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Abstract: In the last few years, the importance of neoantigens in the development of personalized 

antitumor vaccines has increased remarkably. In order to study whether bioinformatic tools are 

effective in detecting neoantigens that generate an immune response, DNA samples from patients 

with cutaneous melanoma in different stages were obtained, resulting in a total of 6048 potential 

neoantigens gathered. Thereafter, the immunological responses generated by some of those neoan-

tigens ex vivo were tested, using a vaccine designed by a new optimization approach and encapsu-

lated in nanoparticles. Our bioinformatic analysis indicated that no differences were found between 

the number of neoantigens and that of non-mutated sequences detected as potential binders by 

IEDB tools. However, those tools were able to highlight neoantigens over non-mutated peptides in 

HLA-II recognition (p-value 0.03). However, neither HLA-I binding affinity (p-value 0.08) nor Class 

I immunogenicity values (p-value 0.96) indicated significant differences for the latter parameters. 

Subsequently,, the new vaccine, using aggregative functions and combinatorial optimization, was 

designed. The six best neoantigens were selected and formulated into two nanoparticles, with which 

the immune response ex vivo was evaluated, demonstrating a specific activation of the immune 

response. This study reinforces the use of bioinformatic tools in vaccine development, as their use-

fulness is proven both in silico and ex vivo. 

Keywords: bioinformatics; ex vivo; human leucocytic antigen; immunogenicity; nanoparticle;  

neoantigen; vaccine design 

 

1. Introduction 

In recent years, personalized antitumoral vaccination has been increasingly wel-

comed as an innovative and promising approach to treating several types of cancers [1–
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4]. The key reason for choosing personalized vaccination against cancer cells is that tumors 

contain a large number of mutations, and approximately 95% of these mutations seem to 

be unique to that tumor [5]. Thus, these mutations constitute ideal oncological targets for 

efficiently targeting individual tumors [6], particularly for personalized vaccination. 

However, although the number of mutations in tumors is considerable, in order to 

create an effective vaccine, the first step is to distinguish between mutations only present 

in the tumor, and those that occur in the remainder of our non-oncogenic cells. This is 

where the concept of neoantigens arise, which are members of a class of peptides that arise 

from tumor-specific mutations and bind to the Major Histocompatibility Complex (MHC). 

In humans, this complex is denoted as HLA, referring to the Human Leucocyte Antigen 

[7]. These neoantigens have not been previously challenged by the immune system, and, 

consequently, the immune system will not apply tolerance mechanisms against them [8]. 

Nevertheless, although targeting neoantigens has resulted in clinical benefits [9,10], 

if the whole mutation spectrum of a tumor (known as a mutanome) is considered, the 

number of potential neoantigens is vast. Thus, blindly selecting candidates does not en-

sure inducing highly immunogenic responses. Generating an immune response against a 

mutated peptide depends directly on the patient’s HLA system’s capacity to bind the ne-

oantigen and present it to lymphocytes [11]. Therefore, selecting those antigens that bind 

more effectively to the immune system’s cells is a reasonable first criterion for neoantigen-

based vaccine design. 

With this purpose, and since the individual evaluation of every neoantigen in a tumor 

is too expensive and time-consuming, several bioinformatic tools for the in silico predic-

tion of Class I immunogenicity, HLA-I and HLA-II binding affinity, TAP transport, etc., 

have already been developed [12–15]. Before applying these tools to experimental data, it 

would be necessary to evaluate whether these bioinformatic techniques can effectively 

distinguish potential neoantigens from non-mutated versions based on their estimated 

immunological characteristics. Moreover, it would also be important to determine 

whether the experimental results can confirm the effectiveness of these tools in developing 

efficient personalized vaccines. 

First, with the aim of providing a response to these issues, portions of the mutanomes 

from six patients with cutaneous melanoma were sequenced. This type of skin cancer is 

located in the epidermis and arises from pigment-containing cells called melanocytes [16]. 

It is highly invasive and metastatic [17] and has a high mutation rate, making it an excel-

lent candidate for addressing our problem. 

After identifying the amino acid sequence of the peptides corresponding to the de-

tected DNA mutations, the predicted Class I immunogenicity and HLA binding affinity 

of potential neoantigens and their respective non-mutated versions were studied with the 

IEDB prediction tool [13]. An exhaustive analysis of 6048 mutated sequences (peptides 

obtained from the mutated sequence, which were considered as potential neoantigens) 

and their respective non-mutated versions (peptide sequences without the mutation that 

originated in the tumor) was performed. Using this information, the in silico results of 

both groups were compared, and the result answered the first question mentioned above, 

i.e., whether the estimation of the generated immunogenic response for neoantigens is 

greater than that for the non-mutated versions, according to bioinformatic tools. 

Thereafter, in order to experimentally validate the use of these predictive tools, a vac-

cine candidate against cutaneous melanoma, based on these bioinformatic methods, was 

developed and tested. Thus far, the usual process for selecting the best neoantigens for 

vaccine development against melanoma has involved employing stable sorting algo-

rithms [3]. In contrast, in this study, aggregative functions were used because a set of so-

lutions in the Pareto front, which had a more balanced trade-off between the objective 

functions compared to lexicographic orders, was obtained. Finally, the vaccine was syn-

thesized and entrapped in polyethylenimine (PEI)-coated poly-lactic-co-glycolic acid 

(PLGA) nanoparticles (NPs) and tested for effectiveness and specificity ex vivo, thereby 

answering the second question of the study. 
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In this work, for the first time, a two-fold validation for the use of bioinformatic tools 

in personalized vaccine development is presented, one computational and the other ex-

perimental. For this validation, more than 6000 potential neoantigens were evaluated us-

ing widely used bioinformatics tools offered by IEDB. These peptide sequences, instead 

of being simulated, were obtained from experimental data of melanoma patients, and in 

order to be evaluated, their specific corresponding HLA molecules were considered. In 

the second segment, combinatorial optimization was applied to outperform previous 

methods for melanoma vaccine design (which usually applied lexicographic ordinations) 

by introducing a novel target function that combines the seven considered properties. Re-

garding the ex vivo validation portion, studies evaluating nanoparticulate neoantigens 

have typically employed murine models [18–21]. However, investigating these neoanti-

gens with a patient’s own cells enables us to determine whether the predicted neoantigens 

elicit an immune response in that specific patient, and whether this response is enhanced 

by nanoparticle delivery. On the other hand, despite that PLGA NPs have already been 

studied as antigen carriers for cancer treatment [22], the in silico neoantigen determination 

has been added, instead of only cancer cell lysates that dilute interesting antigens with 

many cell compounds. 

Our study encourages the use of bioinformatic predictions for neoantigen selection, 

which, combined with the knowledge of immunologists, could improve vaccine effi-

ciency, one of society’s main interests today. 

2. Results 

The results have been divided into two sections. Firstly, the immunological estima-

tion of neoantigens and non-mutated strings was compared using bioinformatic tools. 

Secondly, whether predicted neoantigens selected for their estimated immunological 

characteristics could trigger an effective immune response following encapsulation into 

NPs was tested. In other words, their efficacy as a personalized vaccine was experimen-

tally tested. 

2.1. Computational Analysis of Immunological Characteristics 

In order to compare the immunological properties of potential neoantigens and their 

non-mutated versions computationally, three main variables were estimated: MHC Class 

I and II binding affinities, and Class I immunogenicity using IEDB’s bioinformatic tools 

[13], as explained in the Materials and Methods, Section 4. The mutation was positioned 

at the center of the neoantigen peptide, meaning that, for antigens of length 17 (considered 

in the first segment of the study), the mutation was placed at the 9th amino acid (for fur-

ther details, see Materials and Methods, Section 4.1.3). First, in order to achieve this, the 

HLA alleles of the patients, which are depicted in Table 1 (for HLA-I) and Table 2 (for 

HLA-II), respectively (for more information see Sections 4.1.1. and 4.1.2), were obtained: 

Table 1. HLA-I alleles. 

HLA-I 
1st Patient 2nd Patient 3rd Patient 4th Patient 5th Patient 6th Patient 

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

A 01:01:01 02:01:01 02:01:01 32:01:01 24:02:01 32:01:01 02:01:01 11:01:01 24:02:01 24:02:01 03:01:01 26:01:01 

B 08:01:01 44:27:01 35:11:01 51:01:01 07:02:01 51:01:01 27:05:02 40:01:02 35:01:01 40:01:03 07:02:01 18:01:01 

C 07:01:01 07:04:01 02:02:02 04:01:01 07:02:01 15:02:01 01:02:01 03:04:01 03:04:01 04:01:01 02:02:02 07:02:01 

In the first row, the patient number is presented; in the second, the first or second allele; in the 

remainder of the rows, the respective Class I HLA alleles: HLA-A, HLA-B, and HLA-C.  
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Table 2. HLA-II alleles. 

HLA-II 
1st Patient 2nd Patient 3rd Patient 4th Patient 5th Patient 6th Patient 

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

DPA1 01:03:01 02:01:01 01:03:01 01:03:01 01:03:01 01:03:01 01:03:01 01:03:01 01:03:01 01:03:01 01:03:01 02:01:01 

DPB1 02:01:02 14:01:01 02:01:02 04:01:01 --:01:-- --:01:-- 04:01:01 06:01:-- 04:01:01 04:01:01 02:01:02 11:01:01 

DQA1 01:02:02 01:04:01 01:02:01 05:05:01 01:02:01 01:03:01 03:01:01 04:01:01 01:01:01 04:01:01 01:03:01 05:05:01 

DQB1 05:02:01 05:03:01 03:01:01 06:02:01 06:02:01 06:03:01 03:02:01 04:02:01 04:02:01 05:01:01 03:01:01 06:03:01 

DRB1 16:01:01 14:54:01 15:01:01 11:04:01 15:01:01 13:01:01 08:01:-- 04:04:01 01:01:01 08:02:01 --:--:-- --:--:-- 

DRB3 02:02:01 --:--:-- 02:02:01 --:--:-- 01:01:02 --:--:-- --:--:-- --:--:-- --:--:-- --:--:-- 01:01:02 01:01:02 

DRB4 --:--:-- --:--:-- --:--:-- --:--:-- --:--:-- --:--:-- 01:03:01 01:03:01 --:--:-- --:--:-- --:--:-- --:--:-- 

DRB5 02:02:-- --:--:-- 01:01:01 --:--:-- 01:01:01 --:--:-- --:--:-- --:--:-- --:--:-- --:--:- --:--:-- --:--:-- 

In the first row, the patient number is presented; in the second, the first or second allele; in the 

remainder of the rows, the respective Class II HLA alleles: HLA-DPA1, HLA-DPB1, HLA-DQA1, 

HLA-DQB1, HLA-DRB1, HLA-DRB3, HLA-DRB4, and HLA-DRB5. 

First, the estimations of binding affinities were studied, following the recommenda-

tions from IEDB. In these cases, the “percentile rank” variable was used to filter potential 

binders from those that predictably would not be good binders. In order to cover most 

immunological peptides, IEDB recommends selecting strings with a “percentile rank” ≤ 

1% for MHC Class I [23,24], while for MHC Class II, the recommended “percentile rank” 

is ≤10%. Figure 1 displays the number of potential HLA-I and HLA-II binders by patient, 

while Figure 2 illustrates the distribution of these values in a box plot. 

 

Figure 1. Bar graph illustrating the number of peptides that passed the respective cutoff points (≤1% 

for HLA-I and ≤10% for HLA-II binding affinity) for mutated (M) and non-mutated (NM) peptides. 

In order to provide a wider picture of the peptides fulfilling this criterion, the relative 

percentages of each group were calculated. Among the considered strings, the percentage 

of mutated peptides that would potentially bind HLA-I molecules was 0.8% ± 0.38% (av-

erage ± standard deviation), ranging from 0.3% to 1.2%. For their non-mutated versions, 

the results were 0.75% ± 0.46%, ranging from 0.13% to 1.4%. When HLA-II was analyzed, 

the mutated peptides were 15.24% ± 2.96%, ranging from 10.63% to 19.88%. Finally, the 

non-mutated versions were 13.02% ± 2.93%, ranging from 9.38% to 16.75%. 
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Figure 2. Box plot illustrating the distributions of the number of peptides that passed the respective 

cutoff points (≤1% for HLA-I and ≤10% for HLA-II binding affinity). M indicates mutated peptides, 

while NM references the non-mutated versions. The light blue boxes represent the distribution of 

the central 50% of the values and the dark blue lines represent the medians. The remainder of the 

values are represented by the arms. 

In order to compare the data presented in Figure 2, which illustrates the distributions 

of the number of peptides that passed the threshold grouped by HLA-I or II, mutated or 

non-mutated, whether the variables were normally distributed was assessed first. The p-

values for the tests were 0.53, 0.57, 0.43, and 0.48 for HLA-I mutated, HLA-I non-mutated, 

HLA-II mutated, and HLA-II non-mutated peptides, respectively. Therefore, in order to 

compare the distributions, independent t-tests were performed (note that below, the 

paired case was analyzed, distinguished by patient). For the HLA-I group, the p-value was 

0.841, the confidence interval (CI) was (−45.93, 55.26), and the t-statistic was 0.205. For the 

HLA-II group, the p-value was 0.748, the confidence interval was (−83.59, 112.59), and the 

t-statistic was 0.329. Thus, no significant differences were found when comparing the dis-

tributions of the number of peptides that passed the threshold as a group (for more details, 

see Section 4.1.4). 

Subsequently, in order to determine whether the mutated versions of peptides ex-

hibit more binding affinity than non-mutated versions for each patient, two comparisons 

were performed: Firstly, the number of predicted HLA-I mutated peptides to the number 

of non-mutated peptides was compared. Secondly, the number of predicted HLA-II mu-

tated peptides to the number of non-mutated peptides was compared. Since normality 

was assumed in all cases, a paired t-test was performed for each HLA couple (i.e., number 

of mutated versus non-mutated peptides for each patient). 

The alternative hypothesis was that the difference between the average of mutated 

potential neoantigens and non-mutated ones was greater than 0. With a significance level 

of 5%, the paired t-test yielded a p-value of 0.08, a confidence interval of 𝐶𝐼 = (−1.50, ∞), 

and a t-statistic of 1.6. Therefore, no significant differences were found between the num-

ber of mutated and non-mutated peptides that potentially bind HLA-I molecules. 

For the number of HLA-II peptides, the p-value was 0.03, the confidence interval was 

𝐶𝐼 = (2.44, ∞), and the t-statistic was 2.43. These results indicate that mutated peptides 

are more likely to pass the detection threshold of HLA-II molecules than non-mutated 

ones, according to these bioinformatic tools. 
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Second, the Class I immunogenicity prediction values for both groups were evalu-

ated. In particular, the alternative hypothesis studied was that the mutated strings pre-

sented higher Class I immunogenicity than the non-mutated versions, with a significance 

of 5%. In contrast to the previous comparison, the analysis for this statistic was different, 

since here, instead of being a “yes/no” question, since it measures potential binding capa-

bility, the probability of generating an immune response is incremented as the variable 

increases. The p-value for this comparison was 0.96, the confidence interval was 𝐶𝐼 =

(−0.03, ∞) and the t-statistic was −1.78. Therefore, no significant increase in the immuno-

genicity values of neoantigens was detected with respect to non-mutated strings. 

2.2. Ex Vivo Validation of the Immune Response 

2.2.1. Optimization of Neoantigen Selection for Vaccine Design 

For the second segment of the study, in which the objective was to test the capacity 

of our neoantigens to generate an immune response ex vivo, a vaccine using an optimiza-

tion technique applied to aggregative functions was designed first. Before applying the 

optimization technique described in the Materials and Methods Section to select the best 

neoantigens for the vaccine, additional bioinformatic characteristics, aside from the three 

main variables mentioned in the first segment of the study (Class I immunogenicity and 

HLA-I and II binding affinities), were estimated. These variables were included to enhance 

the efficiency of the potential vaccine candidate and complement the aforementioned var-

iables, which are more related to immunogenicity. Specifically, the hydrophobicity/hy-

drophilicity through the GRAVY index score (to maximize neoantigens on the surface [25–

27]), the proteasome cleavage/TAP transport (to improve the affinity prediction of neoan-

tigens [28]), the VaxiJen score (to select those with a higher probability of being recognized 

as tumor antigens [29]), and the frequency of the mutation (to maximize neoantigens con-

taining the most frequent mutations) were calculated. For more information about these 

variables and their estimation, please refer to the Materials and Methods Section. 

Thereafter, the six neoantigens that maximized the weighted sum of the seven varia-

bles from the set of all neoantigen candidates (represented in Table S1) were selected, ac-

cording to the optimization method and weighting procedure proposed in the Materials 

and Methods Section. In short, the goal of the optimization is to obtain the most promising 

combination of the selected characteristics. Thus, for each neoantigen 𝑛, the amount to be 

maximized was: 

𝑓(𝑛) = 0.2 𝑁𝑖𝑚𝑚𝑖(𝑛) + 0.2 𝑁𝐻𝐿𝐴𝐼𝑖(𝑛) + 0.2 𝑁𝐻𝐿𝐴𝐼𝐼𝑖(𝑛) + 0.1 𝑁𝑣𝑓𝑖(𝑛) + 0.1 𝑁𝑎𝑝𝑖(𝑛) + 0.1 𝑁ℎ𝑝𝑙𝑖(𝑛)

+ 0.1 𝑁𝑇𝐴𝑃𝑖(𝑛). 

Since a set of six neoantigens was used for the experimental validation, the final ob-

jective function was 𝐹(𝑆) = ∑ 𝑓(𝑛)𝑛∈𝑆 , where 𝑆 is a subset of cardinality six of the set 𝑁 

of neoantigens (for more information about the optimization, see Materials and Methods, 

Section 4.2.3). 

As can be observed, the main variables (Class I immunogenicity, HLA-I binding, and 

HLA-II binding) were considered with greater weight, with respect to the other variables, 

to highlight their influence, since the objective of this study was to evaluate them, in par-

ticular. The results of the variables for the selected neoantigens through our optimization 

method are depicted in Table 3. It is worth noting that all of the selected neoantigens are 

15 amino acids long. 
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Table 3. Selected neoantigens for the development of the vaccine and the values of the associated 

variables. 

Neoantigen Immunogenicity HLA-I HLA-II Hydrophilicity TAP, Proteosome VaxiJen Variant Frequency 

DWLEWLRQLSLELLK 0.556 0.875 1 0.366 0.722 0.516 0.199 

FRDQSLSYHHTMVVQ 0.335 1 0 0.501 0.558 0.453 0.304 

IGRFANYFRNLLPSN 0.851 0.665 0.529 0.41 0.567 0.555 0.333 

MRHSFFSEVNWQDVY 0.878 0 0.452 0.535 0.72 0.427 0.339 

RLFMHHVFLEPITCV 1 0.366 0.432 0 0.603 0 0.762 

CSRRFYQFTKLLDSV 0.518 0.562 0.788 0.398 0.608 0.379 0.466 

In each column, the normalized values (from 0 to 1) of each variable (Immunogenicity, HLA-I and 

II binding affinities, Hydrophilicity, TAP proteasome, VaxiJen, and Variant frequency) for the six 

selected neoantigens. Higher values relate to better probabilities of generating an immune response, 

binding with molecules, being expressed on the surface, etc. 

Note that all of the neoantigens in Table 3 (with the exceptions of MRHSFF-

SEVNWQDVY for HLA-I and FRDQSLSYHHTMVVQ for HLA-II) obtained positive val-

ues for HLA binding for both classes, indicating that these peptides would likely be good 

binders for the corresponding patient’s HLA molecules. However, it is important to note 

that binding affinity alone does not guarantee immunogenicity or the ability to induce a 

strong immune response. 

Subsequently, these six neoantigens were grouped in the following two peptides 

with lengths of 45 (with three consecutive peptides each): 

Peptide 1: DWLEWLRQLSLELLKFRDQSLSYHHTMVVQIGRFANYFRNLLPSN 

Peptide 2: MRHSFFSEVNWQDVYRLFMHHVFLEPITCVCSRRFYQFTKLLDSV 

The peptides were synthesized, and then encapsulated into two types of nanoparti-

cles, as described below. 

2.2.2. Optimization of Neoantigen Selection for Vaccine Design 

The nanoparticles (NPs) were prepared using the w/o/w method, and were analyzed 

using the dynamic light-scattering technique. The size of the PEI-coated PLGA NPs 

ranged from 280 to 350 nm, with a narrow size distribution, as demonstrated by the low 

polydispersity index (PdI). The surface charge was confirmed to be positive (around 40 

mV), due to the PEI-coating, by ζ-potential analysis (refer to Table S2 for details). 

The amount of neoantigen encapsulated in each NPB507 was then determined. The 

SAP was established in the range of 8.5–12.5% from the total encapsulated, and the encap-

sulation efficacy (EE%) varied depending on the antigen (60–90%), which may be at-

tributed to the peptide amino acid sequences. These data are in agreement with other 

studies that encapsulated tumor antigens in PLGA NPs [30,31]. The protein loading% was 

calculated as the amount of protein in the NPs divided by the total weight of the particles 

× 100% (refer to Table S2 for details). As mentioned in the Materials and Methods Section, 

NPctrl was added to DCs at the same quantity as NPB057 (refer to Section 4.2.4. for more 

information about the peptide sequences). 

The final purpose was to activate T cells against the selected neoantigen, for which 

the process to be followed is very well described. Once the NP-entrapped neoantigens are 

taken up by DCs, they transform into mature DCs (mDCs), allowing them to present the 

antigen. During this process, they overexpress the surface markers HLA-DR, CD80, CD83, 

and CD86 [32,33]. 

In order to determine the effects of PEI-coated PLGA NPs on DC maturation, the 

expression level of maturation markers (HLA-DR, CD80, CD83, and CD86) on immature 

DCs, DCs treated with free neoantigens (AgB057 and Agctrl), DCs treated with NP neoanti-

gens (NPB057 and NPctrl), and DCs treated with blank NPs (NPblank) were assessed after 24 

h. DC gating was performed by flow cytometry. As presented in Figure S1, the maturation 

markers were analyzed based on the forward vs. side scatter chart (FSC vs. SSC) gating. 
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Once the cells were located, CD80, CD83, and CD86 markers were analyzed. The afore-

mentioned markers were plotted against HLA, whereby a higher maturation of the cells 

displays a graph shifted upwards and to the right. Additionally, the decrease in the per-

centage of cells expressing the CD14 monocyte marker to confirm the mature DC pheno-

type (Figure S1) was evaluated. Our results indicate that a greater number of DCs ex-

pressed these maturation markers when treated with any NP compared to Immature DCs 

(iDCs) or DCs stimulated with free neoantigens. These results suggest that the uptake of 

PEI-coated PLGA NPs (with or without neoantigens) by DCs induced their maturation. 

Although direct uptake studies were not performed, flow cytometry analysis for FSC vs. 

SSC demonstrated an increased cell complexity when DCs were cultured with NPs (Fig-

ure 3), suggesting the NPs were taken up by the DCs [34]. These results are consistent 

with those of similar studies conducted using NPs with similar aims [30,35]. 

 

Figure 3. Schematic flow cytometry gating strategy to identify DCs. Two gating strategies were per-

formed for SSC vs. FSC due to the complexity increment when matured with (a) NPs compared to when 

matured with (b) free neoantigens, suggesting NP uptake by DCs. Once target cells were characterized 

by size and granularity, singlets were selected, from which CD14 low cells were defined. DC maturation 

was determined with an HLA-DR maturation marker vs. CD80, CD83, or CD86. 

It must be mentioned that all three groups treated with NPs (including NPblank) had 

a similar maturation profile when analyzed as a cell percentage (Figure 4b). This indicates 

that the most important factor triggering maturation is nanoparticulation, in contrast to 

the mere presence of neoantigens, which only slightly increased DC maturation compared 

to unstimulated cells. The CD14-positive cell percentage was used to confirm the matura-
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tion of DCs, since it decreases with DC maturation status. These results confirm the mat-

uration capacity of the PEI-coated NPs, as they significantly decrease this marker com-

pared to untreated DCs and DCs treated with free neoantigens (Figure 4b). The fact that 

any NP, and to a lesser extent, any antigen, can trigger DC maturation is due to the un-

specific response of DCs to external stimuli [30,31,35]. 

 

Figure 4. On day 5 after PBMC isolation, iDCs were incubated with free neoantigens and NPs, and 

maturation was evaluated on day 6. DC maturation was analyzed as CD80+-HLA-DR+ DCs, CD83+-

HLA-DR+ DCs, and CD86+-HLA-DR+ DCs. (a) Representative flow cytometry plots from DCs after 

maturation. (b) DC maturation markers in cell percentage (%) and mean fluorescence intensity 

(MFI). (c) TNF-α and IL-10 cytokine secretion was measured by ELISA. All samples were analyzed 

in triplicate (## p < 0.01 and ### p < 0.001 with regard to iDCs; ** p < 0.01 and *** p < 0.001 with regard 

to free antigen; $$$ p < 0.001 with regard to the remainder of the groups). 

Apart from the number of cells expressing each marker, the mean fluorescence inten-

sity (MFI) of the maturation markers was also analyzed, indicative of the amount of 
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marker expressed on each cell. Results demonstrated a similar pattern, but higher matu-

ration marker expression was observed for the patient-specific neoantigen NPs (NPB057) 

(Figure 4b). 

Regarding cytokine secretion by DCs, TNF-α and IL-10 were analyzed (Figure 4c). 

Only patient-specific neoantigens were able to significantly increase TNF-α secretion, es-

pecially when nanoparticulated. AgB057 and NPblank also have an effect, but to a much lesser 

extent. TNF-α is an endogenous pyrogen that regulates the immune response and has 

effects that include the inhibition of tumorigenesis [36]. TNF-α also induces DC migration 

to lymph nodes, where T cells can be found [37]. Thus, NPB057 has the potential to enhance 

the innate immune response and facilitate a specific response by increasing DC migration 

and interaction with T cells. 

On the other hand, none of the groups significantly increased IL-10 secretion com-

pared to iDCs. This is a positive finding, as this cytokine is related to immunosuppressive 

mechanisms, Treg activation, and potential inhibition of IFN-γ and IL-2 secretion (T cell 

activation cytokines) [38,39]. Therefore, neither NPs nor neoantigens provide an immuno-

suppressive response. 

In summary, the results demonstrated that PEI-coated NPs are effective inducers of 

DC maturation, as they are able to increase maturation markers and trigger correct cyto-

kine secretion. 

CD4+ cells and CD8+ T cell types are required for proper tumor suppression, as CD8+ 

cells (cytotoxic T cells or CTL) need CD4+ cells (helper T cells or TH) for correct activation 

[40]. Thus, the effect on T cell proliferation and secretion of cytokines were evaluated. 

In order to determine if free antigen or encapsulated antigen-maturated DCs were 

able to induce T cell activation, DCs and T cells were co-cultured at a 1:10 ratio. After 5 

days, CD4+ and CD8+ T cell proliferation were analyzed by flow cytometry, and secreted 

cytokines (IL-2 and IFN-γ) were analyzed by ELISA. In cytometry, T cell gating was per-

formed, locating the cells in SSC vs. FSC gating, followed by a selection of CD3+ cells, from 

which CD4+ or CD8+ cells were studied (Figure 5). 

 

Figure 5. Schematic gating strategy to identify TCs. Cells were characterized by size and granularity, 

and discriminated by singlets for the selection of (a) CD4- or (b) CD8-positive T cells. Proliferation 

analysis (CFSE signal) was conducted from these gating strategies. 

T cell proliferation increased with patient-specific neoantigens for both CD4+ and 

CD8+ T cells. In the case of CD4+ T cells, soluble antigens appeared to induce better prolif-

eration than NPs, and own antigens produced better proliferation than irrelevant ones 

a 

b 
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(Figure 6a,c) [41]. Antigen processing pathways are responsible for the CD4+ T cell prolif-

eration rate with free antigens. Dendritic cells process antigens based on their size and 

shape, so larger particles will be processed as invading pathogens. Therefore, nanoparti-

cles facilitate antigen cross-presentation, leading to CD8+ T cell recognition and a cytotoxic 

response. In contrast, free antigens will not be cross-presented, and CD4+ recognition will 

not occur [42]. On the other hand, both AgB057 and NPB057 were able to induce CD8+ T cell 

proliferation, and more significantly than irrelevant antigens (Figure 6b,c). This is of note-

worthy importance, as CD8+ T cells are the ones with cytotoxic activity. 

 

Figure 6. T lymphocyte activation at day 5 after co-culture with autologous DCs at a 1:10 DC:T cell 

ratio. Representative flow cytometry plots of CFSE-stained (a) CD4+ and (b) CD8+ T cells. (c) CD4+ 

and CD8+ lymphocyte proliferation response in cell percentage (%) induced by DCs. (d) IL-2 and 

IFN-γ cytokine release. Proliferations were analyzed in triplicate and cytokines were analyzed in 

duplicate (# p < 0.05 and ### p < 0.001 with regard to iDCs; *** p < 0.001 with regard to free antigen; 

&&& p < 0.001 with regard to the homologous control). 
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However, as previously mentioned, the level of T cell activation is not solely determined 

by their proliferation, but also by their cytokine production, especially by CD4+ T cells, which 

play a crucial role in cancer by aiding CD8+ T cells through cytokine release [43]. 

Figure 6d demonstrates that the release of IL-2, a cytokine that induces lymphocyte 

growth, proliferation, and survival [44], was significantly increased by NPB057. Although T 

cells produced more IL-2 with NPs than with free antigen, this difference was not statisti-

cally significant, likely due to the high variability obtained with free antigens, but it was 

still significant when compared to iDCs. This finding has been reported in other studies 

comparing PLGA and other NPs with free antigen [30]. 

Regarding IFN-γ, NPB057 significantly increased cytokine secretion compared to the 

other groups, indicating greater T cell activation (Figure 6d). These results are consistent 

with several studies involving PLGA NPs [22,30]. 

It can be concluded that the T cell response detected in this study is antigen-specific 

because patient-specific antigens induced a greater T cell activation compared to control 

groups. Moreover, T cells did not recognize the antigens presented by NPctrl or NPblank, 

confirming the recognition of the B057 antigen by T cells. It is worth noting that irrelevant 

antigens have demonstrated a minor capacity to activate T cells, which is in line with other 

in vitro studies that analyze T cell activation with different antigens. Although T cell acti-

vation was better with regard to specific antigens, a slight T cell activation with irrelevant 

peptides could also be detected in some cases [45,46]. In vivo studies analyzing T cell pro-

liferation have observed greater differences regarding free antigen or NP administration 

[47,48], as better proliferation was achieved when NPs were used. This could be due to 

the fact that DCs captured, migrated, and presented the NPs more efficiently than free 

antigens, leading to a better immune response. In our ex vivo study, as antigens and T 

cells were in constant contact, this could condition the T cell response and induce prolif-

eration [49,50]. 

Thus, it has been demonstrated that NPB057 is able to induce both CD4+ and CD8+ T 

cell proliferation, which is essential for achieving antitumor immunity [40], as both cell 

types are required for an optimal cytotoxic response [51]. The predominant subtypes of 

CD4+ cells are TH1 and TH2, but TH1 cells are regarded as the most important for cancer 

immunity. TH1 cells are involved in killing tumor cells by secreting cytokines, including 

IFN-γ, which enhances the priming and expansion of CD8+ cells, among other cytokines 

and chemokines. Additionally, TH1 cells assist in recruiting natural killer (NK) cells and 

type I macrophages to tumor sites, leading to tumor eradication [40,43]. 

Although T cell proliferation was similar to that obtained with AgB057, the encapsula-

tion of the antigen in PEI-coated PLGA NPs led to a higher cytokine release, indicating 

better T cell activation compared to the free neoantigen, which had less impact on cytokine 

production. 

3. Discussion 

Recent biotechnological advances have allowed for the genome sequencing of many 

microorganisms, revolutionizing vaccine development strategies where genomics plays a 

predominant role. This new approach has been called “Reverse Vaccinology” and begins 

with the analysis of genome sequences using bioinformatic tools in order to identify the 

antigens most likely to be vaccine candidates. In particular, next-generation sequencing 

(NGS) has revolutionized the analysis of genome sequences by allowing the sequencing 

of exomes, transcriptomes, and even genomes within hours. The investigation of the mu-

tanome is essential, but its complexity is a significant drawback for efficient personalized 

therapy. In this context, since it is too complex to analyze all of the mutations with current 

experimental techniques, bioinformatics allows us to address this problem, and is conse-

quently becoming increasingly important in the selection of targets and their prioritiza-

tion [52]. 

Nowadays, immunoinformatics emerges as one of the best ways to find potential 

vaccine candidates against different pathogens, and the selection of the most accurate 



Int. J. Mol. Sci. 2023, 24, 9024 13 of 23 
 

 

tools is necessary for predicting and developing potent preventive and therapeutic vac-

cines [53]. Moreover, due to the lower cost and faster results of in silico/computational 

studies compared to in vitro/experimental tests, their presence has increased remarkably, 

not only in vaccine design, but in the experimental designs of biomedical research studies 

of any kind [54–59]. 

In order to evaluate these tools for personalized vaccine design and test their out-

comes experimentally, a comparison among 6048 potential neoantigens and their corre-

sponding peptides without the mutation was performed, using data obtained from six 

patients suffering from cutaneous melanoma in diverse stages (IB, IIA, IIB, and IIC). In order 

to carry out this study, both tumor and blood cells were sequenced first, and only mutations 

that occurred in the tumor were selected. Subsequently, the amino acid sequences surround-

ing the mutations were identified, which provided us with the set of potential neoantigens. 

Thereafter, the binding affinity for HLA Classes I and II, and for the Class I immunogenicity, 

were estimated using the bioinformatic tools provided by IEDB, and in each case, the results 

of neoantigens and their non-mutated versions were compared. 

Our results indicated that, although the number of mutated peptides (i.e., potential 

neoantigens) presented higher binding affinity in almost every case, the difference was 

not significant when HLA-I binding affinity or Class I immunogenicity were compared. 

However, in the case of HLA-II, the number of mutated peptides was significantly higher 

compared to that of non-mutated peptides. Thus, this study answers, at least partially, the 

first question, regarding the capacity of these tools to identify potential neoantigens, par-

ticularly those that estimate Class II binding affinity. It must be mentioned that, even if 

the number of potential HLA-II binders was significantly higher in the case of neoanti-

gens, this does not necessarily mean that the binding affinity of mutated peptides is 

higher. There might be other reasons, such as an overexpression of neoantigens with re-

spect to the non-mutated peptides, etc. There are some tools that estimate the gene expres-

sion from the amino acid sequences of proteins, such as the one from [60], but that were 

hardly applicable to our work. Since this study was planned as a proof of concept of the 

methodology presented, the specific evaluation of the expression of neoantigens was left 

for future studies. 

In fact, although bioinformatic tools have recently been applied, for instance, to iden-

tify B-cell epitopes against human papillomavirus [61] or to predict mutations in mice 

tumors (where they used MHC Class II binding affinity estimations in order to identify 

the best epitopes) [62], none so far have performed a one-to-one comparison between mu-

tated and non-mutated estimations to validate the effectiveness of these tools. 

Thereafter, in order to be able to evaluate the immune response ex vivo, a vaccine 

using aggregative functions was developed, instead of using the simpler algorithms used 

to date [3], which do not always obtain the best combination of the characteristics consid-

ered. With our method, a vaccine candidate that optimized seven variables at the same 

time (i.e., estimated immunogenicity, binding affinity to HLA Class I and Class II, expres-

sion levels of the mutations encoding RNA, mutated allele frequencies, hydrophilicity, 

and relative transcription values) was obtained. This candidate was composed of the best 

combination of six neoantigens for the evaluated patient. These neoantigens were effi-

ciently encapsulated in PEI-coated PLGA NPs, and were able to induce maturation and 

activation of the patient’s DCs. Stronger T cell proliferation was detected with patient-

specific neoantigens (free and encapsulated) compared to the control groups, especially 

in CD8+ T cells, which are responsible for tumor cell destruction. Moreover, the cytokine 

release was higher when patient-specific NPs were used, indicating that the overall lym-

phocyte activation increased with these NPs. In addition, the fact that both arms of the T 

cell responses studied have been activated suggests that the developed NP could be a 

promising candidate for anti-melanoma immunotherapy treatment. 

Regarding limitations and future work, it is important to note that the studies pre-

sented in this work were conducted with single-patient samples, and it would be desirable 

to carry out more replicates in order to corroborate the results obtained. Additionally, it 
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is worth mentioning that the computational estimations were calculated for each of the 

15-amino-acid-long neoantigens, which, in this case, were combined in trios to form 45-

amino-acid-long peptides. Therefore, the in silico estimation of the characteristics of the 

final peptide might differ from the one obtained by the sum of the fragments. However, 

as explained in the Materials and Methods Section, the characteristics for the most appro-

priate lengths for each tool were estimated, rather than the longest possible length. For 

instance, the HLA-I binding tool from IEDB considers peptides of up to 14 amino acids, 

while the HLA-II tool goes up to 30 amino acids, but not beyond 45 amino acids. 

4. Materials and Methods 

4.1. Computational Testing 

4.1.1. Sample Acquisition for in Silico Assays 

In order to analyze the in silico characteristics of potential neoantigens and test them 

ex vivo, the first step was to obtain tumor samples from patients with cutaneous melano-

mas. Tumor biopsies from six patients were obtained and sequenced from Cruces Univer-

sity Hospital and Basurto University Hospital in Spain. Inclusion criteria for patient selec-

tion were as follows: (1) a histologically confirmed diagnosis of malignant melanoma; (2) 

no treatment except for primary surgery (including wide local excision); and (3) no infec-

tion, as judged by clinical evaluation and an absence of increased infectious parameters in 

the blood. Biopsies of melanoma lesions were analyzed by a pathologist. 

In order to obtain sufficient mutational diversity, which is an indicator of advanced-

stage tumor development, and a heterogeneous sample of different tumor severities for 

analysis, cases from several cancer stages were selected. The stages of the studied cases, 

according to the AJCC classification, were as follows: one IB (up to 2 mm thick without 

ulceration), one IIA (from 1 to 2 mm thick with ulceration or from 2.01 to 4 mm thick 

without ulceration), two IIB (from 2.01 to 4 mm thick with ulceration or greater than 4 mm 

thick without ulceration), and two IIC (greater than 4 mm thick with ulceration) [63]. 

Patient 4 is a woman, 32 years old at diagnosis and without family history of mela-

noma. Primary melanoma was located on the trunk corresponding to a nodular melanoma 

in stage IIB, according the American Joint Cancer Committee (AJCC 8th edition). The mel-

anoma tumor was 4.4 mm think (Breslow Index), without ulceration, and BRAF-V600E-

positive. Sentinel lymph node detection was not conducted. Patient was untreated, aside 

from primary surgery. After 54 months of follow-up, lymphatic metastases were detected, 

and she underwent surgery for metastasis. 

Venous blood samples and a primary melanoma biopsy were collected at the hospital 

one month after the surgery for the primary melanoma, following the protocol established 

at the Basque Biobank [64]. Genomic DNA was extracted from the buffy coat of peripheral 

blood samples using the FLEX START DNA Extraction System (Autogen, Holliston, MA, 

USA) and the FlexiGene DNA Whole Blood Kit (QIAGEN, Hilden, Germany). The pri-

mary melanoma tumor was formalin-fixed and embedded in paraffin, and 10 sections of 

10 mm thickness were used for DNA isolation using the HigherPurityTM FFPE DNA Iso-

lation Kit (Canvax Biotech, Cordoba, Spain) according to the manufacturer’s instructions. 

4.1.2. Detection of Genome Mutations 

Subsequently, in order to maximize the cost-effectiveness of our study, the regions 

with the most variability in this kind of cancer were targeted—in particular, those regions 

that code for proteins such as BRAF, NRAS, MAP2K1, or MAP2K2 [65,66]. Specifically, 

AmpliSeq for Illumina Cancer Hotspot Panel v2 panels were used for investigating the 

hotspot regions of 50 genes known to be associated with cancer. 

In order to select only the mutations appearing in the tumor and discard those de-

rived from normal cellular division (and present in non-oncogenic cells), DNA from the 

blood cells of the same patients and their mutations were also sequenced. Afterwards, 

only mutation candidates that appeared solely in the tumor were considered. 
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A set of 50 cancer-associated genes was sequenced from 50 ng of tumor DNA from 

each patient using the Illumina Cancer HotSpot Panel v2. Library construction was con-

ducted using the ‘Nextera Rapid Capture Exome’ kit, and the size and quality of the pu-

rified libraries were checked using an Agilent 2100 Bioanalyzer device. The libraries were 

then sequenced on an Illumina MiSeq platform with paired-end reads of 150 bp at the 

Tecnalia Foundation facilities (Genetics lab, Bizkaia, Spain). Following quality control, a 

range of 300 k reads per library was obtained. The reads were mapped to the 

GRChr37/hg19 human genome with BWA-MEM, and variants were identified using Can-

cer Variant Caller 0.9.0. 

Specific sequencing of the HLA regions was performed on patients’ blood DNA (400 

ng), quantified with Qbit, using the HLA-DNA Sequencing-TruSight HLA v2 Panel, as 

per the manufacturer’s recommendations. The TruSight HLA v2 workflow amplifies HLA 

genes in 8 amplicons, each targeting a different HLA region (HLA-A, HLA-B2, HLA-C, 

DPA1, DPB1, DQA1, DRB.2, and DQB1). The amplified libraries were purified using mag-

netic beads, and the size and quality of the purified libraries were checked using an Ag-

ilent 2100 Bioanalyzer device (Agilent, Santa Clara, CA, USA). The libraries were then se-

quenced using an Illumina MiSeq platform with paired-end reads of 150 bp at the Genome 

Analysis Platform at CIC-bioGUNE, Center for Cooperative Research in Bioscience, 

Bizkaia, Spain. Following quality control, a range of 1.3 to 2.3 million reads per library 

was obtained, with an average quality over Q35. HLA diversity was characterized using 

the Illumina TruSight Assign v2 software. The whole genome corresponding to Human 

Assembly GRCh37/hg19 was downloaded from the UCSC Genome Browser [67]. 

Since the positions of germline mutations are provided relative to GRCh37/hg19 as-

sembly, and those of tumor mutations are provided relative to GRCh38/hg38 assembly, 

and since the R package Ensemble used positions relative to GRCh38/hg38, the PyLiftover 

library [68] was used to convert positions. 

4.1.3. Determination of Potential Neoantigens and the Main Characteristics 

Once mutations that could potentially generate neoantigens were detected, the next 

step was to define the length of the neoantigens to be considered, i.e., the number of bases 

around the mutated base (and its amino acid composition). There are several approaches 

to this issue; for example, Shahin et al. [3] used 27-mer peptides, while Ott et al. [69] used 

variable lengths, ranging from 15 to 30. 

In our case, for the first analysis, antigens of length 17 were considered, with the mu-

tation in the 9th amino acid. Thus, if a sliding window for peptides with a length of 9 

(which has been traditionally used as the standard length for HLA-I restricted T cell anti-

gens [70]) is performed, the mutation will be included in all of them. Thereby, more than 

one possibility for the estimation of the HLA-II binding affinity was obtained, using slid-

ing windows of length 15, as it is the recommended length for the predicting tool of IEDB. 

Consequently, the longest potential antigen length considered for computational estima-

tions was also 15 amino acids. Thus, regardless of the processing of the antigens presented 

by the antigen-presenting cells (APCs), such as dendritic cells or macrophages [71], the 

mutation will likely be included in one of the presented peptides. For more information 

about the determination of potential neoantigens, see the Neoantigen Selection Section in 

the Supplementary Methods. 

After identifying the potential neoantigens, the binding affinities of both MHC clas-

ses were evaluated. As the HLA complexes are highly polymorphic and vary among indi-

viduals, the genes responsible for MHC, located in the 6th chromosome [72], were se-

quenced, and afterwards, the allele variants for each patient were identified. These vari-

ants are presented in Tables 1 and 2 for Class I and II, respectively. 

In order to estimate the MHC Class I and II binding affinities, as well as the Class I 

immunogenicity predictions, the respective tools from the Immune Epitope Database 

Analysis Resource [13] were used. For Class I prediction, values for all potential neoanti-
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gens ranging from 9 to 14 were calculated, resulting in a total of 5616 potential neoanti-

gens. For Class II prediction, the “default” option was selected, which fixed the antigen 

length to 15 and resulted in 432 potential neoantigens. Finally, for Class I immunogenicity 

estimations, strings of length 9, which is the optimal length for the tool, were used. 

4.1.4. Statistics 

In order to perform the comparisons presented in the Results section, whether the 

variables were normally distributed was assessed first. Depending on the size of the vari-

able (less than or equal to/greater than 30), either the Shapiro–Wilk or Kolmogorov–

Smirnov test, with Matlab 2022 software, was used. Since normality was not rejected in 

our case, parametric tests were applied in order to compare the data. Two-sample t-tests 

were used to determine if the number of strings that passed the threshold was dependent 

on whether the string was mutated or not. Thereafter, paired t-tests were used to compare 

those distributions, grouped by patient. The results are reported by the corresponding p-

values, statistics, and confidence intervals. 

4.2. Experimental Testing 

4.2.1. Sample Acquisition for Ex Vivo Assays 

For the second analysis, one of the six patients from the study was selected, namely 

patient #4. This patient was a woman who was diagnosed with cutaneous melanoma in 

1995, at the age of 32, and had no family history of melanoma. The primary tumor was a 

nodular melanoma located on the trunk, which was classified as stage IIB according to the 

American Joint Cancer Committee (AJCC 8th edition). The tumor had a Breslow Thickness 

Index of 4.4 mm, was BRAF-V600E-positive, and demonstrated no ulceration (Figure S2). 

The patient did not undergo sentinel lymph node detection, and was untreated aside from 

primary surgery. After 54 months of follow-up, lymphatic metastasis was detected, and 

the patient underwent an operation. 

4.2.2. Estimation of Neoantigens’ Characteristics with Bioinformatic Tools 

In order to use the optimal estimations from the IEDB tools, strings of length 15 were 

taken for this portion of the analysis, with the mutation in the 8th amino acid, since Class 

I MHC usually accommodates 8–9-mer antigens, while Class II MHC binds to 12–15-mer 

antigens. Sliding windows of 9 amino acids in length, were used for HLA-I and immuno-

genicity predictions. The mutation was maintained in the center of the string, following 

the procedures of previous authors who experimentally tested neoantigen vaccines [3,69]. 

For every neoantigen 𝑛 with 15 amino acids, seven values were calculated: an esti-

mation of the Class I immunogenicity [73], an estimation of the binding affinity to HLA-I 

[74], an estimation of the binding affinity to HLA-II [75], a variant frequency of the muta-

tion, the antigen probability [76], hydrophilicity [77], and TAP proteosome [78]. An ex-

tended description of the seven variables can be found in the Supplementary Methods: 

Estimation of Neoantigens’ Characteristics. 

4.2.3. Optimization and Selection of Neoantigens 

After the characteristics of the neoantigens were estimated and a 7-tuple 

𝑣(𝑛) = (𝑁𝑖𝑚𝑚𝑖(𝑛), 𝑁𝐻𝐿𝐴𝐼𝑖(𝑛), 𝑁𝐻𝐿𝐴𝐼𝐼𝑖(𝑛), 𝑁𝑣𝑓𝑖(𝑛), 𝑁𝑎𝑝𝑖(𝑛), 𝑁ℎ𝑝𝑙𝑖(𝑛), 𝑁𝑇𝐴𝑃𝑖(𝑛)) 

was associated to every neoantigen 𝑛, the considered function was: 

𝑓(𝑛) = 0.2 𝑁𝑖𝑚𝑚𝑖(𝑛) + 0.2 𝑁𝐻𝐿𝐴𝐼𝑖(𝑛) + 0.2 𝑁𝐻𝐿𝐴𝐼𝐼𝑖(𝑛) + 0.1 𝑁𝑣𝑓𝑖(𝑛) + 0.1 𝑁𝑎𝑝𝑖(𝑛) + 0.1 𝑁ℎ𝑝𝑙𝑖(𝑛)

+ 0.1 𝑁𝑇𝐴𝑃𝑖(𝑛). 

Notice that the most-used characteristics (i.e., the Class I immunogenicity and bind-

ing affinity to HLA-I and HLA-II) were weighted doubly with respect to the other three. 
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This consideration was made because those variables have been extensively tested and 

widely used in the literature for computational vaccine design. 

The objective function was 𝐹(𝑆) = ∑ 𝑓(𝑛)𝑛∈𝑆 , where 𝑆 is a subset of cardinality 6 of 

the set 𝑁 of neoantigens, that is, a set {𝑛1, 𝑛2, 𝑛3, 𝑛4,𝑛5, 𝑛6} of 6 neoantigens such that 

𝐹({𝑛1, 𝑛2, 𝑛3, 𝑛4,𝑛5, 𝑛6}) = 𝑚𝑎𝑥𝑆⊂𝑁,|𝑆|=6𝐹(𝑆), 

was determined, which is equivalent to taking the 6 neoepitopes with the highest values 

of 𝑓(𝑛). This solution was grouped into two peptides: the first one was the concatenation 

of 𝑛1, 𝑛2, and 𝑛3, and the second one was the concatenation of 𝑛4,𝑛5, and 𝑛6. 

4.2.4. Peptide Synthesis 

The neoantigens used in the experiment were custom-made by ChinaPeptides Co. in 

Shanghai, China. Two neoantigens were selected for the experiment: one from patient #4 

(encoded as B-057), and the other from a different melanoma patient (AgB057 and Agctrl, 

respectively). As mentioned previously, the antigens were too long, so they were synthe-

sized in two parts: AgB057A and AgB057B for the melanoma patient, and AgctrlA and AgctrlB for 

the control patient (an irrelevant peptide used as control). All of the synthesized peptides 

had a length of 45 amino acids. 

B057 peptides: 

DWLEWLRQLSLELLKFRDQSLSYHHTMVVQIGRFANYFRNLLPSN 

MRHSFFSEVNWQDVYRLFMHHVFLEPITCVCSRRFYQFTKLLDSV 

Control peptides: 

PSLQVITFKQRPRKLSHIRPYMNEIVTLMRFLPQVMPMFLNVIRV 

LKCVQFLSQVMPTFLIHCFENVISIMFLVAAGATLERAKTLSPGK 

4.2.5. Preparation of PEI-Coated PLGA Nanoparticles (NPs) 

PLGA (Resomer-RG503; lactide:glycolide ratio of 50:50; MW 40,600; viscosity 0.41 

dl/g; Evonik, Germany), PEI (branched form, molecular weight of 25,000 Da), and polyvi-

nyl alcohol (PVA) were purchased from Sigma Aldrich, Darmstadt, Germany. 

PEI-coated PLGA NPs were prepared using the solvent extraction–evaporation dou-

ble emulsion (w/o/w) method, with encapsulation of melanoma patients’ antigens. Briefly, 

50 mg of PLGA and 0.65 mg of PEI were dissolved in 1 mL of dichloromethane (DCM) 

and emulsified with a 1.25% (w/v) peptide solution in acetonitrile (ACN):water (50:50) by 

sonication (30 s using Branson sonifier 250). This emulsion was then mixed with 5 mL of 

5% (w/v) PVA and sonicated for 1 min. The final emulsion was poured into a 2% (v/v) 

isopropanol solution (20 mL) and stirred for 2 h to allow solvent evaporation. Finally, the 

resulting nanoparticles were freeze-dried for 42 h with trehalose used as a cryoprotectant 

(Lyobeta 15, Telstar, Barcelona, Spain). 

4.2.6. Characterization of PEI-Coated PLGA NPs 

The size and size distribution of the NPs were analyzed by a dynamic light-scattering 

technique using an electrophoretic light-scattering photometer. The surface charge of the 

NPs was determined by measuring the ζ-potential. The Malvern® Zetasizer NanoZS 

Model ZEN3600 (Malvern Instruments Ltd., Worcestershire, UK) was used for both anal-

yses. 

Peptide encapsulation was determined using the microBCA assay within a linear 

working range of 0–30 μg/mL. (For more information, see the Supplementary Methods: 

Peptide Encapsulation of PEI-Coated PLGA NPs). 
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4.2.7. Generation of Monocyte-Derived Dendritic Cells (DCs) 

Peripheral blood mononuclear cells (PBMCs) were obtained from melanoma patient 

B-057. Three EDTA blood tubes were obtained from the patient, and PBMCs were sepa-

rated by Ficoll-Paque density gradient centrifugation. Monocytes were magnetically iso-

lated using anti-CD14 MicroBeads (MB), and were subsequently cultured with RPMI 1640 

prepared medium with 5% inactivated HAS (Human Serum) (Sigma-Aldrich, Darmstadt, 

Germany), 1% L-glutamine, penicillin/streptomycin (P/S), 400 IU/mL granulocyte-macro-

phage colony-stimulating factor (GM-CSF), and 200 IU/mL IL-4 (complete medium) for 5 

days, at a 2–3 × 106 cell/well concentration in a 6-well plate with 3 ml/well, in order to 

differentiate immature dendritic cells (iDCs). Medium was replaced on the 3rd day, and 

on day 5, maturation studies were performed. The remainder of the PBMCs were frozen 

and stored in N2 with 90% HAS and 10% DMSO. 

4.2.8. Dendritic Cell Maturation 

For DC maturation studies, 50,000 iDCs/well were seeded in a 24-well plate, at a 

100,000 cell/mL concentration, in complete medium. Neoantigens were added as free an-

tigens and encapsulated antigens in complete medium, leading to six different experi-

mental conditions: unstimulated iDC, free AgB057, NPB057, free Agctrl (irrelevant peptide con-

trol), NPctrl (irrelevant encapsulated peptide control), and NPblank (without any antigen). 

Subsequently, 1 μg AgB057A +1μg AgB057B/50,000 iDC, and an equivalent amount of each 

peptide entrapped into NPB057 A and NPB057 B, was added to the corresponding cells. In 

order to maintain the NP quantity constant in all of the experiments, the same amount of 

NPctrlA+B and NPblank was used. On day 6, supernatant was obtained for cytokine analysis 

(IL-10 and TNF-α) and DCs were stained for surface marker analysis (HLA-DR, CD80, 

CD83, CD86 and CD14). The same experiment was conducted in parallel, and matured 

DCs were used for T cell experiments. 

4.2.9. DC/T Cell Co-Cultures 

For autologous cell co-cultures, peripheral blood lymphocytes (PBLs) were obtained 

from the same samples as DCs and maintained frozen until day 6, as previously explained. 

Thereafter, the samples were thawed, and lymphocytes were magnetically isolated using 

anti-CD3 MB and stained with CFSE (5 μM) for posterior proliferation analysis. A 5 mM 

CFSE solution was prepared according to the manufacturer’s instructions (Sigma-Aldrich, 

Germany). Subsequently, 1 μL of the CFSE solution was added to 106 cells/mL, maintained 

at room temperature for 10 min, and then washed with cold medium. CFSE-labeled T cells 

were co-cultured with matured DCs for 5 days at a DC:T cell ratio of 1:10 in complete 

medium. On day 11 following blood extraction, supernatant was collected for posterior 

cytokine analysis, and the surface expression markers CD4 and CD8 were analyzed in T 

cells by flow cytometry, as well as by CFSE expression. 

4.2.10. Flow Cytometry Analysis 

For the analysis of DC surface molecules, DCs were stained with APC-conjugated hu-

man anti-CD80, PEVio770-CD83, FITC-CD86, PE-CD14, and VioBlue-HLA-DR monoclonal 

antibodies (Miltenyi Biotech, Bergisch Gladbach, Germany). T cell surface molecules were 

analyzed with APC-conjugated human anti-CD8 and VioBlue-CD4 (Miltenyi Biotech, Ger-

many), while proliferation was measured with CFSE. In order to avoid unspecific antibody 

binding, all cytometry samples were previously blocked using FcR Blocking Reagent (Mil-

tenyi Biotech, Germany). Flow cytometry was conducted on a MACSQuant cytometer, and 

data analysis was performed using the MACSQuantify software v2.13 (Miltenyi Biotech, 

Germany). The gating strategy is presented in Figures 3 and 5. 
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4.2.11. ELISA from Supernatants 

Supernatants from DCs and DC:T cell co-cultures were collected on days 6 and 11, 

respectively, and stored at −80 °C until analysis. Two cytokines—IL-10 and TNF-α for 

DCs, and IL-2 and IFN-γ for T cells—were measured in both supernatants. The concen-

tration of each cytokine was measured in replicates, using specific ELISA kits according 

to the manufacturer’s instructions (PeproTech, Cranbury, NJ, USA). 

4.2.12. Statistics 

The results are presented as mean ± standard deviation (SD) for each group. The dif-

ferences between groups were analyzed using ANOVA, followed by Tukey’s or Bonfer-

roni’s multiple comparison post hoc test, using GraphPad Prism 5.0 software (GraphPad 

Software, San Diego, CA, USA). 

5. Conclusions 

In this work, a twofold evaluation of computational techniques to detect potential 

neoantigens has been performed. On the one hand, it was found that the mutated versions 

have significantly more HLA-II binding affinity according to bioinformatic estimations, 

and on the other hand, it was confirmed that those techniques were able to select good 

neoantigens with which to develop a vaccine candidate. The resulting neoantigens, along-

side PEI-coated PLGA NPs, generated a strong and specific immune response ex vivo, 

demonstrating an antitumoral response. 

As a result, this study reinforces the use of bioinformatic tools to develop vaccines, 

using those techniques to obtain new efficient approaches for a rising field, such as vaccine 

development, which is more necessary than ever. 
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Abbreviations 

The following abbreviations are used in this manuscript: 
ACN Acetonitrile 

Ag Antigen 

APC Antigen-Presenting Cell 

CI Confidence interval 

DC Dendritic cell 

DCM Dichloromethane 

EE Encapsulation efficacy 

GRAVY Grand average of hydropathicity index 

HAS Human serum 

HLA Human Leucocytic Antigen 

IEDB Immune epitope database 

IFN Interferon 

IL Interleukin 

MHC Major Histocompatibility Complex  

NP Nanoparticle 

PBL Peripheral blood lymphocyte 

PBMC Peripheral blood mononuclear cells  

PdI Polydispersity index  

PEI Polyethylenimine 

PLGA Polyethylenimine-coated L-lactic-co-glycolic acid 

SAP Surface Absorbed Protein 

SD Standard deviation 

TAP Transporter associated with antigen processing 
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