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Abstract: The dysregulation of lipid metabolism and alterations in the ratio of monounsaturated
fatty acids (MUFAs) to saturated fatty acids (SFAs) have been implicated in cancer progression and
stemness. Stearoyl-CoA desaturase 1 (SCD1), an enzyme involved in lipid desaturation, is crucial
in regulating this ratio and has been identified as an important regulator of cancer cell survival
and progression. SCD1 converts SFAs into MUFAs and is important for maintaining membrane
fluidity, cellular signaling, and gene expression. Many malignancies, including cancer stem cells,
have been reported to exhibit high expression of SCD1. Therefore, targeting SCD1 may provide a
novel therapeutic strategy for cancer treatment. In addition, the involvement of SCD1 in cancer stem
cells has been observed in various types of cancer. Some natural products have the potential to inhibit
SCD1 expression/activity, thereby suppressing cancer cell survival and self-renewal activity.
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1. Introduction

Tumor emergence and progression is an intricate process influenced by various factors.
Within the tumor microenvironment, the self-renewal capacity of a tumor relies on a small
subset of cells known as tumor-initiating cells and cancer stem cells (CSCs). These cells
possess the ability to proliferate, undergo self-renewal, and are frequently associated with
the reemergence of tumors following cancer treatment [1]. CSCs adapt their metabolism to
facilitate tumor growth. To maintain the function of CSCs, they undergo crucial metabolic
shifts such as dysregulation of glycolysis and lipid metabolism. CSCs hold a crucial position
in driving the tumor progression, metastasis, infiltration, resistance to drugs, and relapse
of cancer cells [2]. Lipid dysfunctions are associated with more aggressive molecular
characteristics and increased transcripts related to lipogenesis and cholesterol synthesis
pathways, which are linked to unfavorable survival outcomes [3]. Recent studies have been
presented suggesting that disruptions in lipid metabolism, caused by the high need for
energy and structural components, may have a significant impact on CSCs [4,5].

To maintain energy production, tumor cells need to regulate their nutrient intake and
metabolism by reprogramming their metabolic pathways. Lipids play a critical role as a
source of energy, structural components of biological membranes, signaling molecules, and
regulators of redox homeostasis in cancer cells [6,7]. The dysregulation of lipid metabolism
is affected by enzymes and signaling molecules that are involved in the lipid metabolism
process. Lipid metabolism can modify the composition of the cell membrane, affect gene
expression, and impact downstream signaling pathways that regulate various cellular
processes, such as cell proliferation, motility, inflammation, and survival [8]. Lipids
are an essential component of cells and organelle membranes, and fatty acids are also
necessary for the proliferation of bulk tumor mass and the maintenance of cancer stem
cells [9,10]. Alterations in both lipid catabolism and anabolism contribute to acquiring
stemness characteristics in cancer cells, including lipid uptake, de novo lipogenesis, lipid
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desaturation, lipolysis, and fatty acid oxidation [11]. Recent reports implicate lipid desatu-
ration as an essential process for cancer cell survival.

The lipid composition of cellular membranes affects membrane fluidity, cellular sig-
naling, and, consequently, gene expression. Cancer cells have distinctive metabolic phe-
notypes that are characterized by the altered ratio of saturated to monounsaturated fatty
acids (MUFAs) [12,13]. A critical committed step in the biosynthetic pathway of MUFAs
is the introduction of the cis double bond between carbons 9 and 10 (∆-9 position). The
endoplasmic reticulum (ER) enzyme stearoyl-coenzyme A desaturase 1 (SCD1) converts
saturated fatty acids (SFAs) into MUFAs, hence regulating the ratio of MUFAs to SFAs in
cells [14]. This review highlights the role of SCD1, which is essential in the process of lipid
desaturation in cancer cells and cancer stem cells [15,16].

2. Structure and Function of SCD1

The crystal structures of SCD1 in both mouse and human species were reported
previously [17,18]. Mouse SCD1 shares 84% of its sequence identity with that of humans.
SCD1 is an iron-containing transmembrane enzyme that consists of a cone-shaped structure
formed by four α-helices. The protein is exclusively located on the ER membrane, with
both the N- and C-terminal domains extending into the cytosol. Highly conserved regions
surround the iron-containing center, including the eight histidines found in the cytoplasmic
loop and C-terminus [17,19,20].

SCD is an integral membrane protein anchored to the ER membrane, where it catalyzes
the biosynthesis of MUFAs from dietary or de novo synthesized SFA precursors. Four
mouse SCD isoforms (SCD1-4) [21–24] and two human isoforms (SCD1 and 5) have been
identified [25,26]. Two human SCD isoforms share the same enzymatic function but exhibit
different tissue distribution patterns. SCD1 is found in almost all tissues, with major
levels found in lipogenic tissues such as the liver and adipose tissue [27]; SCD5 is mainly
expressed in the brain [28]. SCD1 plays a crucial role in lipid synthesis and the regulation
of energy metabolism. SCD1 especially converts stearoyl-CoA (18:0) and palmitoyl-CoA
(16:0) into the MUFAs oleoyl-CoA (18:1) and palmitoleoyl-CoA (16:1) through the insertion
of a double bond in the ∆-9 position of the substrate [29]. These MUFA products of
SCD1 desaturation are used as significant substrates for synthesizing a variety of complex
lipids, including phospholipids, triglycerides, cholesteryl esters, wax esters, and other lipid
species. SCD1 contributes to the fatty acid composition and fluidity of the membrane,
influencing membrane-mediated biological signal transduction for the regulation of cell
growth and differentiation [13,30]. It is also critically important in lipid metabolism and
energy balance for storing or oxidation of lipids [31]. High SCD1 activity and/or expression
has been found in a wide range of diseases, including atherosclerosis [32,33], obesity [34,35],
and cancer [36,37]. In particular, reports that the expression and activity of SCD1 can
play a key role in the pathogenesis of cancer have been attracting attention. In addition,
there is mounting evidence indicating the potential value of SCD1 as a target for novel
pharmacological approaches in cancer therapy [12,38–43].

3. Role of SCD1 in Cancer

Many studies have demonstrated the relevance of a supporting role for SCD1 in
cancer progression of lung, breast, and prostate carcinomas, as well as clear cell renal cell
carcinoma (ccRCC) [39,40,43–46]. The importance of SCD1 in cancer has already been
reported in several review articles [12,38,47]. An increased ratio of MUFA/SFA propelled
by high SCD1 expression appears to be a marker for the onset of typical traits of malignant
behavior such as a high rate of cell proliferation, survival, and invasiveness [47]. It is
recognized as a factor contributing to the lipogenic metabolism of cancer cells, followed by
the biosynthesis of membrane phospholipids and energy-storage lipids [47]. In lung cancer,
the ablation of SCD1 expression reduced the proliferation and invasiveness of cancer cells,
consequently impairing tumorigenic capacity [39,48,49]. In addition, treating colon cancer
cells with SCD1 inhibitors interrupted the cellular conversion of stearate to oleate in colon
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cancer cells, resulting in delayed tumor growth [46]. Hypoxia-inducible factor (HIF) is
a well-known signaling mechanism that regulates SCD1 activity. In ccRCC, SCD1 was
upregulated in response to HIF-2α. Increased SCD1 provides a sufficient substrate for lipid
biosynthesis, which is required for rapid cell division. In addition, the upregulation of
SCD1 also enhanced the expression of HIF-2α in feedback regulation by cooperating with
HIF-1α, ultimately promoting tumorigenesis [50].

Recently, it has been demonstrated that inhibition of SCD1 in tumor cells can have
antitumor effects by regulating immune cells in cancer tissues. Administering the SCD1
inhibitor A93957223 in mouse tumor models has been found to enhance antitumor T cells
by recruiting dendritic cells (DCs) into tumors. SCD1 inhibition enhanced the production of
chemokine C-C motif ligand 4 (CCL4) in cancer cells by reducing Wnt/β-catenin signaling.
In addition, inhibiting SCD1 has been found to directly recruit DCs and induce CD8+ T
cells induction, leading to increased production of CCL4 due to reduced ER stress [51].
The combination of SCD1 inhibition and anti-PD-1 therapy resulted in a synergistic effect,
suggesting that targeting SCD1 may be a promising strategy for enhancing immunotherapy
in cancer treatment [51].

The correlation between autophagy and SCD1 expression is also of increasing inter-
est. Huang and colleagues demonstrated that pharmacological inhibition of SCD1 using
CAY10566 induces autophagy-dependent apoptosis in human hepatocellular carcinoma
(HCC) cells [52]. In addition, treatment involving the use of MF438 to inhibit SCD1 in
lung cancer spheroid cells resulted in the activation of the ER stress response accompanied
by a significant increase in autophagy, as determined by elevated levels of LC3-II [53].
Blocking SCD1 activity reversed the resistance of lung cancer sphere-forming cells to cis-
platin [53]. Autophagy can act as both a cell survival mechanism and a tumor suppressor
during tumorigenesis, depending on the context [54]. Ono et al. discovered that inhibiting
SCD1 using both the small molecule T-3764518 and SCD1 shRNA in colon cancer HCT-116
cells accelerated the autophagic process and activated AMPK, enabling the cancer cells to
escape the cytotoxic effects of SCD1 inhibition [55]. The inhibition of SCD1, leading to the
excessive accumulation of saturated fatty acids, can activate the AMP-activated protein
kinase (AMPK)-mediated resistance mechanism in HCT-116 cells. Therefore, when cells are
exposed to both SCD1 and autophagy inhibitors, the activation of autophagy, known as a
survival signal, is inhibited, ultimately resulting in the induction of cancer cell death [55].
In accordance with a previous report, the combination of amodiaquine treatment with
SCD1 inhibition using A930572 showed a strong synergistic effect in inhibiting cancer cell
proliferation, as demonstrated in lung cancer cells and a mouse xenograft model [56].

The importance of SCD1 function in cancer stem cells as well as cancer has been
increasingly highlighted.

4. Role of SCD1 in Cancer Stem Cells

Studies have suggested that CSCs have a higher proportion of MUFAs in their lipid
composition compared to non-stem cancer cells, indicating that lipid desaturation could
serve as a potential biomarker for CSCs in certain types of tumors, such as ovarian and
glioblastoma. [15,57,58]. Membrane fluidity is defined as the degree of the molecular order
and motion of membrane constituents, which is dependent on the content of unsaturated
lipids [59]. Several studies have demonstrated that reducing membrane fluidity through
anti-metastasis drugs can inhibit the metastatic capacity and stemness characteristics of
breast cancer cells. This is thought to occur due to changes in membrane properties that
affect signaling pathways and gene expression involved in these cellular processes [60].
In addition, Song et al. reported that MUFAs are required for the sphere formation of
glioblastoma multiforme cell lines, as assessed by lipidomic profile differences between
CSCs and bulk cancer cells [58]. MUFAs such as oleic acid, phosphatidylcholine, and phos-
phatidylethanolamine are enriched in CSCs compared to their non-stem counterparts [58].
The role of SCD1 in cancer stem cells has expanded to various cancer types, particularly
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lung, ovarian, breast, and prostate cancer [15,16,53,61]. The possible impact of SCD1 on
tumorigenesis is summarized in Figure 1.
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Figure 1. Role of SCD1 in tumorigenesis. MUFAs, as the products of SCD1 desaturation, are used
as the building blocks for various types of complex lipids, such as phospholipids, triglyceride,
cholesteryl esters, and other types of lipids. Fatty acid composition and the fluidity of the cell
membrane are influenced by this factor, which contributes to the regulation of self-renewal activity,
ferroptosis, and metastasis by affecting membrane-mediated biological signal transduction. It is also
related to the regulation of ROS cellular levels.

4.1. Ovarian Cancer

As mentioned earlier, SCD1 is an enzyme responsible for the desaturation of SFAs
to MUFAs, which leads to an increase in the ratio of MUFAs to SFAs. This ratio was also
significantly increased in ovarian cancer COV362 and OVCAR5 cells grown as spheres [15].
It is reported that ALDH+/CD133+ cells isolated from COV362 cells possess phenotypic
characteristics of cancer stem cells and have a higher level of MUFAs [15]. Inhibition of
SCD1 using a small molecule inhibitor or siRNA significantly reduced lipid unsaturation
levels in ovarian cancer spheroids and then suppressed sphere-forming ability with de-
creased levels of ALDH1A1, Nanog, Sox2, and Oct-4 mRNA expression [15]. Nuclear factor
kappaB (NF-κB) is reported to be the key signal molecule that regulates SCD1 in ovarian
CSCs. When treated with dimethylamino parthenolide, an inhibitor of NF-κB, primary
ovarian cancer spheres exhibit reduced levels of both lipid unsaturation and SCD1 mRNA
expression [15]. Notably, the mRNA expression of SCD1 was regulated by p65, which binds
directly to its promoter region. Conversely, treating SCD1 inhibitors in primary ovarian
cancer spheres led to the suppression of NF-κB transcriptional activity.

Spheroids derived from the malignant ascites of ovarian cancer cells exhibit aber-
rantly elevated expression of SCD1 and fatty acid desaturase 2 (FADS2), positively ac-
celerating lipid metabolic activities [62]. Pharmaceutical inhibitors of SCD1 and FADS2
suppressed sphere formation ability, which was accompanied by a reduction in the ex-
pression levels of self-renewal-related markers such as Krüppel-like factor 4 (KLF4) and
Bmi-1 [62]. In addition, overexpression of SCD1 or FADS2 led to upregulation of the
mesenchymal marker vimentin and epithelial-to-mesenchymal transition (EMT) regulators
such as ZEB1, SNAIL, and Slug in ovarian cancer cells [62]. Blocking SCD1/FADS2 con-
tributed to increased cellular reactive oxygen species (ROS) and lipid peroxidation through
downregulated glutathione peroxidase 4 (GPX4) and the reduced glutathione/oxidized
glutathione (GSH/GSSG) ratio in ascites-derived ovarian cancer cells, thereby promot-
ing ferroptosis [62]. Moreover, co-treatment with SCD1/FADS2-specific inhibitors and
cisplatin disrupted the metastatic spindle morphology of ovarian cancer patient-derived
organoids [62].
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4.2. Lung Cancer

SCD1 is overexpressed in the spheroids of lung cancer NCI-H460 cells and primary
tumor cells derived from the malignant pleural effusions of patients with lung adenocar-
cinoma compared with adherent cultures [63]. Silencing and pharmacological inhibition
of SCD1 reduced sphere-forming efficiency and was accompanied by attenuated mRNA
expression of stem cell markers such as ALDH1A1, Nanog, and Oct4 [63]. Spheroids treated
with the SCD1 inhibitor MF-438 exhibited features of cellular damage, such as cytoplasmic
vacuolization, mitochondrial swelling, and apoptotic nuclei [63]. In addition, SCD1 enzy-
matic inhibition selectively induced apoptosis of ALDH1A1-positive cells. Cells generated
from spheroids in the presence of MF-438 show strongly decreased tumorigenic potential
with impaired expression of ALDH1A1 [63].

High SCD1 mRNA and protein levels are associated with tumor progression and poor
survival in lung adenocarcinoma [53,64]. High SCD1 expression combined with stemness
markers such as CD24, CD133, SOX2, and CD44 is related to lung adenocarcinoma patients
with worse prognosis [53]. SCD1 expression has been found to be upregulated in lung
cancer spheroids, which are enriched for lung cancer-initiating cells [65]. The increased
amount of unsaturated fatty acids caused by SCD1 can act as a substrate for the enzyme
porcupine, also known as a membrane-associated O-acyltransferase. Wnt ligand undergoes
post-translational acylation, which is mediated by porcupine. Wnt ligand combined with
the frizzled class receptor 4 (FZD4) receptor causes inactivation of the destruction complex,
ultimately stabilizing β-catenin and YAP/TAZ protein activity [65]. Resistance to cisplatin
in lung cancer cells was attenuated through treatment of SCD1 with the pharmacologic
inhibitor MF-438, which was confirmed by a sphere-forming assay [53]. In addition, the
ALDH1A1high cells isolated from lung cancer spheroids showed higher expression of SCD1
and NANOG, and this effect was abrogated by simultaneous co-treatment with an SCD1
inhibitor [53]. Moreover, SCD1 activity has been linked to the activation of YAP and TAZ
through the Wnt/β-catenin axis, thus contributing to the survival and spread of lung cancer
stem cells [65]. Silencing of SCD1 caused inhibition in the protein expression of YAP and
TAZ, which are required for the spheroid formation of lung cancer cells [65].

Epidermal growth factor receptor (EGFR) directly binds to SCD1 and phosphorylates
its Tyr55 residue, which maintains the stability of SCD1 protein and increases MUFA levels
to facilitate lung cancer growth [66]. EGFR activation was positively correlated with SCD1
Tyr55 phosphorylation, SCD1 protein expression, and poor patient prognosis in non-small
cell lung cancer (NSCLC) tissues [66].

4.3. Liver Cancer

SCD1 mRNA expression was increased in the tumor tissues of approximately 60%
of HCC patients compared to their non-tumor counterparts [67]. SCD1 was significantly
upregulated in established sorafenib-resistant Bel7402 and Huh7 HCC cell lines and patient-
derived tumor xenografts (PDTX) [67]. These cell lines established with shRNA against
SCD1 exhibited a decrease in the percentages of CD24 and CD47 markers. Knockdown of
SCD1 using shRNA sensitized HCC cells to sorafenib through the induction of ER stress,
which is mediated by an increased mRNA expression of CHOP and Bip [67]. Co-treatment
with SSI-4 (an inhibitor of SCD1 enzymatic activity) and sorafenib by oral gavage resulted
in a synergistic effect on tumor growth inhibition in a PDTX model [67]. Sphere-forming
cultures of HCC-enriched subpopulations with stem-cell characteristics are maintained by
peroxisome proliferator-activated receptor-gamma (PPARγ) activation, which upregulates
SCD1 expression and induces transcriptional activity and nuclear accumulation of β-
catenin [68]. Treatment with PPARγ-specific antagonists or SCD1 inhibitors effectively
decreased the sphere-forming capacity of HCC Huh7 and Hep3B cells, resulting in the loss
of CSC properties through reduced expression of CSC-related markers such as EpCAM,
CD133, CD24, KRT19, and ICAM1 [68].

Inhibition of lipid unsaturation using shRNA against SCD1 or chemical inhibitor
CAY10566 suppressed the proliferation of HCC JHH7 cells grown under monolayer and
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sphere cultures, which is mediated by the downregulation of MYCN mRNA expression [69].
In addition, the content of unsaturated fatty acids was increased in MYCNhigh/EpCAM+

CSC-rich HCC cells. It has been known that induction of ER stress causes a loss of in-
testinal epithelial stemness [70], while its reduction enables the maintenance of functional
hematopoietic stem cells [71]. Both MYCNhigh/EpCAM+ CSC-like HCC cells and CSC-rich
spheroids showed downregulation of ER stress-induced activating transcription factor 3
(ATF3) gene expression [69]. Treatment with the ER stress chemical inducer stimulated the
expression of the ATF3 gene while reducing the expression of MYCN in JHH7 cells [69].
Moreover, the expression of ER stress-inducible transcription factor ATF3 was downregu-
lated in MYCNhigh CSC-like HCC cells, which was rescued through treatment with acyclic
retinoid as a modulator of lipid desaturation [69].

4.4. Skin Cancer

In the Human Protein Atlas database, SCD1 is highly expressed in oral and skin
squamous carcinoma samples [72]. Runx1 is known to be essential for the growth and
survival of human oral and skin squamous cell carcinoma (SCC) cell lines [73]. Runx1
levels affect the membrane fluidity of cultured keratinocytes and human SCC cell lines by
regulating SCD1 activity and the concentration of its product, oleate [72]. SCD1 expression
induced Wnt activation, which may promote the activation and proliferation of keratinocyte
and hair germ cells [72].

4.5. Bladder Cancer

High levels of SCD mRNA and protein have been associated with poor prognosis
in patients with bladder cancer. SCD1 expression was upregulated in bladder cancer
tissue samples compared with adjacent non-tumor tissues [74]. Inhibition of SCD activity
was capable of decreasing the migration and invasion abilities of bladder cancer cell
lines [74]. Blockade of SCD1 activity caused cell cycle arrest in the G1/S phase through
downregulation of cyclin D1, Rb, Cdk4, and Cdk6. Interestingly, while SCD1 inhibitor
A939572 did not induce apoptosis in parental bladder cancer cells, the inhibitor significantly
inhibited the growth of sphere-forming cells [74].

4.6. Colon Cancer

The expression of SCD1 protein and mRNA is highly increased in colon adenocar-
cinoma HCT-15, HCT-116, SW480, and HT-29 cells grown under CSC-enriched culture
conditions [75]. The ratios of MUFAs to SFAs and the levels of unsaturated lipids were sig-
nificantly decreased in HCT116 colon CSCs treated with CAY10566, an SCD1 inhibitor [76].
Treatment with CAY10566 inhibited the spheroid formation of CSCs, indicating that SCD1
activity was associated with the stemness and tumorigenicity of colon CSCs [76]. In addi-
tion, the ratios of MUFAs to SFAs were higher in CSCs compared to parent colon HCT116
cancer cells [76]. Another SCD1 inhibitor, MF-438, did not kill the colorectal CSC population
cells but regulated the expression of CSC-related signaling genes such as AXIN, LEF1, and
Notch1 [77]. Moreover, irinotecan-resistant colon cancer cells led to a decrease in MUFAs
with higher levels of SCD1 compared with their parental cells [78]. SCD1 directly regulates
the expression of ALDH1A1, which is a CSC biomarker that can stimulate ROS generation
and cancer stemness in irinotecan-resistant colon cancer cells [78].

4.7. Glioblastoma

Overexpression of sterol-regulated element-binding protein 1 (SREBP1) has been ob-
served in glioblastoma multiforme (GBM), leading to enhanced lipid metabolism associated
with abundant MUFAs [79]. SCD1 is one of the target genes regulated by SREBP1, and it
has been shown to be required for tumor growth in several types of cancer [79]. Silencing of
SCD1 reduced cell viability in patient-derived glioblastoma stem cells (GSCs), while there
was no change in normal human astrocytes [80]. Ectopic expression of SCD1 led to a greater
frequency of stem cells in GSCs and promoted cell growth and the formation of secondary
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spheres. Following intracranial transplantation of GSCs in mice, it was confirmed that more
tumors developed in the mice group in which SCD1 was overexpressed [80]. Intranasal
delivery of the SCD1 inhibitor CAY10566 into a PDTX mouse model showed the ability to
inhibit tumor formation [80]. In addition, activation of SCD1 transcription and the subse-
quent synthesis of MUFAs plays a cytoprotective role in mitigating ER stress [80]. Using
a dataset from The Cancer Genome Atlas, a positive correlation was observed between
transcript levels of BiP and SCD1 in the GBM patient group [80]. Inhibition of SCD1 led to
the accumulation of SFAs, which in turn exacerbated ER stress. GSCs treated with the SCD1
inhibitor CAY compound displayed an increase in ER stress markers such as Bip, ChOP,
sXBP1, and GADD34 [80]. The activity of SCD1 provides GSCs with a survival advantage,
making them vulnerable to metabolic targeting via SCD1 inhibition [80].

4.8. Gastric Cancer

SCD1 has been shown to enhance the population of gastric cancer sphere cells through
the Hippo/YAP pathway [81]. The use of an inhibitor or siRNA to suppress SCD1 reduced
the expression of stemness-associated cell surface markers such as CD44, CD133, and Lgr5
and transcriptional levels of Sox-2, Oct-4, and Nanog. This impairs the sphere-forming
ability of patient-derived gastric cancer cells [81]. Inhibition of SCD1 led to disassembly of
YAP in the nucleus via decreased YAP phosphorylation, which attenuates the expression of
TEA domain family member 1 (TEAD1) and cyclin D1 [81]. In addition, when cells treated
with A939572, a pharmacological inhibitor of SCD1, were injected subcutaneously into
SCID mice, the ability to form tumors was significantly suppressed [81].

4.9. Breast Cancer

SCD1 is overexpressed and correlates with poor prognosis in breast cancer patients [82].
CD10 is known to degenerate osteogenic growth peptide (OGP), which is recognized as an
anti-tumoral peptide, and is expressed in cancer-associated fibroblasts to support tumor
stemness and induce chemoresistance [83]. CD10 sustains the characteristics of cancer stem
cells by cleaving the active domain of OGP in mammosphere formation [83]. In addition,
OGP treatment of MCF-7 mammosphere cells reduced SCD1 expression and subsequently
impaired lipid desaturation [83].

Table 1 provides a summary of the consequences of inhibiting SCD1 in cancer stem
cells of various types.

Table 1. The effects of inhibiting SCD1 on different types of cancer cell lines.

Cell Type Regulated Genes or
Proteins Phenotypic Effects Ref.

COV362, OVCAR5 ALDH1A1, Nanog, Sox2, Oct-4↓ Sphere-forming ability↓ [15]

Ascites-derived ovarian cancer cells KLF4↓, ROS↑, GPX4↓,
GSH/GSSG ratio↓

Ferroptosis↑, EMT↓,
sphere-forming ability↓ [62]

NCI-H460 ALDH1A1, Nanog, Oct-4↓ Sphere-forming ability↓ [63]

Patient-derived lung cancer tissue YAP, TAZ activity↓ Sphere-forming ability↓ [65]

Sorafenib-resistant Bel7402 and Huh7 cells CD24, CD47↓
CHOP, Bip↑

ER stress↑,
sphere-forming ability↓ [67]

Huh7 and Hep3B cells EpCAM, CD133, CD24, KRT19, ICAM1↓ Sphere-forming ability↓ [68]

JHH7 cells ATF3, MYCN↓ Sphere-forming ability↓ [69]

UMUC3 and RT4 cells Cyclin D1, Rb, Cdk4, Cdk6↓
Cell cycle arrest↑,

migration and invasion↓,
sphere-forming ability↓

[74]

Patient-derived glioblastoma stem cells Bip, ChOP, sXBP1, GADD34↑ Cell viability↓
sphere-forming ability↓ [80]

Gastric cancer stem-like HSC034 cells Sox2, Oct4, Nanog, CD44, Lgr5, CD133↓,
YAP, TEAD1↓

Sphere-forming ability↓,
metastasis↓ [81]
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5. Regulation of SCD1 Expression by Anti-Carcinogenic Natural Compounds
5.1. Betulinic Acid

Betulinic acid (BetA), a lupine-type pentacyclic triterpenoid saponin from tree bark, is
known to exhibit cytotoxicity against various cancer cells but not normal cells [84,85]. BetA
inhibited the activity of SCD1, which regulates the saturation level of cardiolipin, a lipid
known for mitochondrial structural function [86]. BetA caused an increase in cardiolipin
saturation within the mitochondria membrane, resulting in the release of cytochrome
c and triggering apoptosis in HeLa cells. Under the same experimental condition, this
was also confirmed by SCD1 knockdown using siRNA [86]. In addition, BetA inhibited
the proliferation of gallbladder cancer NOZ cells by disturbing mitochondrial membrane
potential [87]. Additionally, BetA suppressed SCD1 expression at both the mRNA and
protein levels in NOZ cells. Administration of BetA decreased tumor size in xenograft
mice injected with NOZ cells, and SCD1 expression was also suppressed [87]. Moreover, in
primary colorectal cancer stem cells, betulinic acid induced apoptosis as well as a loss of
clonogenicity, which is caused by SCD1 inhibition [88].

5.2. Curcumin

Curcumin is a dietary polyphenol compound derived from rhizomes of turmeric
(curcuma longa). It has been shown to have anti-cancer effects in in vitro, in vivo, and pre-
clinical studies [89]. Curcumin inhibited primary and secondary mammosphere formation
based on breast cancer MCF-7 and SUM149 cells. In addition, curcumin treatment resulted
in downregulated expression of SCD1 in ALDH+ populations sorted from primary breast
cells [90]. Moreover, the regulatory effects of curcumin on lipogenic enzymes have attracted
increasing attention as a potential means of inhibiting or reversing tumor growth [90].

5.3. Trichothecin

Trichothecin is a sesquiterpenoid isolated from the endophytic fungus of the herbal
plant Maytenus hookeri Loes. SCD1, which is highly expressed in aggressive colorectal
carcinoma, was attenuated by trichothecin treatment and restored saturated fatty acid lev-
els [91]. In addition, the transcriptional activity of the SCD1 promoter region was reduced
through trichothecin treatment in colon cancer LOVO and HCT116 cells, contributing to
the anti-invasive effect [91]. It can be suggested that the anti-tumor effects of trichothecin
may be related to SCD1-mediated fatty acid metabolite alterations.

5.4. Icaritin

Icaritin is a prenylflavonoid derivative from the Chinese herbal medicine Eimedii Herba
and has been known to exert anti-cancer effects. The possibility of the direct binding
of icaritin to SCD1 is suggested by computer-aided drug design [82]. Icaritin inhibited
the growth of MCF-7 and SK-BR-3 cells in the mitochondrial pathway by reducing the
expression and activity of SCD1 [82]. An icaritin derivative induced autophagy through
AMPK/mTOR and mitogen-activated protein kinase signaling pathways in MCF-7 cells.
Icaritin-induced autophagy was alleviated by overexpression of SCD1 in MCF-7 cells.

6. Concluding Remarks and Future Perspectives

High SCD1 expression has been reported in many malignancies, including cancer
stem cells [15,16,53,61]. Some dietary and natural anti-cancer compounds regulate the ex-
pression/activity of the SCD1 gene/protein, which results in restoration of the proportion
of SFAs. Downregulation of SCD1 expression is associated with inhibited proliferation,
migration, metastasis, and growth of cancer (stem) cells. However, the molecular mecha-
nisms underlying restoration of SCD1 function by natural anti-cancer compounds remain
largely unknown. Several key signaling mechanisms involving SCD1 in cancer stem cells
are presented in Figure 2, which are expected to have the potential to lead to the discovery
of phytochemicals or synthetic inhibitors. Our research team achieved experimental results



Int. J. Mol. Sci. 2023, 24, 8951 9 of 14

indicating that thymoquinone can act as a growth inhibitor by inhibiting the expression of
SCD1 in breast cancer cells, and related research is still in progress.
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Figure 2. Diverse signaling mechanisms through SCD1 in cancer stem cells. SCD1 is one of the target
genes regulated by SREBP1. Decreased YAP phosphorylation resulting from SCD1 inhibition caused
the disassembly of YAP in the nucleus, leading to a reduction in the expression of TEAD1 and cyclin
D1. Post-translational acylation of the Wnt ligand, which MUFA mediates, enables its binding with
the FZD4 receptor, resulting in the stabilization of β-catenin and leading to the expression of CSC
regulatory genes.

It becomes particularly interesting to investigate the role of SCD1 in cancer (stem) cells,
which is associated with obesity, lipid accumulation, and inflammation [92,93]. In addition,
tumorigenesis is linked to insulin-resistant glucose metabolism [94]. Under the condition of
insulin resistance, expression of glucose transporter type 4 is blocked, resulting in elevated
blood glucose levels and increased β-oxidation of fatty acids [95]. As SCD1 is linked with
insulin resistance in morbidly obese patients [96], SCD1 may serve as a connection in the
association between insulin resistance and cancer.

High SCD1 expression is a major cause of the increased ratio of MUFAs/SFAs, which
contributes to the fatty acid composition and fluidity of the membrane. This influences
membrane-mediated biological signal transduction to regulate cell growth and differentia-
tion [13,30]. Cellular membrane composition of the MUFA/SFA ratio can be modulated by
SCD1 and is crucial for lipid metabolism and energy balance for the storage or oxidation
of lipids. Reducing membrane fluidity using anti-metastasis drugs in cancer cells inhibits
metastatic capacity and stemness characteristics. Downregulation of SCD1 expression in
tumor cells is a reliable therapeutic strategy to treat cancer. Therefore, natural anti-cancer
compounds may contribute to maintaining cellular membrane status through the regula-
tion of SCD1 expression or activity, which could be an alternative therapeutic target for
chemoresistant cancer cells or cancer stem cells.
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