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The hematopoietic system performs the most vital functions in the human body,
integrating the work of various organs while producing enormous numbers of mature
cells daily. Hematopoiesis is primarily driven by hematopoietic stem and progenitor cells
(HSPSCs) which, in performing this function, must carefully balance their decisions of self-
renewal and differentiation while coordinating them with the state of the organism and its
emerging needs—in particular, during various environmental stresses and challenges such
as microbial infections. Experimental evidence of the last years, using the most advanced
molecular, genetic and cellular techniques, reveals an unexpected complexity of both the
HSPC compartment and the bone marrow (BM) niche where HSPCs reside. Intensive
ongoing efforts worldwide concentrate on elucidating, in full detail, the intricacies of HSPC
biology, as well their existence within the BM niche and complex HSPC niche interactions.
This Special Issue was launched to increase the awareness of biomedical specialists in these
important topics. It includes two experimental [1,2] and four review articles [3–6] reporting
the latest advances in this prominent field of biomedicine.

The work of Garg et al. [1] reports new findings concerning the important issue of pro-
tection against ionizing radiation. The hematopoietic system is arguably the system most
susceptible to radiation injury in the human body. Ionizing radiation elicits acute radiation
syndrome (ARS), resulting in damage to actively proliferating stem/progenitor cells and
ensuing pancytopenia, as well as poor recovery and delayed immune reconstitution [7,8].
Currently, only the radiomitigators can be used to combat ARS [9,10], while no radio-
protectors have yet been approved by the FDA. Tocotrienols—and in particular, gamma
tocotrienol—are potent antioxidants and free radical scavengers; thus, they are promising
candidates to be used as radioprotectors [11]. The study published in this Special Issue is
the first work to address the state of major immune cell populations in BM after total body
radiation in non-human primates. The results obtained by Garg et al. demonstrate that
pre-treatment of irradiated animals with gamma tocotrienol mitigates radiation-induced
injury to hematopoietic cells. The study also showed that gamma tocotrienol reduced dam-
age to HSCs, as evidenced by analysis of colony-forming units-granulocytes/macrophages
(CFU-GM) and burst-forming units erythroid (B-FUE), especially at higher 5.8 Gy radiation
doses. Gamma tocotrienol also improved circulating neutrophil and platelet recovery.

An interesting study by Gotzhein et al. [2] describes the results of experiments on
various heterochronic transplantations using the most advanced technologies for cell track-
ing, including genetic barcoding [12,13], in combination with multicolor labeling [14]. The
barcoding was performed ex vivo with various isolated classes of murine HSCs and pro-
genitors using lentiviral transduction, followed by transplantation into lethally irradiated
animals. The obtained data indicate that reconstitution was mainly driven by HSCs and
multipotent progenitors (MPPs), but not the committed myeloid or lymphoid progenitors.
Moreover, the authors observed that the dynamics of reconstitution and the contribution
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of the transduced HSPC subpopulations were largely independent of age. These results
are somewhat at odds with the accepted notion, derived from the clinical experience with
numerous hematopoietic stem cell transplantations, which indicates that cells from young
donors (below 30 years) contribute to the better survival of recipients [15,16]. The authors
also did not find the earlier-reported prominent myeloid skewing with the transplantation
of aged cells [17–19]. The authors attribute this to ex vivo culturing and the transduction
of hematopoietic cells with lentiviral barcoding constructs, which might largely eliminate
the skewing effect. It should be mentioned that this explanation has quite a valid raison
d’être; recent works have demonstrated the previously overlooked deleterious effect of HSC
manipulations under normoxia conditions that might induce HCS activation, thus resulting
in their exit from a quiescent state and their differentiation [20]. Therefore, extended ex
vivo manipulations of HSCPs may introduce bias in the experimental results.

The review article by Xu et al. [3] addresses the important issue of effects of inflamma-
tory or infectious signals on normal HSC fate, lineage output and function. The authors
provide a brief analysis of how recent technological advances change our view of global
hematopoiesis organization as a highly hierarchical process, emphasizing heterogeneity
within the hematopoietic stem/progenitor compartment. This is followed by a succinct
description of the role of the BM niche in the support and control of hematopoiesis. The
authors then devote a major part of their analysis to perturbations of hematopoiesis in
chronic inflammatory disease, and diabetes mellitus in particular. A large body of ev-
idence demonstrates that hyperglycemia promotes myelopoiesis and the inflammatory
macrophage phenotype. Importantly, it also induces a form of persistent “memory” in
BM progenitors, which results in the continuing inflammatory phenotype supporting the
chronic character of diabetes. Hyperglycemia also induces profound changes in the BM
niche, resulting in the dysfunction of the endothelial component and sympathetic ner-
vous system, as well as the elevation of inflammatory cytokine production by niche cells.
Overall, these studies demonstrate the existence of a “vicious circle” of diabetes-driven
low-grade inflammation that results in a further pro-inflammatory shift in both hematopoi-
etic progenitors and the BM niche. Obesity is another example of a chronic disease with
low-grade inflammation characterized by, as far as concerns hematopoiesis, loss of BM
integrity, disruption of normal hematopoiesis, increased pools of myeloid progenitors and
general myelopoietic bias. In addition to the effects on hematopoiesis itself, obesity also
impacts the niche, substantially increasing the number of adipocytes in BM. The authors
further discuss the hematopoietic alterations in trained immunity [21], a long-lasting form
of innate immunological memory that enables the heightened response to the secondary
challenge. The persistence of trained immunity is enabled by changes in the metabolic and
epigenetic profiles in HSPCs [22], leading to enhanced myelopoiesis. In the wide group of
trained immunity triggers, a prominent place belongs to β-glucans, LPS and high-fat diet.

The review article by Belyavsky et al. [4] discusses, in some detail, numerous aspects
of hematopoiesis, HSPCs and mesenchymal stem/progenitor cells (MSCs). It starts with
description of the embryonic hematopoiesis, and in particular, two waves of hematopoiesis
in the yolk sac followed by the formation of HSCs in the AGM (aorta–gonad–mesonephros)
region from the hemogenic endothelium. In addition, the most important transcription
factors regulating this process are reviewed in this section. The formation of MSCs in
embryo is also discussed. The authors then describe adult HSCs and the main findings
of recent years concerning adult steady-state hematopoiesis, and in particular, its clonal
structure as revealed by various approaches. The authors also review new perspectives on
the hematopoietic hierarchy based on the latest results obtained from single-cell transcrip-
tome analysis. In the next section of the review, a role for MSCs in adult hematopoiesis is
analyzed—in particular, the differentiation hierarchy of the mesenchymal component of
BM, also revealed by single-cell transcriptome analysis. The next section of the review is
devoted to the aging hematopoietic system, and in particular, to the changes in HSCs that
gradually lose their self-renewal and regeneration capacity, albeit apparently increasing
their numbers. The review further describes changes in the mesenchymal component of
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BM during aging, in particular, the increased secretion of pro-inflammatory cytokines and
the role of epigenetic factors, especially TET proteins and DNA methyltransferases, in
MSC aging. The authors continue with a discussion of the mechanisms of HSC aging,
namely, oxidative stress, DNA damage and mitochondrial malfunction, as well as defects
in proteostasis mechanisms including the proteasome system, the unfolded protein control
system and autophagy. The deregulation of epigenetic mechanisms and polarity loss in
aged HSCs is also analyzed. In the final section of the review, approaches to the rejuvena-
tion of the hematopoietic system and perspectives on translation to the clinic are analyzed
in some detail.

The review by Kandarakov et al. [5] considers the important topic of niches of HSPCs
in bone marrow. The authors first discuss the anatomy of the BM niche, including anatomy
of BM in general and the location of the niche in hypoxic regions of BM. The review then
considers different and often-discordant views on the nature of the BM niche for HSCs and
suggests that HSCs may be associated with a number of anatomical locations; thus, niches
are likely to be abundant in BM. The authors continue with a detailed analysis of potential
niche cellular components and their functions, including MSCs, endothelium, osteoblasts,
megakaryocytes, macrophages, adipocytes, lymphoid cells and nerve fibers, concluding
this chapter with the results of a single-cell analysis of niche heterogeneity. The review
then considers the niches of committed cells, which are apparently different from those
of HSCs. The next section is devoted to the analysis of HSC metabolism states and their
relation to the niche. The following section describes the age-related changes in the HSCs
and the niche, including its specific cellular constituents. The two concluding chapters deal
with niche transformation in leukemia, with its effects on leukemogenesis, and finally, with
the contemporary state of niche modeling.

The review article by Shevyrev et al. [6] is focused on the complex and highly intricate
issue of the origin and development of hematopoietic cells in embryo, embryonic HSCs,
the development of adult HSCs and changes in hematopoiesis occurring during aging. The
review starts with the early stages of HSC formation in embryo via a characterization of
hemogenic endothelium and a description of events resulting in the appearance of the first
HSCs precursors in the dorsal aorta. The authors continue with a characterization of the
first definitive HSCs that are able to give rise to all hematopoietic lineages, stressing in
particular their high regenerative potential, both in mice and in humans. The review then
discusses the migration of these cells through the vascular labyrinths of the placenta to the
fetal liver, where their numbers expand significantly. The authors also describe the main
differences between embryonic and adult HSCs. Following this, the authors proceed to
briefly characterize adult hematopoiesis, while most of the subsequent text is devoted to
alterations in HSCs and hematopoiesis during aging. The review provides a comprehensive
analysis of the negative processes accompanying HSC aging, including the increase in
DNA damage and its underlying mechanisms, epigenetic modifications, transcriptomic
alterations and the increase in cell heterogeneity. The authors discuss, in some detail, the
phenomenon of clonal hematopoiesis, its mechanisms and the major genes driving it, as
well as myeloid bias occurring both in clonal hematopoiesis and in normal hematopoiesis
during aging. Substantial attention is also paid to inflammation and alterations in the aging
BM niche. In the final part of their review, the authors describe the numerous negative
effects of aging on cell composition and the operation of the immune system.

In conclusion, a broad range of topics pertaining to hematopoiesis was presented in
this Special Issue through original state-of-the-art experimental articles and comprehensive
and highly informative reviews. We hope that these contributions will be of substantial
interest both to professionals working in this field and to the biomedical audience in general.
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