
the pesticide Ethion [114].

In recent years, there has been renewed interest in research on the interaction of
azospirilla and pesticides regarding the joint treatment of cereal seeds before sowing. The
treatment of plant seeds with pesticides Standak™ Top (BASF) (a mixture of insecticide
fipronil and fungicide pyraclostrobin and thiophanate-methyl) and Helicur 250 EW (tebu-
conazole) is known to reduce the survival of Azospirillum bacteria [115,116]. It has been
shown in terms of insecticides (imidocloprid and thiodicarb) and fungicides (triadimenol)
that azospirilla can survive only if the interval between the inoculation of pesticide-treated
seeds and sowing in the soil does not exceed 4 h [117].

Thus, the joint treatment of seeds with azospirilla and pesticides is possible; however,
for each pesticide, it is necessary to choose compatible strains and it is necessary to follow
a certain treatment technology that preserves the viability of the strains used.

3.5. Pollution with Radioactive Elements

There was an attempt to inoculate plants with Azospirillum strains in contaminated soil
in Fukushima for the purpose of bioremediation by translocating radioactive caesium to
the aerial parts of the plants. Despite the positive effects of inoculation, the concentrations
of (137)Cs during their transfer to the tested plants were not very high, and the removal of
(137)Cs from the soil would therefore be very slow [36].

3.6. Perchlorate Pollution

Perchlorate is a persistent pollutant produced by natural and human processes [118].
Perchlorates were shown to easily accumulate in plants [119]. Xie et al. (2014) showed that
the rice plant Oryza sativa L. is easily contaminated with perchlorate and suggested that per-
chlorate can inhibit plant growth [120]. Perchlorates also affect the chlorophyll content and
root systems of Acorus calamus, Canna indica, Thalia dealbata, and Eichhornia crassipes [121]. A
study by Acevedo-Barrios et al. (2018) showed that perchlorate significantly reduced the
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survival of freshwater algae Pseudokirchneriella subcapitata (LC50 = 72 mM) [122]. However,
the exact way in which perchlorate damages the photosystem is unclear [120].

One of the methods for removing perchlorate from ecosystems is microbial degrada-
tion. It is cost effective, easy to implement, and environmentally friendly, making it a viable
method for reducing perchlorate pollution. Perchlorate-reducing bacteria (PRB) reduce
ClO4

− or chlorate (ClO3
−) to chlorite (ClO2

−) with perchlorate reductase (pcrABCD) and
then disproportionate ClO2

− to Cl− and O2 with chlorite dismutase (cld) [123] (Figure 3).
Electron donors for the reduction of perchlorates are often organic compounds such as
methanol and acetate [124,125]. Inorganic donors, such as H2 and S, are also capable of caus-
ing the reduction of perchlorates [126,127]. Moreover, researchers have recently reported
that PRBs are able to reduce perchlorates using methane as an electron donor [128–130].
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The reduction of perchlorate is usually inhibited by the presence of nitrates [125,131],
as some reducing micro-organisms prefer other electron acceptors to perchlorates [132].
To prevent this, donors are added in excess to remove non-perchlorate electron acceptors
before reduction is performed; this is carried out because non-perchlorate electron acceptors
can activate bacteria that do not degrade perchlorate, resulting in inefficient processing.
Oxygen is another inhibitor of microbial perchlorate reduction, as its presence can cause
bacteria to use donors to consume oxygen [132,133]. Research showed that perchlorate
recovery should ideally be performed under facultative anaerobic conditions [134,135].

Azospirillum strains capable of degrading perchlorate have been repeatedly isolated
from samples contaminated with perchlorate. At the same time, they could use ac-
etate [136,137] or hydrogen [138] as electron donors. It was recently shown that in a
batch membrane biofilm reactor, representatives of the genus Azospirillum, along with the
genus Denitratisoma, were the main genera involved in the reduction of perchlorates and
nitrates, and both were able to use NO3

− and ClO4
− as electron acceptors [129].

The ability of bacteria from the genus Azospirillum to biodegrade perchlorate makes it
possible to use them for the remediation of contaminated soils, and therefore, the negative
effect of perchlorate on plants can be reduced.

3.7. Osmotic Stress

Osmotic stress in a plant cell occurs when the concentration of the solvent (water) in
the environment is lower than in the cell. This is possible in two cases: with salinity and
with drought. The physical way to reduce osmotic stress is the synthesis of osmolytes—low
molecular weight organic substances that are soluble in the intracellular environment and
change the properties of biological fluids. The main osmolytes are prolines, soluble sugars,
and glycine–betaine [139].

Proline has very strong moisturizing properties. Its hydrophobic part is able to bind
to proteins, while its hydrophilic part is able to bind to water molecules, allowing proteins
to access more water to increase their solubility and prevent protein denaturation through
dehydration under osmotic stress conditions [140]. Trehalose is a reducing disaccharide.
Under the conditions of drought stress, the intercellular content of trehalose rapidly in-
creases, which blocks the transition of the phospholipid bilayer membrane from the liquid
crystal state to the solid state and stabilizes the structure of proteins, nucleic acids, and other
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biological macromolecules [141]. Betaine is a metabolic intermediate belonging to the water-
soluble alkaloid compounds of quaternary ammonium. It helps to stabilize the structures
and activity of photosynthesis, including protective enzymes, and also helps to maintain
membrane integrity from widespread damage under drought stress conditions [142–145].

Bacteria from the genus Azospirillum are not only capable of mitigating the conse-
quences of osmotic stress for plants, but they themselves have a number of mechanisms of
resistance to osmotic stress.

The mechanism of osmoadaptation was investigated in relatively more detail in A.
brasilense, where glycine–betaine was shown to enhance growth and nitrogen fixation under
salt stress conditions [146]. In addition to betaine, proline was shown to be the predominant
osmolyte at higher salt concentrations [147]. In response to salt stress, a periplasmically
located glycine–betaine-binding protein, a component of the ProU system, is induced,
which is expressed as one of the “early genes” in the process of osmoadaptation. This
protein binds glycine–betaine with a high degree of activity and contributes to its high
intracellular accumulation [148,149]. However, Chowdhury et al., 2007, showed that the
production of exopolysaccharides and cell aggregates is a more consistent physiological
response of A. brasilense to salt stress than osmoprotection through glycine–betaine [150].
Nagarajan et al., 2007, also showed that most of the genes induced by salt stress in A.
brasilense seem to be involved in functions associated with the cell membrane [151].

3.7.1. Drought

Drought stress is one of the major constraints on global agricultural production.
Approximately one third of the Earth’s land area is in arid and semi-arid regions, while most
of the other land areas are often subject to periodic and unexpected climatic droughts. Water
deficit can be fatal to plants and lead to huge social problems and economic losses [152].

Drought stress results in reduced nutrient diffusion, induces the formation of free
radicals that affect antioxidant protection, leads to a decrease in chlorophyll content, and
affects nitrate reductase activity due to the lower uptake of nitrates from the soil [153].
Drought also enhances ET biosynthesis, which inhibits plant growth [154].

PGPR were shown to reduce the negative effects of drought on plants. It may be
due to several factors: the production of phytohormones, such as ABA, gibberellic acid,
cytokinins, and IAA; the ability of PGP bacteria with ACC deaminase enzyme to degrade
plant ET precursor ACC, thereby reducing ET levels in stressed plants; the induction of
systemic tolerance by bacterial compounds though microbe-induced physical and chemical
changes in plants that lead to increased resistance to abiotic stresses; and the synthetization
through bacteria of exopolysaccharides capable of binding Na+ ions [155].

Strains of Azospirillum brasilense are most often used as inoculants among the repre-
sentatives of the genus Azospirillum in studies on the negative drought effects on plants
(Figure 4). Sometimes, they are used in combination with other PGPRs, mycorrhizal fungi,
or zinc or silicon oxide nanoparticles. Studies have also been conducted on A. baldaniorum
Sp245 [156] (previously A. brasilense) and A. lipoferum [157].

Azospirilla are able to increase plant resistance to drought stress through the produc-
tion of auxins [37,158] or through the synthesis of nitric oxide, which acts as a signaling
molecule in the IAA-inducing pathway [159,160]. Auxins, in small concentrations, enhance
root growth and stimulate the formation of lateral roots. Thus, their effect on the plant
leads to an increase in the area of the root system, and therefore, has a positive effect on
water absorption and prevents the occurrence of drought stress [158].
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Figure 4. Drought has a complex negative effect on plants. However, some defense mechanisms are
activated. For example, drought activates ACS (ACC synthase), which catalyzes the formation of ACC
(1-aminocyclopropane-1-carboxylic acid) from SAM (S-adenosyl-L-methionine). Further, ethylene
(C2H4) is formed from ACC by ACO—ACC oxidase. Ethylene, through a variety of mechanisms,
increases plant resistance to drought, but at the same time, limits their growth, which can adversely
affect crop productivity. The bacteria of the genus Azospirillum produce ACC deaminase (dACC),
thereby limiting ethylene synthesis in plants. In addition, they produce ABA and IAA, as well as nitric
oxide, which contributes to the synthesis of IAA. Together, these factors cause the induction of plant
growth even in drought conditions. Azospirillum produces trehalose, which simultaneously promotes
plant growth and increases its resistance to drought. Azospirillum also synthesizes exopolysaccharides
capable of binding Na+ ions.

ABA is considered to be one of the most important growth regulators involved in os-
motic stress signaling and tolerance [161]. ABA accumulates to high levels during drought
stress [162]. Data on the effect of azospirilla on the level of ABA in plants are contradictory.
On the one hand, A. lipoferum has been shown to reduce drought stress through the produc-
tion of ABA and gibberellins [163]. The level of ABA also increased in Arabidopsis plants
inoculated with A. brasilense Sp245 [164]. The production of this hormone by A. lipoferum
increased the concentration of ABA in inoculated maize seedlings (Z. mays), which led to
stomatal closure [38]. However, stomatal closure inhibits photosynthesis, which leads to
the inhibition of plant growth [165].

On the other hand, the inoculation of maize with the A. brasilense strain SP-7 in
combination with the Herbaspirillum seropedicae strain Z-152 under drought conditions led
to a decrease in the expression of the ZmVP14 gene, which is involved in the biosynthesis of
ABA, and a decrease in the level of ABA in the plant. Additionally, in this work, inoculation
caused a decrease in ET levels in corn [39].

One of the ways to stimulate drought resistance in plants through bacteria is to change
the elasticity of root cell membranes [158]. It has been shown that A. brasilense reduces
the membrane potentials of wheat seedlings and the content of phospholipids in cowpea
cell membranes due to altered proton efflux activity [166]. Inoculation with azospirilla
can prevent an increase in the level of phosphatidylcholine and a decrease in the level of
phosphatidylethanolamine in water-deficient conditions in wheat seedlings [167].
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Trehalose [168] and the polyamine cadaverine [169] can be mentioned as signaling
molecules secreted by azospirilla that stimulate drought resistance in plants. Maize inocu-
lation with A. brasilense, which overexpresses the trehalose biosynthesis gene, conferred
drought tolerance on maize and significantly increased plant biomass. A very small amount
of trehalose is thought to move into maize roots and signal pathways for plant stress toler-
ance [168].

Another indicator of a decrease in osmotic stress during drought, namely a decrease
in the amount of proline, was observed when plants were inoculated with bacteria from the
genus Azospirillum [38,39,170]. The inoculation of maize plants with A. lipoferum improved
plant growth by accumulating free amino acids and soluble sugars compared to untreated
plants under drought stress conditions [40].

It was also shown that under drought conditions, inoculation with bacteria from the
genus Azospirillum leads to the activation in plants of enzymatic [157,171–173] and non-
enzymatic [172,174] antioxidant pathways. Bacterial inoculation also led to lower levels of
hydrogen peroxide and lipid peroxidation in plants [170].

The role of polysaccharides in plant adaptation to drought was also shown for mem-
bers of the genus Azospirillum. A. brasilense Sp245 capsule material contains high molec-
ular weight carbohydrate complexes (the lipopolysaccharide–protein complex and the
polysaccharide–lipid complex) responsible for protection under extreme conditions, such
as desiccation. The addition of these complexes to a suspension of decapsulated A. brasilense
Sp245 cells significantly increased survival under drought stress conditions [175].

So, bacteria from the genus Azospirillum are actively used to mitigate the effects
of drought in plants. The mechanism of stress factor mitigation is associated with the
modulation of the level of phytohormones: auxins, ABA, ET, changes in the elasticity of
root cell membranes, changes in the content of osmolytes, the activation of the antioxidant
defense system, and the synthesis of polysaccharides.

3.7.2. Salinization

Salinity affects more than 6% of the world’s total land area (approximately 800 million
hectares of land worldwide) [176]. Soil salinity has increased due to inefficient irrigation,
improper fertilizer application, and industrial pollution [177]. Salinity causes Na+ toxicity
and ionic imbalance and disrupts vital metabolic processes in plant cells, such as protein
synthesis, enzymatic reactions, and ribosome functions [178].

PGPR can mitigate salinity-induced stress in plants through many synergistic mecha-
nisms, including osmotic regulation, the stimulation of osmolyte accumulation and phyto-
hormone signaling, the increase in nutrient uptake, the achievement of ion homeostasis,
the reduction of oxidative stress via enhancing antioxidant activity [179], the increased
synthesis of volatile organic compounds [180], and improved photosynthesis [76].

Representatives of the genus Azospirillum have repeatedly shown their effectiveness in
reducing salt stress in plants. The possibility of their use as inoculants under salinity is due
to the halotolerance of some strains [181,182].

They are used for the inoculation of plants under saline conditions, both alone and
in combination with fungi [183], other PGPBs [41,42,184], and even with phosphogyp-
sum [185].

The softening effect of inoculation can be manifested in the modulation of the concen-
tration of osmolytes in plants. For example, one of the responses of corn to salinity is the
accumulation of a powerful osmolite, i.e., raffinose, in the leaves. The inoculation of plants
with A. brasilense (HM053) resulted in a decrease in the content of raffinose in the leaves
and an increase in the content of sucrose [186]. Inoculation with azospirilla also improves
the content of soluble sugars and proline in plants [42,44] and increases the content of
glycine–betaine [187] under salt stress.

In addition, azospirilla can increase the K+/Na+ ratio in plants [41–43,183,184,188];
increase the content of nitrogen, phosphorus, calcium [183,188], and magnesium [183] in
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the crop; increase the content of nitrates; and reduce the content of chlorides [184], as well
as increase the activity of nitrogenase and phosphatase [183] under salinity.

Additionally, inoculation with azospirilla leads to an improvement in the morpho-
logical characteristics of plants [41–44] and an increase in yield [41,185] and protein con-
tent [42,183] under saline conditions.

Azospirilla also affects the level of oxidative stress in plants under saline conditions.
This results in a decrease in the content of malonic aldehyde [42,43] and hydrogen perox-
ide [42]. Data on the effect of azospirilla on antioxidant defense enzymes under salt stress
are contradictory. They can cause both an increase [41,44,185,187] and a decrease [41,42] in
the activity of antioxidant enzymes.

In most studies, an increase in the content of chlorophylls and carotenoids was shown
when plants were inoculated with azospirilla under salt stress conditions [41,42,185]. How-
ever, Del Amor and Cuadra-Crespo, 2012, showed that the co-inoculation of A. brasilense
and Pantoea diversa on sweet peppers did not affect the photochemical efficiency of photo-
system II and the relative content of chlorophyll but contributed to maintaining a higher
stomatal conductivity; therefore, they concluded that the influence of inoculants on the
response to salinity was due mainly to the stomatal regulation of photosynthesis and not to
the influence on the biochemical limitations of photosynthesis [184].

It was also shown that the most important compounds of secondary metabolism
(phenylpropanoids, alkaloids, and other N-containing metabolites, as well as membrane
lipids) and phytohormones (brassinosteroids, cytokinins, and methyl salicylate) showed
the most pronounced modulation in response to treatment with azospirilla under salt
stress [44]. Thus, the effect that azospirilla inoculation has on plants can be varied, but in
most cases, it leads to the mitigation of salt stress.

4. Conclusions

Understanding the mechanisms of the positive effects of bacteria from the genus
Azospirillum on plants under conditions of biotic and abiotic stress is of great importance due
to the increasingly active use of this bacterial group as bioinoculants of agricultural plants.
In recent years, more and more new Azospirillum strains and species have been described,
each of which has the potential to be an interesting biopreparation for mitigating different
types of stress in plants. Different groups of authors evaluated different plant parameters
during inoculation with azospirilla under stress conditions. In general, the mitigation of
biotic stress was carried out using azospirilla through the synthesis of siderophores and
the induction of systemic resistance in plants, and mitigation of the effects of abiotic stress
was carried out through the modulation of the level of phytohormones, osmolytes, and
volatile organic compounds in the plant and in regard to the efficiency of photosynthesis
and the antioxidant defense system. Increasing the resistance of pests and phytopathogens
to agrochemicals, as well as to global warming, which is leading to higher temperatures
and increased dry periods, results in the need to use stress-resistant inoculants. In the
future, it seems possible to test the ability of the Azospirillum species described in recent
years to reduce the impact of stress factors on plants and to test the use of Azospirillum in
combination with other micro-organisms. This review of the data obtained to date will allow
researchers to facilitate the design of new experiments and accelerate the implementation
of results in practice.
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