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Abstract: Marine collagen (MC) has recently attracted more attention in tissue engineering as a
biomaterial substitute due to its significant role in cellular signaling mechanisms, especially in
mesenchymal stem cells (MSCs). However, the actual signaling mechanism of MC in MSC growth,
which is highly influenced by their molecular pattern, is poorly understood. Hence, we investigated
the integrin receptors (α1β1, α2β1, α10β1, and α11β1) binding mechanism and proliferation of MCs
(blacktip reef shark collagen (BSC) and blue shark collagen (SC)) compared to bovine collagen (BC)
on MSCs behavior through functionalized collagen molecule probing for the first time. The results
showed that BSC and SC had higher proliferation rates and accelerated scratch wound healing by
increasing migratory rates of MSCs. Cell adhesion and spreading results demonstrated that MC had a
better capacity to anchor MSCs and maintain cell morphology than controls. Living cell observations
showed that BSC was gradually assembled by cells into the ECM network within 24 h. Interestingly,
qRT-PCR and ELISA revealed that the proliferative effect of MC was triggered by interacting with
specific integrin receptors such as α2β1, α10β1, and α11β1 of MSCs. Accordingly, BSC accelerated
MSCs’ growth, adhesion, shape, and spreading by interacting with specific integrin subunits (α2 and
β1) and thereby triggering further signaling cascade mechanisms.

Keywords: blacktip shark collagen; mesenchymal stem cells; integrin; marine biomaterials;
extracellular matrix

1. Introduction

Collagen is the principal structural protein in the extracellular matrix (ECM) and
accounts for more than one-third by weight of the human body’s total protein [1]. It is
widely found in the connective tissues, such as skin, bones, tendons, ligaments, cartilage,
and cornea of animals [2]. The collagens represent a superfamily of proteins that includes
type I, II, III, V, and XI [3] and contain a triple helical domain that can activate and maintain
the interaction between cells and the ECM [4]. Previous research demonstrated that
collagen is a useful biomaterial in various fields due to its excellent biocompatibility,
biodegradability, accessibility, and flexibility [5,6]. Nevertheless, because of the existence
of problems, diseases, and religious beliefs, for instance, the application of collagen and
collagen-derived products in terrestrial animals is limited [7]. At present, collagen has
been isolated from various marine organisms [8,9]. Marine-derived collagen has high
biocompatibility, low immunogenicity, easy absorption, and no religious restrictions [10].
Therefore, the biomaterials from marine collagen are a more suitable source than mammal
counterparts in medical tissue engineering applications [11].

Efficacious stem cell-based therapies for tissue engineering and regenerative medicine
require a biomaterial to improve stem cell preservation in injury and orchestrate tissue
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repair [12–14]. Nevertheless, an adequate number of multipotent osteoprogenitors, such
as mesenchymal stem cells (MSCs), is requisite for efficient bone tissue repair [15,16].
Particularly, mesenchymal stem cells interact with their microenvironment that regulates
diverse behaviors such as proliferation, migration, and adhesion [17]. Thus, MSCs are
frequently seeded on biomaterials with collagen [18], and it is imperative that the research
on how potentially feasible collagen biomaterials affect MSCs develop optimal strategies for
MSC expansion and bone tissue regeneration. Over the past years, marine collagen-based
biomaterials based on tissue engineering strategies have been proposed and developed [19,20].

More recently, our studies demonstrated that the marine-derived blacktip reef shark
skin collagen (BSC) has superior physicochemical, structural, and functional properties
and could be a viable material for biomaterial fabrication [21]. Unfortunately, it is still
unclear whether the BSC influences the cell behaviors of MSCs. Therefore, the future
applications of this collagen biomaterial must elucidate the interaction between BSC and
MSCs. Despite the effect of BSC on the osteogenic differentiation of MSCs being significant,
in this study, we were more interested in some short-term cellular interactions prior to
MSC differentiation. We focus on how the BSC affects stem cell proliferation, migration,
adhesion, spreading, and ECM remodeling. Moreover, we also investigated the effect of
BSC on integrin expression on the surface of MSCs in order to try to reveal the possible
profound modulation mechanism in stem cell behavior.

2. Results
2.1. Cell Proliferation and Viability

In the beginning, we explored the effect of diverse collagen on MSC proliferation in
a metrological gradient by CCK-8. The proliferation and viability of MSCs cultured in
collagens are shown in Figure 1. After culturing for 24 h, the pattern of MSC proliferation
was increased with the addition of increasing concentrations of collagens, but the marine
collagen was higher than bovine collagen. However, from 10 µg/mL to 25 µg/mL, SC
showed no statistically significant difference compared with the control, and cell viability
was not substantially enhanced among three collagens at a 10 µg/mL concentration.
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Figure 1. Cell proliferation of MSCs cultured with different concentrations of collagens from blacktip
reef shark skin (BSC), blue shark skin (SC), and bovine (BC) for 24 h. The data represent mean ± SD,
n = 3. *, ** and *** indicate p < 0.05, p < 0.01, and p < 0.001 compared with control, respectively. #,
### indicate p < 0.05, p < 0.001 are significantly different between the two groups.
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Surprisingly, cells cultured in the presence of 50 µg/mL BSC and 200 µg/mL SC
showed a higher proliferative rate compared to bovine collagen. Meanwhile, from 25 µg/mL
to 200 µg/mL, BSC had a higher cell proliferation rate than the control, which indicated
that BSC has the potential to promote MSC proliferation.

2.2. Cell Scratch Wound Healing

The scratch assay was performed to observe cell migration, which is an in vitro test for
the wound healing process. Cells were cultured in the presence or absence of the different
collagens at a concentration of 100 µg/mL and photographed at 0 h, 12 h, and 24 h; the
wound closure rate was calculated as described in the Materials and Methods, and the
results are shown in Figure 2. The behavior of MSCs indicated that collagen potently
induced cell migration by the sides of the wound, gradually filling the gap within 12 h
(Figure 2A). Cell migration across the scratch wound area was significantly enhanced when
treated with the marine collagen group (BSC 12 h: 70.82 ± 1.9, BSC 24 h: 90.56 ± 1.3; SC
12 h: 72.72 ± 2.4, SC 24 h: 85.63 ± 1.14) compared to the control group (12 h: 63.05 ± 3.7;
24 h: 73.89 ± 3.1) within 24 h, as quantified in Figure 2B. Conversely, by treatment with
bovine collagen (12 h: 72.12± 1.09; 24 h: 78.47± 1.59), the differences in cell migration rates
were not remarkable at 24 h, whereas significant effects on wound closure were observed
12 h after treatment compared with the control group.
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Figure 2. Effect of marine collagen on the scratch wound healing. (A) Microscopic images of MSCs
treated with different collagens in the scratch assay. The images were captured at 0, 12, and 24 h
after incubation. (B) Quantitative analysis of the migration area reported as % wound closure. The
data represent mean ± SD, n = 3. **, and *** indicate p < 0.01, and p < 0.001 compared with control,
respectively. Scale bar: 100 µm.



Int. J. Mol. Sci. 2023, 24, 9110 4 of 18

2.3. Cell Adhesion and Spreading

The cell adhesion in the presence of Mg2+ (integrin-mediated) and EDTA (non-divalent
cation specific) was studied with the CCK-8 method. The results indicated that the OD
values generated from the CCK-8 treatment in different collagen coating groups with the
addition of Mg2+ were statistically different. Marine collagen BSC and SC promoted signifi-
cantly higher cell adhesion than the bovine collagen and BSA control group (Figure 3A). It
can be observed that all cell adhesion on marine collagen coating is Mg2+-dependent, and
the adhesion of MSCs on different materials with added EDTA did not significantly differ
from the BSA control group with Mg2+. The results indicated that after the removal of Mg2+

cations by chelation with EDTA or blocking with BSA, the MSCs could not adhere to the
bottom of the plate, and the binding rate of the cells to the substrates was achieved through
Mg2+. This phenomenon suggests that integrins associated with metal ion-dependent
adhesion sites mediate cell adhesion between BSC or SC and MSCs. As anticipated, BSC-
coated surfaces displayed significantly higher cell attachment with increased substrate
concentration, and the process was affected by the affinity of integrin to collagen (Figure 3B).
The promotion of BSC and SC to cell adhesion was also confirmed by the fluorescent cell
images (Figure 3C).
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to determine if the BSC could promote cell spreading (Figure 4). This assay was also con-
ducted in the presence of Mg2+ as the cells were anchored to the collagen. MSCs adhered 

Figure 3. Cell adhesion capacities of marine collagens. (A) High-binding polystyrene 96-well plates
were coated with BSC, SC, and BC at 1 µg protein per well. MSCs were seeded at a density of
8000 cells per well for 6 h. Cell adhesion assays indicated that BSC and SC displayed superior
capacity in anchoring MSCs; ns (not significant) (p > 0.05) indicating non-significant differences in
the presence of 5 mM Mg2+ or 5 mM EDTA in the BSA group. (B) MSCs attachment on increasing
concentrations of BSC coating 96-well plates. (C) The cell nuclei of MSCs were visualized using DAPI
in cell adhesion assays (diagram (A)). The data represent mean ± SD, n = 3. **** indicate p < 0.0001
compared with each other in any groups (A) or between any BSC coating concentration and BSA
(B). Scale bar: 100 µm.

Cells were allowed to spread for 4 h, and cell morphological analysis was performed
to determine if the BSC could promote cell spreading (Figure 4). This assay was also
conducted in the presence of Mg2+ as the cells were anchored to the collagen. MSCs
adhered to the collagen coatings, and their morphology and number were affected by the
presence of different collagen (Figure 4A). MSCs possessed a polygonal morphology on
BSC and SC coatings. Cells of rounded and polygonal morphology were observed in the BC
coating, and the rounded morphology in BSA control indicated that it did not support cell
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spreading. In contrast, there were significant differences between BC and the negative BSA
control in cell area by quantitative analysis (Figure 4B). The BSC significantly increased the
MSCs spreading area to 549.15 ± 35.59 µm2 compared to the control (165.24 ± 20.51 µm2).
Similarly, both the other collagen-coated wells showed cell areas of 343.19 ± 19.95 µm2 and
256.07 ± 35.84 µm2 for SC and BC, respectively, and the results showed a high degree of
cell spreading for all surfaces.
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Figure 4. Effect of treating different collagens on MSCs spreading. (A) High-binding polystyrene
96-well plates were coated with BSC, SC, and BC at 1 µg protein per well. MSCs were seeded at a
density of 25,000 cells per well and allowed to spread for 4 h. The attached cells were fixed with
4% paraformaldehyde, stained with FITC (green) and DAPI (blue), and imaged by fluorescence
microscopy. (B) Cell area quantification for MSCs on different collagen coating wells. The data
represent mean ± SD, n = 3. *, *** and **** indicate p < 0.01, p < 0.001, and p < 0.0001 compared with a
blank group (BSA), respectively. Scale bar: 50 µm.

2.4. Effect of BSC in the Extracellular Matrix

As the molecular structure of collagen is closely related to its biological activity, protein
functionalization may disrupt the protein conformation. It was important to confirm
whether the functionalized BSC molecules probe (AF594-BSC) retained their secondary
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structure and triple helical structure. The protein molecular pattern of BSC is similar
to our previous study, and the fluorescence image of AF-594 succinimidyl ester labeled
BSC showed luminescent α and β chains of type I collagen (Figure 5A). CD spectra of
fluorescently labeled BSC were analyzed relative to BSC and exhibited a preeminent positive
band at 222 nm and a negative band at 198 nm, which is typical of a collagen triple helix
(Figure 5B). The above results showed that the AF594-BSC has the complete collagen triple
helix; AF594 did not change the molecular weight and protein secondary structure of BSC,
which can be used for molecular tracking in the cell system.
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Before the observation, MSC membranes and nuclei were stained green and blue,
respectively, allowing for live monitoring of living cells using fluorescent microscopy
(Figure 5C). The formation and development of the ECM were observed after the cells
were cultured for 6 h and 24 h with the addition of AF594-BSC. Exogenously labeled BSC
was only internalized slightly by MSCs and translocated to ECM networks within 6 h.
However, after 24 h of cell culture in AF594-BSC, the amount of labeled collagen in the
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ECM was significantly higher compared to the 6 h incubation. The binding of BSC to
the cell membrane is gradually integrated into the newly constructed ECM of MSCs and
becomes a component of the extracellular substance.

2.5. Effect of Marine Collagen on MSCs Integrin Expression

There are many different integrins on the surface of MSCs [22]; integrin receptors
that directly bind to collagen, such as α1β1, α2β1, α10β1, and α11β1, were examined. To
determine whether the integrins are involved in cell behavior in MSCs grown on the BSC
coating, the mRNA expression of integrins was evaluated by qRT-PCR (ITGA1, ITGA2,
ITGA10, ITGA11, and ITGB1) and ELISA after 24 h incubation. Real-time PCR analysis of
integrin mRNA showed a relative increase in the number of integrin receptor subunits in
MSCs cultured on BSC collagen fibrils (Figure 6), and each group has statistical significance
compared to the control. In particular, the mRNA expression of subunits α2, α11, and β1
drastically increased (Figure 6), indicating an elevated assemblage of these α subunits
and β1 subunits on the surface of the MSCs. Meanwhile, protein expression of integrin
α2β1 (Figure 7C) and α11β1 (Figure 7D) showed similar statistical differences. While we
observed no difference with the subunit α1 expression within 24 h, other subunits were all
upregulated on SC substrates (Figure 7). According to our results, subunit α10 expression
in MSCs cultured on SC collagen fibrils was significantly higher than in cells cultured on
BSC fibrils and BC fibrils (Figure 6), and similar differences in integrin receptor expression
shown by the ELISA test (Figure 7B).
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Figure 6. Relative mRNA expression levels of integrin receptor subunits were evaluated by qRT-PCR.
ITGA1 (integrin α1), ITGA2 (integrin α2), ITGA10 (integrin α10), ITGA11 (integrin α11), and ITGB1
(integrin β1) expression in mouse mesenchymal stem cells (MSCs) on different collagens after 24 h of
culture. The data represent mean ± SD (n = 3) and were analyzed with two-way ANOVA by Tukey’s
multiple comparisons tests. *, **, *** and **** indicate p < 0.05, p < 0.01, p < 0.001, and p < 0.0001
compared with control, respectively.
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were quantified via ELISA assay using treated MSCs supernatant. The data represent mean ± SD,
n = 3. *, **, and *** indicate p < 0.05, p < 0.01, and p < 0.001 compared with control, respectively.

While there was a relative increase effect in the bovine collagen group, statistical
significance was not attained when compared to the control (Figure 6). However, ELISA
analyses of α2β1 receptor in the cell membrane indicated a significant increase after 24 h
culture on the BC surface (Figure 7B). In summary, compared with bovine collagen and the
control, MSCs cultured on marine collagen showed significantly higher integrin receptors
expression for α2β1, α10β1, and α11β1. These data demonstrate that adhering to BSC and SC
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matrix stimulates integrin expression during the cell behavior regulation of MSCs; bovine
collagen does not seem to promote integrin higher expression to affect stem cell behavior.

3. Discussion

We explored the marine-derived BSC interactions with mesenchymal stem cells and
the influence of cell surface receptors-integrin expression in the present study. The focus
of this study is to observe whether collagen interacts with integrin located on the cell
surface [23–25] and drives specific cellular behaviors, including proliferation, migration,
adhesion, and extracellular matrix remodeling [26]. According to our study, it was found
that marine collagen BSC and SC can efficiently promote MSC proliferation, while mam-
mal collagen BC also had similar results. Compared with the cell viability of the bovine
collagen, the marine collagen was more beneficial for the growth of MSCs, with the highest
cell proliferation of more than twice that of the control. Our early study found that blue
shark skin collagen effectively increased the proliferation rate of differentiated mouse bone
marrow-mesenchymal stem cells [27]. The one reason that BSC may promote MSC prolif-
eration relates to its amino acid composition; it has been reported that collagen-derived
dipeptide proline-hydroxyproline (Pro-Hyp) promoted cell proliferation and hyaluronic
acid synthesis in human dermal fibroblasts [28]. Proline and hydroxyproline are the main
components in BSC [21], and proline is a major amino acid involved in the synthesis of
polyamines, which are key regulators of cell proliferation [29]. Another reason may be
related to collagen-binding integrin. Marine collagen BSC promotes the expression of
integrin on the cell surface by enhancing its affinity with integrin, causing intracellular
growth factor signal transmission and accelerating the progression of cells from the G1
phase to the S phase of the cell cycle [30,31], resulting in the proliferation of MSCs.

The migration and proliferation of mesenchymal stem cells play a pivotal role in
the different stages of bone healing. MSCs migrate to the defect site and later proliferate
and differentiate into osteoblasts and chondrocytes to promote bone formation [32,33].
Cell migration assay results demonstrated that BSC accelerated scratch wound healing by
increasing the migratory rates of MSCs. This might be attributed to the abundant amino
acid residues in BSC providing a nutritional environment to induce MSC migration [9].
In comparison, both marine collagen and animal collagen had an outstanding capacity
to induce MSC migration. The behavior of MSCs in this study indicates cells were first
observed migrating to the scratch gap area, followed by enhanced cell proliferation, and the
results are similar to those obtained in L929 fibroblasts by earlier research [34,35]. Moreover,
the α2β1, α4β1, α5β1, and α11β1 integrins play a key role in recruiting these MSCs to the site
of injury [36]. Kolambkar et al. demonstrated that α2β1 integrin activation by GFOGER-like
sequences in collagens, a peptide sequence in the collagen triple helix, increased MSC
migration in vitro [37].

Cell adhesion and spreading analysis suggested that marine collagen had a better
capacity to adhere and anchor MSCs than bovine collagen and BSA control. Subsequently,
in the determinization of the BSC adhesion effect of gradient concentration, BSC wells
retained more MSCs compared to BSA blocking wells, further confirming the increased
concentration could lead to the superior cell adhesion capacity of the BSC surfaces. Short-
term cell morphological observations suggested that the wells coated with marine collagen
or bovine collagen all demonstrated their spreading capacity. It is evident from the cell area
measurement data that MSCs possessed a large cell spread area on the BSC and SC surfaces.
We can determine that MSCs are directly bonded to the BSC surface by integrin receptors
and influence cell morphology. Since the tests were carried out in the absence of serum
in the cell media, the possibility of bridging between the collagen and the cells by serum
proteins such as fibronectin and vitronectin was eliminated [38–40]. Indeed, the reasons
for the distinct adhesion and spreading capacity of MSCs on the three collagen surfaces
might be a consequence of differences in the exposure of cell adhesion sequences in these
substrates [41]. Integrins bind to a series of motifs within collagen, which often contain a
specific GxOGEx’ similar motif where x is a hydrophobic residue and x’ is usually arginine
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(R) [42,43]. For instance, the GFOGER motif we mentioned above has been identified as
what remains the highest-affinity triple helical ligand for α2β1 [44]. Furthermore, GLOGER
was proved to be a higher affinity selective ligand for α1β1 [45], and other similar sequences
occur in specific loci within the D-periods of collagen type I fibers [43]; they are generally
GAOGER or GMOGER, a previously proposed recognition sequence [46,47]. Besides, the
BSC and SC retained their native triple helix structures upon the surface of plates resulting
in a greater higher affinity towards cell integrin receptors in comparison to the bovine
collagen. Therefore, BSC showed greater adhesion activity due to cell adhesion to GxOGEx’
motifs being dependent upon a complete triple-helical conformation [41]. Analyses of MSC
morphology showed there might be some cell signaling stimulated by collagen that led
to the cell spread area increasing. Hence, integrin-mediated cell engagement with BSC
can induce signaling cascades that control cell spreading processes. Overall, these results
demonstrate that integrin-collagen interactions can profoundly influence MSCs’ adhesion,
shape, and spreading.

We have developed a functionalized BSC molecule probe for visualizing and tracking
collagen molecules in live cell culture. Early [48] and recently [49], similar work also pro-
vided useful information for our research. There were many finely punctate distributions
of AF594-BSC on the cell surface within 6 h and fluorescent collagens were generally not
evident in the extracellular matrix at this time. By 24 h, an intricate extracellular matrix
network developed at the surface of MSCs under cellular control. The reassembly of BSC
in the extracellular matrix was intimately associated with α2β1 integrin-mediated cell-
ECM interactions [50], although fibronectin may also be involved in extracellular matrix
remodeling [51]. A previous study indicated that collagen deposition was dependent on
fibronectin and enhanced by integrins α2β1 and α11β1 [52]. Nevertheless, our current
observations here suggest that BSC can be localized in the extracellular matrix within
the cellular microenvironment, where collagen-integrin binding is present at those sites
with strong fluorescence. Hence, collagen interactions with cell surface integrin receptors
control many cell processes, including modulating cell adhesion, cell migration, and ECM
assembly or remodeling [53].

Based on these results, we speculate that the specific cell behavior of MSCs may
be induced by the collagen-integrin interplay and the intracellular signaling cascades.
We report that MSCs expressed high amounts of integrin α1β1, α2β1, α10β1, and α11β1
observed by ELISA (protein level) and qRT-PCR (mRNA level) in the presence of BSC.
Furthermore, we also found that the expression of three integrins significantly increased
at the mRNA or protein level in MSCs grown on the BC treatment. The present work
seems to indicate that integrin α2β1 and α11β1 were the key factors for the modulation
of cellular behavior due to the expression in MSCs being statistically significantly higher.
The α2β1 and α11β1 integrins that bind to collagen play a pivotal role in the survival and
proliferation of MSCs [36]. Moreover, integrin α2β1 has been demonstrated to improve MSC
proliferation in vitro [54]. In contrast, integrin α1β1 has often been reported to play a major
role as a modulator of mesenchymal proliferation and differentiation [55]. Integrin α10β1
shows a distribution that is restricted to mesenchymal stem cells and chondrocytes [56]
compared to the α1β1 and α2β1 being widely expressed on cells in contact with basement
membranes [22,55,57]. The expression of integrin α10 can be upregulated by fibroblast
growth factor 2 [56,58] to control the migration of MSCs [59]. Whereas Wenke et al. proved
the expression of integrin α10 plays a role in the migration of malignant melanoma cells [60].
It is interesting to note that integrin α10β1 was extremely significantly upregulated on SC
substrates, which might lead to promoting the migration of MSCs via the binding of integrin
and collagen. Similarly, the α11β1 as a multifunctional integrin was also involved in cell
migration [61,62], and the integrin α11 I domain recognizes the triple-helical GFOGER
sequence present in type I collagen as well as the GLOGER motif [46,63]. In general,
integrin α2β1 and α11β1 overexpression can promotes the adhesion of type I collagen to
cells [42]. However, the function of integrins might be regulated by different factors such as
expression level on the cell surface and conformation of heterodimers (expressed in active
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form or inactive form). At the same time, the activation and interaction of integrins by
collagen are highly influenced by the amino acid composition and denaturation temperature
of shark collagen and bovine collagen.

Based on previous research and the present results, we conclude that blacktip reef
shark skin-derived collagen-integrin interplay might be involved in the regulation of
cellular behavior, including migration, proliferation, adhesion, morphogenesis, and ECM
remodeling (Figure 8). In the present study, the better activity of marine collagen compared
to bovine collagen in MSCs growth, wound closure, and integrin’s interaction could be
due to the partial degradation of shark collagen during cell culture at 37 ◦C since the
denaturation temperature of shark collagen, in general, was less than 30 ◦C [27]. It is
well evidenced that the specific amino acid residues such as Gly-Pro-Hyp released from
denatured collagen could improve the biological response of collagen. Although our
findings cannot fully demonstrate the profound mechanisms that BSC-integrin binding
modulates cell behavior in the cellular microenvironment, future studies could further
elucidate the in-depth signaling mechanism of BSC, and it would be a valuable biomaterial
candidate for regenerative medicine and therapy.
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4. Materials and Methods
4.1. Chemicals and Materials

Blacktip reef shark skin-derived collagen (BSC) and blue shark skin-derived collagen
(SC) were extracted and characterized according to our previous reports [21,27]. Bovine
collagen (BC) (undenatured) was purchased from Shanghai Yuanye Bio-Technology Co.,
Ltd. (Catalog No. S12007, Shanghai, China) and was used as a reference. Dual Color
protein standard marker (Catalog No. 1610374), 4× Laemmli Sample Buffer (Catalog No.
1610747), and 10× Tris/Glycine/SDS (Catalog No. 1610732) were purchased from Bio-Rad
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Laboratories Inc. (Hercules, CA, USA). The 5 mM EDTA solution was purchased from
Beijing Solarbio Science & Technology Co., Ltd., (Beijing, China). The 0.25% trypsin-EDTA
(1×), penicillin/streptomycin (p/s), fetal bovine serum (FBS), and phosphate-buffered
saline (PBS, pH 7.4, 1×) were purchased from Thermo Fisher Scientific (Gibco, Waltham,
MA, USA). Unless stated otherwise, all reagents were purchased from Sigma-Aldrich
Corporation (St. Louis, MO, USA).

4.2. Preparation of Collagen-Coated Plates

For the cell proliferation assay, 96-well cell culture plates (3599, Corning, CA, USA)
were coated with different concentrations of BSC, SC, and BC in double distilled water, and
the plates were air dried below 25 ◦C. For relative mRNA expression and protein levels of
integrin receptor subunits detection, 6-well cell culture plates (3516, Corning, CA, USA)
were coated with different collagens, and the drying method is as described above. All
plates are sterilized under UV light for 2 h before use. The collagen-coated plates were
used in all the experiments except in vitro scratch assay and ECM remodeling tests.

4.3. Mouse Bone Marrow-Derived MSCs Culture

Mouse bone marrow-derived MSCs were purchased from Shanghai Zhong Qiao Xin
Zhou Biotechnology Co., Ltd. (Shanghai, China) and cultured in mesenchymal stem cell
medium (MSCM, Shanghai QiDa Biotechnology Co., Ltd., Shanghai, China) containing 10%
FBS, 1% p/s, and 1% mesenchymal stem cell growth supplement (MSCGS), and maintained
at 37 ◦C in a 5% CO2 incubator (BB 150, Thermo Fisher Scientific, Waltham, MA, USA).
Subsequently, the medium was refreshed every 2 days. When they reached approximately
80% confluence, the cells were detached by trypsinization with 0.25% trypsin-EDTA. The
cells from the third to fifth passages were used for the following experiments.

4.4. Cell Proliferation Assay

Cell proliferation was evaluated using a Cell Counting Kit-8 (CCK-8; M4839, AbMole,
Houston, TX, USA) according to the manufacturer’s instructions. Briefly, a 96-well cell
culture plate, mentioned in 4.2, was precoated with the final concentration of 10, 25, 50, 100,
or 200 µg/mL collagens, 200 µL solution or suspension (for insoluble collagen type I) per
well, respectively. Then, MSCs were seeded in 96-well plates with 5 × 103 cells/well with
200 µL of serum-free MSCM (only supplemented with 1% penicillin/streptomycin and 1%
MSCGS) and incubated for 24 h at 37 ◦C humidified with 5% CO2. After incubation, the
medium was removed, cells were rinsed using PBS, then 100 µL medium containing 10%
CCK-8 reagents was added to each well and incubated for 2 h in a 5% CO2 atmosphere
at 37 ◦C without light. At last, absorbance at 450 nm was measured by a microplate
reader (BioTek, Winooski, VT, USA). The optical density values were used to assess the cell
viability, and control (without adding collagen) was used as the 100% viability group.

4.5. In Vitro Scratch Assay

The effect of marine collagens on the migration of MSCs was determined by scratch
assay. MSCs were cultured in mesenchymal stem cell medium (MSCM, supplemented
with 10% FBS, 1% p/s, and 1% MSCGS) at 37 ◦C in an atmosphere with 5% CO2 before
the test. MSCs were trypsinized after reaching a confluence of 90%, seeded into a 24-well
cell culture plate (3524, Corning, CA, USA) with 5 × 104 cells/well, and then cultured for
24 h. The 100% cell confluence was reached before the scratch assay was performed. A
sterile 200 µL pipette tip was used to make a uniform scratch wound on the monolayer of
cells. The medium with cell debris was removed by washing with PBS three times. The
scratch monolayer cells were treated with serum-free MSCM containing 100 µg/mL sterile
BSC, SC, and BC solution (or suspension). For negative control, cells were cultured in
serum-free MSCM without collagen. The images of scratch closure were captured under an
optical microscope equipped with a camera (Nikon, Tokyo, Japan) at 0 h, 12 h, and 24 h
after incubation with the test collagens. The scratch areas were analyzed by using Image
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J software https://imagej.nih.gov/ij/index.html (Wayne Rasband, Bethesda, MD, USA),
and the wound closure rate (%) was calculated according to the Equation as follows.

Wound closure(%) =
Area between cells at 0 h−Area between cells at specified time

Area between cells at 0 h
× 100%

4.6. Cell Adhesion Analysis

For cell adhesion studies, a high-binding polystyrene 96-well plate (3361, Corning,
CA, USA) was coated with 1 µg per well of BSC, SC, and BC in double distilled water
overnight at 4 ◦C. The non-specific adsorption to the coatings was blocked with 200 µL
of 1% bovine serum albumin (BSA, Sangon Biotech Co., Ltd., Shanghai, China) for 1 h
at room temperature, and then wells were rinsed with 200 µL of PBS three times. Prior
to seeding, MSCs were detached from the cell culture flasks with 0.25% trypsin-EDTA,
washed, and resuspended in serum-free MSCM containing either 5 mM MgCl2 or 5 mM
EDTA. The 8000 MSC cells were seeded into each well for 6 h and allowed to attach at
37 ◦C humidified with 5% CO2. The culture medium was removed, and the wells were
thoroughly washed three times with PBS to remove loosely adherent cells. A new culture
medium was supplemented, and 10 µL CCK-8 solution was added to each well. The optical
density (OD) values were measured at a wavelength of 450 nm through a microplate reader
(BioTek, Winooski, VT, USA) and were representative of cell numbers on the collagen
coating. Background adhesion was determined on BSA-coated plates. Cell adhesion of
BSC in the presence of Mg2+ (integrin-mediated) and EDTA (non-divalent cation specific)
was evaluated by the varied concentrations from 10 to 125 µg/mL marine collagen, and
the experiment was performed according to the method described above. For visualization,
wells were washed with PBS after the test; then, cells were fixed with 4% paraformaldehyde
(Sangon Biotech Co., Ltd., Shanghai, China) for 15 min and stained with 1 µg/mL DAPI
(Invitrogen, Waltham, MA, USA) at room temperature for 10 min. Following the washing
steps, the images were captured using a fluorescent microscope fitted with a DP80 camera
(IX71, Olympus, Tokyo, Japan).

4.7. Cell Spreading Analysis

For spreading analysis, 1 µg BSC, SC, and BC-coated wells were prepared in a high-
binding polystyrene 96-well plate (3361, Corning, CA, USA), then BSA blocked surfaces
for 60 min at room temperature. Then, 100 µL of cell suspension at 2.5 × 104 cells/mL
containing either 5 mM Mg2+ in serum-free MSCM was added to each well and incubated
at 37 ◦C/5% CO2 for 4 h for MSCs. Cells were fixed after the desired culture time using
4% paraformaldehyde for 15 min at room temperature. The plates were washed 3× with
PBS, then 20 µg/mL FITC was added for 10 min at room temperature in the dark, and cell
nuclei were stained with DAPI. Representative fluorescence images were obtained using a
20×magnification objective lens on a fluorescent microscope fitted with a DP80 camera.
The cell spreading area was calculated from 6–8 representative images by measuring the
cell-derived fluorescent area of FITC-stained images in Image J. The cell number for each
image was calculated from DAPI-stained images by using the nucleus counter plugin
feature of Image J. The average cell area was then calculated by dividing the total cell
fluorescent area by the corresponding cell number.

4.8. ECM Remodeling Tests

To investigate the interaction of marine collagen-BSC with MSCs in the extracellular
matrix, we used a small Alexa Fluor™ 594 NHS Ester (Succinimidyl Ester) (AF594, Invitro-
gen, Waltham, MA, USA) fluorescent dye (molecular weight: 819.8 Da) to label collagen
molecules. AF594 was dissolved in 0.5% dimethyl sulfoxide (DMSO) and then added to the
BSC solution to react in 0.2 M sodium bicarbonate buffer (pH 8.3) overnight at 4 ◦C. The
unbound free AF594 dye from labeled BSC was separated using a 50 kDa Merck Millipore
ultrafiltration technique (UFC5050BK, Merck, MA, USA). Functionalized BSC molecule
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probe (AF594-BSC) was washed three times with PBS before characterization and seeding
with MSCs, as described below.

4.8.1. Characterization of Functionalized BSC Molecules

Functionalized BSCs were characterized by using sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS–PAGE) and circular dichroism (CD). SDS–PAGE analysis was used
to determine the molecular pattern of AF594-BSC. Briefly, proteins were mixed with 4 ×
Laemmli Sample Buffer and were boiled for 5 min. Then, denatured proteins and Dual
Color protein standard marker were loaded onto 4.5% stacking polyacrylamide gel with
7.5% separating gel (EpiZyme Biotechnology, Shanghai, China). After the electrophoresis,
the gel was stained with Coomassie brilliant blue and discolored until clear protein bands
were visualized. The protein bands were captured with ChemiDoc MP Imaging System
(Bio-Rad, Hercules, CA, USA).

Circular dichroism (CD) spectra of AF594-BSC were collected from 180 to 300 nm on
BRIGHTTIME Chirascan (Applied Photophysics Ltd., Leatherhead, Surrey, UK) using a
1 mm path length cuvette to verify the characteristic CD of the collagen triple-helix at a
wavelength of 222 nm. Unlabeled BSC was dissolved in PBS for comparison with collagen
molecular probes.

4.8.2. Cell Culture Experiments

MSCs were trypsinized and seeded into a 12-well plate (3513, Corning, CA, USA) at
2 × 105 cells per well and incubated overnight. Growth medium was aspirated from each
well and replaced with serum-free MSCM containing the AF594-BSC probe. The culture was
imaged using a 40× objective lens on a fluorescent microscope after 6 h and 24 h AF594-BSC
addition, and cell membranes were stained with the CellMask green plasma membrane stain
(Invitrogen, Waltham, MA, USA), and nuclei with Hoechst 33,342 (Abbkine Scientific, Wuhan,
China). This experiment was to perform real-time imaging of extracellular matrix (ECM)
development by MSCs supplied with labeled marine collagen molecules.

4.9. Quantitative Real-Time Polymerase Chain Reaction(qRT-PCR)

Expression of MSCs integrin subunit genes was evaluated after 24 h cell culture by
performing real-time PCR. Total RNA was extracted from MSCs by using the RNA Easy
Fast Tissue/Cell Kit (TIANGEN Biotech Co., Ltd., Beijing, China). The RNA concentration
was evaluated using micro-spectrophotometry (NanoDrop1000, Thermo Fisher Scientific,
Waltham, MA, USA). The extracted mRNA was converted into cDNA using the FastKing RT
Kit (TIANGEN Biotech Co., Ltd., Beijing, China) following the manufacturer’s instructions.
The gene-specific primers designed to amplify the target genes are provided in Table 1. The
expression levels of detected genes were quantified using Talent qPCR Premix (SYBR Green)
(TIANGEN Biotech Co., Ltd., Beijing, China) by ABI Applied Biosystems 7500 Real-Time
PCR System (Life Technologies, Waltham, MA, USA). Data were analyzed using the 2−∆∆Ct

method, and GAPDH was chosen as the housekeeping gene. The results were normalized
by the mean values of the corresponding control groups.

Table 1. Primer sequences used for qRT-PCR procedures.

Gene Primer Sequence Tm (◦C) GenBank

ITGA1
Forward 5′-CACTGATCTGCTTCTCGTCGG-3′ 60.80

NM_001033228.3Reverse 5′-CTGATTCACAGCGTACACGTA-3′ 58.14

ITGA2
Forward 5′-GGGGACCTCACAAACACCT-3′ 59.16

NM_001033228.3Reverse 5′-CAGTTTTCAGCTTCGACCCAT-3′ 58.85

ITGA10
Forward 5′-GCTTCTCCATCCACCGACT-3′ 59.10

NM_001302471.1Reverse 5′-ACCTTCTTCAAGCCATAGCAC-3′ 58.28
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Table 1. Cont.

Gene Primer Sequence Tm (◦C) GenBank

ITGA11
Forward 5′-GGCACCAACAAGAATGAGACC-3′ 59.46

NM_176922.5Reverse 5′-CCCCGTTCCAGTCATAGGC-3′ 59.85

ITGB1
Forward 5′-GCACACTGTCTGGAAACTCT-3′ 57.75

NM_010578.2Reverse 5′-TTGTTACTCCGTCTGGCAAT-3′ 57.15

GAPDH
Forward 5′-TCAACGACCCCTTCATTGACC-3′ 60.27

NM_008084.3Reverse 5′-ACTGTGCCGTTGAATTTGCC-3′ 59.97

4.10. Enzyme-Linked Immunosorbent Assay (ELISA)

Protein expression of integrins in the MSCs cultured with marine collagens was
detected by ELISA kits (MEIMIAN, Yancheng, China), according to the instructions of the
manufacturer. In brief, MSCs were inoculated into 6-well culture plates, as described in 4.2,
with 105 cells per well, followed by the addition of 1 mL serum-free MSCM for 24 h culture.
At the end of the culture, cells were disrupted with cell lysate (Absin, Shanghai, China)
and centrifuged to harvest the supernatant of MSCs. Then, the protein concentrations were
quantified using a BCA Protein Assay Kit (TIANGEN Biotech Co., Ltd., Beijing, China).
Subsequently, 50 uL of the resulting supernatant was, respectively, added to the integrin
α1β1, α2β1, α10β1, α11β1 antibody-coated microplate for incubation at 37 ◦C for 30 min,
whereupon they were repeatedly washed with 300 uL of washing solution for five times.
Following the instructions, 50 uL of corresponding horseradish peroxidase (HRP)-labeled
integrin antibody was added for incubation at 37 ◦C for 30 min. After thorough washing,
TMB chromogen solution was added to each well, evading the light preservation for 10 min
at 37 ◦C. After the termination of the reaction, the optical density (OD) at a wavelength of
450 nm was measured by a microplate reader (BioTek, Winooski, VT, USA). Photometric
values were quantified and normalized to the control group (without adding collagen).

4.11. Statistical Analysis

All data are expressed as mean ± standard deviation (SD) of three independent repli-
cates and mentioned in the figure legends. Statistical analysis was performed with Graph-
Pad Prism 9 (GraphPad Inc., San Diego, CA, USA) using unpaired two-tailed student’s
t-test and a two-way ANOVA with Tukey’s multiple comparison analysis to determine
significant differences between groups. The values identified as outliers were excluded
from the statistical analysis. A p value < 0.05 was considered statistically significant.

5. Conclusions

In summary, we found that marine-derived BSC potentially affected the cellular be-
havior of mesenchymal stem cells. More specifically, we demonstrated that the BSC and
SC significantly promoted the cell processes such as proliferation, migration, adhesion,
and spreading through the collagen-integrin binding interactions. Our data showed that
the observed differences in cell response might result from the high expression of integrin
receptors directly bound with collagen. We also investigated the remodeling of the ECM
by observing the collagen deposition in the cell microenvironment using live cell imag-
ing. Consequently, this work concluded that blacktip reef shark skin collagen could be
a potential biomaterial to support stem cell-based applications in tissue engineering and
regenerative medicine.
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