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Abstract: Liquid biopsies have emerged as a promising tool for the detection of metastases as well
as local and regional recurrence in lung cancer. Liquid biopsy tests involve analyzing a patient’s
blood, urine, or other body fluids for the detection of biomarkers, including circulating tumor cells or
tumor-derived DNA/RNA that have been shed into the bloodstream. Studies have shown that liquid
biopsies can detect lung cancer metastases with high accuracy and sensitivity, even before they are
visible on imaging scans. Such tests are valuable for early intervention and personalized treatment,
aiming to improve patient outcomes. Liquid biopsies are also minimally invasive compared to
traditional tissue biopsies, which require the removal of a sample of the tumor for further analysis.
This makes liquid biopsies a more convenient and less risky option for patients, particularly those
who are not good candidates for invasive procedures due to other medical conditions. While liquid
biopsies for lung cancer metastases and relapse are still being developed and validated, they hold
great promise for improving the detection and treatment of this deadly disease. Herein, we summarize
available and novel approaches to liquid biopsy tests for lung cancer metastases and recurrence
detection and describe their applications in clinical practice.

Keywords: CTCs; ctDNA; liquid biopsy; metastasis; recurrence; lung cancer

1. Introduction

Lung cancer is the leading cause of cancer-related death worldwide, with an estimated
1.8 million deaths in 2020 [1]. Despite significant progress in understanding and treating
lung cancer, the 5-year relative survival rate remains relatively low (25.4% from 2013 to
2019), as reported by the Surveillance, Epidemiology, and End Results (SEER) Program
of the National Cancer Institute [2]. Lung cancer has a high mortality rate, mainly due
to diagnosis occurring at later stages, as the time from onset to symptom presentation is
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largely variable, attributed to the slow-growing rate of lung tumors [3]. As a result, many
lung cancer patients are diagnosed at advanced stages, when the disease has become locally
invasive and/or has spread to distant organs, making it difficult to administer treatment,
resulting in a poor prognosis [4].

Metastasis is a complex process by which cancer cells spread from the primary tu-
mor to distant sites in the body, such as the bones, liver, or brain [5–7]. Cancer-related
deaths are overwhelmingly the result of this disease progression (>90%), where metas-
tasis leads to the impairment of vital organ functions [8,9]. The likelihood of metastasis
depends on the histological type of cancer and the patient’s overall health. Approximately
30–40% of non-small-cell lung cancer (NSCLC) patients have metastatic disease at the
time of diagnosis [10,11]. For small-cell lung cancer (SCLC), the incidence of metastasis at
diagnosis is higher (~60%) due to the aggressive nature of this cancer type [12].

Recurrence occurs when cancer cells reappear after remission [13]. Recurrence can be
especially challenging to manage, as the cancer may have become increasingly resistant
to treatment over time. Several traits influence the risk of recurrence, including the type
and stage of cancer and the effectiveness of the primary treatment [14–16]. Approximately
30–55% of patients with NSCLC develop recurrence, which proves fatal, despite multiple
curative resections [14,17,18].

Treatment options for advanced lung cancer are limited, and most patients are not
candidates for curative treatment. In these cases, molecular testing plays a crucial role in
identifying actionable alterations that can guide the selection of targeted therapies and
immunotherapies; the use of targeted therapies, such as EGFR and ALK inhibitors, has
proven beneficial for improved treatment outcomes and reduced toxicity when compared
to traditional chemotherapy [19–23]. Similarly, immunotherapies, such as PD-1 and PD-
L1 inhibitors, have demonstrated significant clinical benefits in advanced lung cancer
patients [24–26]. However, the challenge lies in obtaining sufficient tumor tissue for
molecular testing in patients with advanced disease stages, as they may not be eligible for
repeated biopsies, depending on the patient performance status, tumor location, or extent
of disease [27]. Furthermore, repeat biopsies carry their own risk of complications [28]. In
these cases, fine needle biopsies or cytology specimens are the only potential sources of
tissue for molecular testing, but the limited amount of tumor material obtained from these
can sometimes be insufficient for accurate testing.

Liquid biopsy is a minimally invasive procedure that involves the analysis of tumor-
derived materials such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), and
extracellular vesicles (EVs) that can be processed from various body fluids including blood,
urine, and pleural effusion [29]. Liquid biopsy is more globally applicable to aid in tumor
screening, tumor staging, the characterization of intratumoral heterogeneity, the monitoring
of tumor progression, and the therapy response for individualized treatment [30]. The
application of liquid biopsies has proven to be a significant asset in lung cancer’s early
detection and treatment [31]. In addition, liquid biopsies have the potential to significantly
improve the management of patients with advanced lung cancer, by providing non-invasive
and real-time monitoring of disease progression, the treatment response, and recurrence. A
recent meta-analysis showed that ctDNA detection can be more sensitive to predicted tumor
recurrence in lung cancer patients than CTCs, although both have potential results [32].
It has also been indicated that liquid biopsies are useful in guiding adjuvant and/or
neoadjuvant treatment, predicting prognosis, and detecting molecular changes related to
tumor resistance [29,33–35]. Furthermore, liquid biopsies show promise as an alternative by
enabling a broad range of cytological and molecular evaluation methods through minimally
invasive procedures [36,37].

As technology continues to evolve, liquid biopsies are slowly becoming indispensable
for the clinical management of advanced lung cancer. Although previous studies have
investigated liquid biopsies in lung cancer [38–42], our review offers novel insights by
specifically highlighting their potential applications for the management of metastasis and
recurrence in NSCLC. Here, we comprehensively review relevant data, contributing to
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the literature by thoroughly elucidating the role of liquid biopsies with a focus on clinical
applications for the better management of metastatic and recurrent NSCLC, which are the
most serious and poorly managed clinical complications of lung cancer leading to treatment
failure and patient death.

2. Current Liquid Biopsy Samples and Biomarkers for Late-Stage Lung Cancer

Liquid biopsy for advanced-stage lung cancer typically involves the analysis of sam-
ples such as peripheral blood, urine, and cerebrospinal fluid (CSF), which contain various
biomarkers, including ctDNA, CTCs, EVs, and microRNAs. Here, we provide an overview
of the current state of knowledge on the use of liquid biopsies in detecting recurrence
and metastasis in lung cancer, including a description of the various biomarkers and
technologies used in liquid biopsies.

2.1. Sample Subtypes of Liquid Biopsies Used in Advanced-Stage Lung Cancer

The examination of body fluids helps to further determine the characteristics of lung
cancer by identifying the presence of cancer cells or substrates secreted by them [43]. The
levels of these molecules can vary according to different conditions, such as stress factors,
tumor location, status, metastasis extent, and genome instability [44]. Therefore, these
indicators serve as biomarkers, allowing detection, assessment, and diagnosis.

In the advanced stages of NSCLC, the initial clinical application for liquid biopsy was
the detection of sensitizing EGFR mutations, which may be associated with an enhanced
tumor response. In addition, the evaluation of acquired resistance in samples such as
peripheral blood is a supplementary tool to tissue analysis used in clinical examination [33].
Currently, with the implementation of broad-based platforms such as next-generation
sequencing (NGS), the additional genotyping of oncogene drivers supports the utility of
plasma ctDNA, as reviewed elsewhere [45–48]; in fact, the absence of detectable alterations
in plasma has been associated with a lower tumor burden [49]. However, the use of plasma
is not sufficient for patients with metastasis exclusive to the brain or leptomeninges, and,
for these cases, the use of CSF arises as an alternative source of ctDNA [50].

Table 1 lists examples of biomarkers that can be detected in body fluids, such as plasma,
serum, sputum, bronchoalveolar lavage (BAL), pleural effusion, urine, and cerebrospinal
fluid (CSF), and their applications in cancer diagnosis, prognosis, and treatment. Examples
of biomarkers include ctDNA, miRNA, gene mutations, and protein signatures. Such
biomarkers can help to determine resistance mechanisms, predict clinical outcomes, and
monitor treatment efficacy.

Table 1. Clinical utility of liquid biopsy biomarkers in cancer.

Body Fluid Biomarkers Detected Examples of Applications

Plasma

ctDNA to determine
resistance mechanisms in
patients with advanced
NSCLC [50]
Prognostic biomarkers:
miR-10b-5p, miR-23b-3p, and
miR-21-5p [51]
Gene mutations including
ALK, EGFR, KRAS with
droplet digital PCR [52]

Plasma protein signatures
reflect tumor biology [53]
Increased RP11-438N5.3
lncRNA levels for patients’
prognosis [54]
EGFR-status-related miRNA
panel derived from exosomes
isolated from metastatic
disease [55]
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Table 1. Cont.

Body Fluid Biomarkers Detected Examples of Applications

Serum

Levels of metabolites in
disease progression: lactic
acid, benzoic acid, and
fumaric acid [56]
Prolactin, an early preventive
factor in metastatic NSCLC for
poor clinical outcomes [57]
High exosomal microRNAs in
advanced disease and poor
survival: miR-378 and
miR-214 [58]

CA125 levels are an indicator
of metastasis to the liver [59]
CYFRA 21-1 can be correlated
with worsened PFS and OS in
metastatic patients [60]

Sputum

Chromosomal aneusomy by
FISH predicts lung cancer
incidence [61]
Sputum supernatant has
comparable mutation
profiling to plasma samples of
NSCLC, with advantage of
convenience in collection [62]

Use of nomograms to
demonstrate the utility of
sputum samples for genome
profiling [63]
Sputum as an alternative
source for somatic variation
profiling with NGS [64]

BAL

Cytologic examination of BAL
has a comparable diagnostic
yield to other endoscopic
techniques for metastasis [65]

BAL better reflect the cancer
proteome than serum samples
[66]

Pleural effusion

MMP-9, cathepsin-B,
C-reactive protein,
chondroitin sulfate marker
panel, and CA19-9, CA15-3,
kallikrein-12 panel, are highly
discriminative for malignant
vs. tuberculous effusion, or
lung adenocarcinoma vs.
mesothelioma [67,68]

Detection of extracellular
vesicles and cfDNA in pleural
effusions enhances EGFR
genotyping of
adenocarcinoma patients [69]

Urine EGFR mutations [70]

ctDNA EGFR mutation testing
detects T790M mutations
overlooked in tissue biopsies
due to sample quality or
tumor heterogeneity [71]
ddPCR and Illumina MiSeq to
monitor EGFR alterations
during treatment [72]

CSF
EGFR, ROS1, ALK, BRAF,
and/or EGFR T790M
mutations [35]

Profiling for actionable
mutation rate (EGFR, ROS1,
ALK, BRAF) and resistance
mutation rates (EGFR T790M
mutation) [35]
Higher detection sensitivity
for leptomeningeal metastasis
by CTCs than with MRI [72]

Abbreviations: cfDNA: cell-free DNA; ctDNA: circulating tumor DNA; CTCs: circulating tumor cells; NSCLC: non-
small-cell lung cancer; NGS: next-generation sequencing; lncRNA: long non-coding RNA; MS: mass spectrometry;
BAL: bronchoalveolar fluid; CSF: cerebrospinal fluid; ddPCR: droplet digital PCR; FISH: fluorescence in situ
hybridization; PFS: progression-free survival; OS: overall survival; MRI: magnetic resonance imaging.
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2.2. Biomarker Subtypes of Liquid Biopsies Used in Advanced-Stage Lung Cancer

Several types of biomarkers have been reported in the context of liquid biopsy for
advanced-stage lung cancer. These include CTCs, ctDNA, cell-free RNA (cfRNA), EVs,
DNA methylation markers, and other circulating elements.

2.2.1. Extracellular Vesicles (EVs)

EVs are nano-sized lipid-bound particles that are secreted by cells into the extracellular
space [73–75]. There are three main subtypes of EVs: microvesicles (MVs), exosomes, and
apoptotic bodies, which can be differentiated based on their biogenesis, release pathways,
size, content, and function [73]. EVs have emerged as promising biomarkers for liquid
biopsy in lung cancer due to their ability to carry various types of molecular cargo, in-
cluding proteins, lipids, DNA, RNA, and other important cellular components [76–79].
EVs are released by tumor cells and can be detected in blood, saliva, urine, and other
body fluids. They have been shown to play a role in cell-to-cell communication, pro-
moting tumor growth, angiogenesis, immune evasion, and metastasis in lung and other
cancers [77,80,81]. Several studies have demonstrated the potential of EVs as liquid biopsy
biomarkers for lung cancer. For example, EV-associated mutations in oncogenic driver
genes, such as EGFR and ALK, have been detected in EV samples from lung cancer patients,
and their presence has been correlated with the tumor mutational status and treatment
response [69,82,82–85]. EV-based liquid biopsy has also been shown to be able to detect
minimal residual disease (MRD) and monitor disease recurrence in lung cancer patients af-
ter surgery or other treatments, providing valuable information for personalized treatment
decisions and surveillance [86,87].

In addition, studies have demonstrated that cancer cells release high levels of EVs,
which can facilitate multiple steps in the metastatic cascade. EVs can promote tumor cell
proliferation, migration, and invasion, and can also modulate the tumor microenvironment,
promoting angiogenesis and immune evasion [88–91]. Moreover, EVs released by cancer
cells can promote the formation of a pre-metastatic niche in distant organs, preparing
the microenvironment for the arrival of cancer cells and facilitating their growth and
colonization [90,92,93]. EVs can also facilitate the spread of cancer by supporting the
survival and growth of CTCs in the bloodstream. By carrying bioactive molecules, EVs
can protect CTCs from immune surveillance and apoptosis, and can also promote the
formation of CTC clusters or aggregates with platelets and leukocytes, which can facilitate
their survival in the bloodstream [94,95].

2.2.2. Circulating Tumor DNA (ctDNA)

ctDNA is a subset of cfDNA (circulating free DNA) that originates from tumor
cells [44,96]. cfDNA refers to the fragmented DNA that is found in the bloodstream
of an individual. The levels of total cfDNA are often higher in individuals with cancer
compared to those without cancer, and this is thought to be due in part to the presence
of ctDNA [97]. The amount of ctDNA released into the bloodstream can vary between
different types of cancer, as well as between individual patients with the same type of
cancer [98].

ctDNA levels are generally measured from plasma, as serum has a high likelihood of
being contaminated by the release of genomic DNA from white blood cells during clot-
ting [99]. ctDNA levels in plasma are generally low, approximately 5–10 ng/mL [100], and
so the method of detection used is incredibly important. Droplet digital polymerase chain
reaction (ddPCR) and NGS have greatly improved ctDNA’s detection sensitivity in recent
years [101,102], and there are a large number of metrics that can be used for ctDNA analysis,
including ctDNA concentration/levels, the quantitation of tumor-specific mutations in the
ctDNA, and differing methylation patterns indicating epigenetic changes [103].

ctDNA-based biomarkers have been approved for clinical use in NSCLC, including
EGFR mutation detection and NGS screening of a mutation panel, which includes ALK,
EGFR, and KRAS [104]. However, this does not reflect the variety of recent advances in the
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field. ctDNA has many applications in advanced/metastatic lung cancer [105], including
predicting the treatment response and survival for patients under treatment with chemother-
apy regimens [106], targeted therapies [107,108], immune checkpoint inhibitors [109], and
chemo-immunotherapy [110]. A recent study showed that longitudinal dynamic changes
in ctDNA metrics using a machine learning model are associated with patient survival in
metastatic NSCLC, with the potential utility of ctDNA for predicting treatment outcomes
early in clinical trials, as ctDNA outperformed radiographic endpoints [105]. Similarly,
serial ctDNA analysis has been shown to identify recurrence and distant metastasis earlier
than conventional radiologic imaging [111]. Furthermore, the detection of ctDNA after the
treatment of NSCLC could predict early recurrence after treatment [112], and clonal ctDNA
mutations were shown to be a marker for MRD in NSCLC after surgical resection [113].
An increased number of variants have been linked to prognosis in advanced NSCLC and
may predict lymph node metastasis even at the preoperative stage [114]. Therefore, ctDNA
analysis shows great promise for liquid biopsy applications in lung cancer, but the challenge
remains in translating findings into routine clinical practice.

2.2.3. Cell-Free RNAs (cfRNAs)

cfRNAs are detected in the bloodstream and other body fluids. Similarly to ctDNAs, a
subset of these may be released from tumor cells [115,116]. There are several classes of RNA
that can be found in circulation, including messenger RNAs (mRNAs) and non-coding
RNAs (ncRNAs). Quantification is usually undertaken using PCR-based assays such as
reverse-transcription quantitative PCR (RT-qPCR) and ddPCR, and advancements in NGS
methods have been invaluable for biomarker discovery [117–120].

Within mRNAs, PD-L1 mRNA levels have been useful in predicting sensitivity to
anti-PD-L1 therapy [121]. Beyond the therapy response, measuring the levels of mRNAs
from saliva in combination with the presence of CTCs has been shown to discern NSCLC
patients from healthy controls [122]. However, due to the presence of ribonucleases in the
blood, mRNAs are generally fragmented in circulation and thus give low-quality reads
when analyzed by sequencing [116].

ncRNA species have garnered significant interest due to their association with exo-
somes and protein complexes, which can protect them from degradation [115,116,118,123].
In particular, microRNAs (miRNAs) are of great interest as biomarkers and are the most
abundant cfRNA species [118]. There have been several examples of miRNAs that show
an association with metastases in NSCLC, such as miR-422-a with lymph node metas-
tasis [124], and miR-483-5p and miR-342-5p with leptomeningeal metastasis [125]. The
expression of miRNAs can, however, be highly variable between patients and requires
validation [126,127].

Beyond miRNAs, ncRNAs such as long non-coding RNAs (lncRNAs), tRNA-derived
fragments (tRFs), circular RNAs (circRNAs), and PIWI-interacting RNAs (piRNAs) can
also be detected in liquid biopsy samples [118,123]. In lung cancer, the lncRNA metastasis-
associated lung adenocarcinoma 1 (MALAT-1) is often differentially expressed in tumor
samples compared to normal ones and may promote brain metastasis, which has led to
multiple studies looking into its utility as a biomarker for NSCLC [128–130]. Although
lncRNAs are one of the lowest-abundance cfRNAs in circulation, MALAT-1 is detectable in
serum and may complement biomarker panels to improve NSCLC patient diagnosis and
prognosis [130].

While much more is still to be learned about the utility of cfRNAs in advanced-stage
disease, there has been some success with the development of the blood-based neuroen-
docrine neoplasms test (NETest), which has been used in the monitoring of gastrointestinal
neuroendocrine tumors by profiling the gene expression of 51 mRNAs from peripheral
blood [131,132]. However, there have not been any clinical tests for lung cancer cfRNAs
developed yet.
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2.2.4. DNA Methylation Markers

DNA methylation, which includes the dynamic addition of a methyl group to a
cytosine nucleotide, converting the cytosine into a 5-methylcytosine (5mC), can greatly
influence gene and downstream protein expression. Aberrant hypermethylation is a
common finding within tumor tissue when compared to generally normal and healthy
tissue. Global blood-based methylation biomarkers obtained from liquid biopsy mate-
rial (cfDNA, ctDNA) have been difficult to determine; however, methylation profiles
for lung cancer subtypes have shown robust differences between diseased and control
states [133–137], and differences can even be detected between circulating tumor material
and direct tumor tissue [138]. These profiles show remarkable differences even in early
cancer stages, with certain methylation markers specific to particular cancers, whereas some
are detectable pan-cancer [139,140]. Some markers have notable specificity to lung cancer
metastasis [141]; however, the detection of these metastasis markers, and furthermore of
recurrence, is a relatively novel and ongoing area of research [141–143].

The quality of methylation profiling is significantly influenced by the method of
detection and analysis. While bisulfite conversion is still considered the gold standard, its
complex processing can result in higher error rates. The Infinium HumanMethylation450
BeadChip array and the Human MethylationEPIC BeadChip are currently the most widely
used methylation profiling platforms.

Methylation signatures are powerful cancer screening tools, where methylation scores
have been shown to not only accurately classify cancer-derived samples from non-cancerous,
but also predict cancer subtypes with high accuracy [144]. Especially in instances of a high
cancer predisposition and the subsequent prediction of cancer onset, methylation profiling
can provide an inexpensive yet efficient method for cancer management.

3. Monitoring Minimal Residual Disease (MRD)

After curative treatment, clinical follow-up must include the evaluation of MRD,
which refers to the small number of cancer cells that may remain in the patient’s body after
treatment, even if they cannot be detected by standard imaging tests [145]. These residual
cells have the potential to grow and cause recurrence, making MRD an important tool for
monitoring treatment responses and predicting outcomes [112].

While genetic profiling has greatly increased therapy success, fatal disease recurs in
30–70% of resected cases [32,146]. Lung cancer patients generally respond well to initial
treatment; however, they develop resistance approximately two years later due to acquired
or de novo molecular alterations, which might have been present in lower frequencies in
the cells before the treatment [147–150]. Once the treatment kills the sensitive target cells,
pre-existing resistant subclones are released to proliferate, inducing the emergence of a
tumor population resistant to the applied therapy, i.e., MRD [147].

MRD detection is challenging, particularly in the context of lung cancer, because these
tumors tend to develop chromosomal instability later in their natural history [151]. Clonal
evolution and tumor heterogeneity are important factors to consider in monitoring MRD,
as they can affect the accuracy of detection and the risk of recurrence. Throughout the
natural history of the disease, the genomes of cancer cells accumulate changes, and they
mutate and evolve in response to treatment and other environmental factors. This process,
called clonal evolution, can lead to the emergence of new cancer cell subclones, leading to
an increase in tumor heterogeneity, which can contribute towards treatment resistance and
recurrence [147,151,152].

3.1. Clonal Evolution and Tumor Heterogeneity within MRD

As cancer grows by clonal evolution, dynamic molecular changes are acquired, gener-
ating subclonal cell variation, which can be defined as intratumoral heterogeneity (ITH).
These changes include genetic, epigenetic, and gene expression alterations and may impact
the antitumoral immune response. The advances in NGS and single-cell sequencing have
enabled better knowledge of such alterations and their clinical implications, predicting the
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risk of metastasis, treatment response, and resistance [147,151]. Unfortunately, treatment
resistance is common and can arise through various mechanisms, including point muta-
tions, gene fusions, and cellular plasticity, giving rise to unpredictable phenotypes. As a
result, employing multiple treatment modalities can enhance the efficacy, but combination
therapies may also escalate treatment-related toxicity [151,152]. Mechanisms that cause
lung adenocarcinomas with mutant EGFR to become resistant to osimertinib have been pro-
posed. Tumors can show two or more resistance mechanisms, such as focal copy-number
amplifications in MET, KRAS, and PD-L1, gene fusions of ALK, MKRN1-BRA, and ESR1-
AKAP12, as well as neuroendocrine differentiation [153]. Therefore, combination therapy
strategies have been strongly indicated in these cases [154].

In the context of ITH, liquid biopsies offer a range of potential applications, including
early detection, the detection of MRD, the guidance of treatment decisions, the investigation
of treatment efficacy and resistance, and real-time disease monitoring [40,155].

3.2. Minimal Residual Disease (MRD) and the Role of Liquid Biopsy in Detecting Lung
Cancer Recurrence

Currently, the genetic profiling of solid tumors and detection of MRD in patients
with lung cancer who have undergone curative treatment are primarily achieved using
surgical or biopsy specimens. However, these methods have several limitations, such as
invasiveness, making routine implementation challenging. Additionally, they provide only
a temporally limited snapshot of the tumor and may fail to capture disease heterogene-
ity [156]. In contrast, liquid biopsy is a non-invasive method for longitudinally assessing
MRD at any time point post-surgery [157].

Studies have shown that liquid biopsies are able to detect MRD well before the de-
tection of recurrence by standard clinical methods [157–159]. A systematic review of
13 studies using ctDNA to detect MRD in NSCLC patients found that detection was
achieved an average of 5.5 months prior to detection by radiography or other clinical
methods [158]. One of these studies investigated perioperative ctDNA detection as a
marker of MRD in 330 patients with stage I-III NSCLC with a custom panel of 769 genes.
Negative perioperative ctDNA detection was more relevant in predicting recurrence-free
survival than any other factor considered, including TNM staging of the extent of cancer
progression [160]. A recent ten-year study of 13 breast cancer patients that used multiple
biomarker detection methods derived from both CTCs and ctDNA in liquid biopsy samples
found that these combined tests could uncover MRD at least four years prior to the emer-
gence of clinically detectable metastases [161]. Another study evaluated the neoadjuvant
immunotherapy efficacy (NAT) in resected NSCLC and assessed the risks for recurrence
using ctDNA. During immunotherapy, ctDNA detection was highly concordant with the
pathologic response, with overall accuracy of 91.67%. After three months of surgery, ctDNA
was able to predict the patient’s recurrence with 83% sensitivity and 90% specificity. The
recurrence prediction using ctDNA was capable of anticipating the radiographic recurrence,
with a median time of 6.83 months [162].

Liquid biopsy tests for MRD can be divided into tumor-informed (requires knowledge
of the tumor’s genetic profile beforehand by examining a sample of the tumor or analyzing
preoperative cell-free DNA) and tumor-uninformed (intended to identify the existence of
MRD without any prior knowledge of the specific molecular alterations that may be present
in the tumor of an individual patient) assays [163]. Assays that use the tumor-informed
approach, such as RaDaR [164], Signatera [165], and the recently tested HIFI platform [47],
are personalized using the baseline genotype of the patient’s primary tumor or preoperative
cfDNA and require longitudinal follow-up to probe for emergent mutations. This strategy
has higher sensitivity and specificity than the tumor-uninformed approach but can have
a delayed turnaround time. The tumor-uninformed approach includes assays such as
DELFI [166]. With this approach, the same assay is used for each patient, which leads to a
shorter turnaround but diminished specificity and sensitivity. Trials of liquid biopsy assays
for MRD detection in NSCLC patients are currently underway [163].
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4. Metastasis

Metastasis involves the successful completion of the metastatic cascade (Figure 1).
During the metastatic cascade, biomarkers released directly from cancer cells or associated
with cancer cells can be used as potential biomarkers in liquid biopsy. These biomarkers,
including CTCs, ctDNA, exosomes, and specific proteins, hold potential as indicators of
cancer metastasis and can be detected and analyzed in liquid biopsy samples. They offer
a non-invasive and dynamic approach to assessing the presence and characteristics of
metastatic tumors.
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Figure 1. The metastatic cascade and associated biomarkers. (1) During cancer cell proliferation, DNA
and extracellular vesicles (EVs) may be released from necrotic or apoptotic cells. (2) Tumor-derived
EVs promote tumor angiogenesis. Proteins such as matrix metalloproteinases (MMPs) and vascular
endothelial growth factor (VEGF) contribute to angiogenesis by mechanisms such as degrading
basement membranes and other extracellular matrix (ECM) components, allowing endothelial cells to
detach and migrate into new tissue, and by releasing ECM-bound proangiogenic factors (bFGF, VEGF,
and TGFβ). (3) EVs released by cancer cells contribute to endothelial-to-mesenchymal transition.
MMPs and VEGF promote intravasation. (4) Platelets and neutrophils can aid circulating tumor
cells (CTCs) in evading the immune system and surviving in the bloodstream by forming clusters
or aggregates with CTCs. (5) Tumor-educated platelets (TEP) can facilitate the extravasation of
CTCs by releasing EVs that can modulate the dynamics of endothelial cell junctions and increase the
permeability of endothelial cells. (6) Tumor-derived exosomes contribute to the formation of the pre-
metastatic niche and influence the site of metastatic colonization. VEGF is involved in the formation
of pre-metastatic niches through direct and indirect mechanisms. Tumor- or host-cell-derived VEGF
assists disseminated tumor cell colonization by neovascularization and generating a suppressive
immune microenvironment. Moreover, in some cases, VEGF triggers the phenotypic switch from
dormancy to proliferative status and restarts the colonization process.
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4.1. The Metastatic Cascade and Associated Biomarkers

Metastasis is a complex process by which cancer cells spread from the primary
tumor to distant sites in the body [167]. In lung cancer, metastasis commonly occurs
through the bloodstream or lymphatic system, leading to the development of secondary
tumors in other organs, such as the brain, liver, and bones [5]. Chambers et al. [168]
proposed a model called the “metastatic cascade” to describe the process of cancer dis-
semination. The metastatic cascade involves several steps, including the detachment of
cells from the primary tumor, invasion of surrounding tissues (intravasation), spread
throughout the circulatory system or lymphatic vessels (circulation), extravasation into
distant tissues, formation of micrometastases, and establishment of a secondary tumor
(colonization) [7,167,169–171].

During the metastatic cascade, a series of complex events result in the release of
biomarkers into the bloodstream [172]. These biomarkers play a significant role in the bio-
logical processes involved in metastasis. For example, EVs released by cancer cells can have
a multifaceted influence on endothelial cells (ECs). The interaction between tumor-derived
EVs and ECs can promote tumor angiogenesis, trigger endothelial–mesenchymal transition
(EMT), and disrupt the endothelial vascular barrier [91,173–175]. This disruption allows
CTCs to cross the endothelial barrier and enter the bloodstream, facilitating the process of
metastasis. Furthermore, EVs can indirectly induce tumor angiogenesis by promoting the
phenotype switching of different cell types into cancer-associated fibroblasts, activating
tumor-associated ECs and platelets, and remodeling the extracellular matrix [91,173]. Ad-
ditionally, tumor-derived EVs released by tumor-educated platelets (TEPs) may enhance
the permeability of endothelial cells by secreting adenosine triphosphate (ATP), which can
modulate the dynamics of endothelial cell junctions and facilitate CTCs’ extravasation [176].

Other examples of biomarkers include platelets and neutrophils, which help CTCs
to evade the immune system and survive in the bloodstream by forming clusters or ag-
gregates with CTCs [177–179]. EVs contain integrins, such as αVβ5 for liver metastasis
or α6β4 and α6β1 for lung metastasis, that are responsible for guiding cancer cells to
specific organs, contributing to the formation of the pre-metastatic niche and influencing
the site of metastatic colonization [180,181]. Proteins such as matrix metalloproteinases
(MMPs) [182–185] and vascular endothelial growth factor (VEGF) facilitate angiogenesis,
tumor cell invasion, immune surveillance escape, and the preparation of the pre-metastatic
niche [186–189].

4.2. Applications of Liquid Biopsy in Metastatic Lung Cancer
4.2.1. Liquid Biopsy for the Early Detection of Lung Cancer Metastasis

One major role for liquid biopsy in managing lung cancer metastasis is in the context
of leptomeningeal metastasis (LM), which occurs in approximately 3–5% of NSCLC and
is more common in EGFR-mutant NSCLC [190,191]. Because this metastatic site is not
accessible for tissue biopsy, the current gold standard for diagnosis is the presence of
neoplastic cells in the CSF [192]. Several studies have reported that the CSF is a more
suitable sample for liquid biopsy than serum or plasma in the context of LM and other
central nervous system metastases. ctDNA in the CSF of NSCLC patients with central
nervous system metastasis has a more complete genomic alteration profile than ctDNA
in matched plasma samples [193]. ctDNA in the CSF of NSCLC with LM was shown
to be more comprehensive for profiling driver mutations than plasma, regardless of the
presence or absence of an additional extracranial metastatic site [194]. Targeted NGS of
cancer-relevant genes in the CSF of NSCLC patients with central nervous system metastasis
revealed that CSF had higher sensitivity for identifying actionable driver mutations than
plasma [195], and CSF was reported to be a more representative liquid biopsy sample type
for LM in the context of EGFR-mutant NSCLC [191]. Another study reported that cfDNA in
the CSF of NSCLC with LM showed a higher variant allele frequency than matched plasma,
hypothesizing that the enrichment of ctDNA in the CSF may explain the high sensitivity of
CSF compared to plasma in this context, and showed that a high level of genomic instability
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in cfDNA in the CSF was associated with shorter overall survival. Although CSF is the
most commonly used liquid biopsy medium for NSCLC with LM, obtaining CSF is invasive
as it requires the use of a lumbar puncture. A recent study reported that miR-483-5p and
miR-342-5p, encapsulated in exosomes in the serum, may be involved in the LM of lung
cancer and could offer a non-invasive alternative to the use of CSF for predicting LM in
NSCLC. Additionally, miR-330-3p levels have been shown to be higher in NSCLC patients
with brain metastasis [196].

Beyond LM and other central nervous system metastases, blood is generally used for
liquid biopsy in lung cancer. For example, miR-422a in the plasma demonstrated diagnostic
value for lymphatic metastasis [125]; exosomal miR-210-3p, miR-193a-3p, and miR-5100 in
the plasma could discriminate between those with metastasis and those without [197]; and
the downregulation of exosomal miR-574-5p and upregulation of exosomal miR-328-3p
and miR-423-3p were observed in the plasma of lung cancer patients with bone metastasis
versus those without [198]. The concentration of circulating free DNA in plasma from a
lung cancer cohort was also associated with the stage of the lung cancer and the number of
metastatic sites present [199], and the presence of CTCs in advanced NSCLC was associated
with poor prognosis and the existence of distant metastatic sites [200]. A bioinformatic tool
called ECLIPSE was recently developed and used to analyze the subclonal architecture
in ctDNA from plasma samples from the TRACERx cohort, demonstrating that subclonal
expansion in the primary tumor can be measured using ctDNA and is associated with
metastatic potential [201]. ECLIPSE was developed specifically to handle the low ctDNA
levels common in early-stage NSCLC so that liquid biopsy can be used to identify patients
at higher risk for future metastases.

4.2.2. Liquid Biopsy to Monitor Treatment Response and Identify Actionable Mutations in
the Clinic

Liquid biopsies have also been shown to be effective in monitoring treatment responses
in lung cancer patients, and the genetic profiles obtained from liquid biopsies tend to be
consistent with those obtained from tissue biopsies. A study evaluated the concordance
between liquid biopsies and tissue biopsies in detecting driver mutations in advanced
non-small-cell lung cancer patients and reported a concordance rate of 85.7% [202]. Another
study has reported a concordance rate of 70% to 80% between liquid biopsies and tissue
biopsies in detecting EGFR mutations in non-small-cell lung cancer patients [203]. Changes
in the levels of ctDNA during systemic treatments such as chemotherapy [106,204], tar-
geted therapies [107,108], and immune checkpoint inhibitors [106,109] have been linked to
treatment responses and survival times in patients with metastatic cancer. Recently, Assaf
et al. showed that the use of ctDNA metrics over multiple time points can be beneficial for
risk stratification and survival prediction in patients with metastatic NSCLC who receive
chemo-immunotherapy combinations [105]. Such studies demonstrate the clinical applica-
tions of liquid biopsy tests for the prediction of the immunotherapy response in patients
with advanced NSCLC. More recently, the surveillance of circulating biomarkers, mainly
ctDNA and CTCs, has been suggested as a beneficial resource for clinicians when making
therapeutic decisions during the immunotherapy of patients with advanced NSCLC [205].
A concrete example of using serial liquid biopsy to guide individualized treatment for a
patient with advanced NSCLC that later progressed to bone metastasis has been reported
in a recent case study. The patient was initially started on an ALK inhibitor after an ALK
rearrangement was noted by fluorescence in situ hybridization (FISH) and switched over
to a newly approved KRAS-p.G12C inhibitor after ctDNA analysis subsequent to disease
progression revealed no ALK rearrangement but a KRAS-p.G12C mutation [206].

5. Nucleic-Acid-Based Methods for Detecting Lung Cancer in Liquid Biopsies

The most common approaches for nucleic-acid-based detection in liquid biopsy sam-
ples include multiplex-hybridization-based methods, PCR-based methods, and NGS. These
approaches vary in sensitivity and in the variants that they are capable of detecting, as
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reviewed in our previous paper [45]. Table 2 displays the technical approaches based on
their sensitivity, multiplexing capability, turnaround time (TAT), and limit of detection
(LOD). Long-read sequencing can be used to analyze fragmentomic signatures of circulat-
ing DNA, and single-cell sequencing can be used to study cancer metastasis, evolution,
and progression.

5.1. Multiplex-Hybridization-Based and PCR-Based Methods

Multiplex-hybridization-based and PCR-based assays are typically used to screen
for variants in a predetermined gene panel. The nCounter technology is a multiplex-
hybridization-based assay that has been evaluated for liquid biopsy applications in NSCLC,
as this platform is capable of generating high-quality gene expression data from low-quality
genomic material [201]. This platform has been shown to have similar performance to
NGS [202]. A comparison between two PCR-based systems (ddPCR-BioRad and Qiagen
QIAcuity Digital PCR) for the liquid biopsy analysis of cfDNA in a clinical study of NSCLC
patients showed that solid digital PCR was generally more sensitive, and KRAS and EGFR
mutations were detected with differing sensitivities [207].

5.2. NGS Methods

Given the large number of possible oncogene targets in advanced cancers, the wider
genomic range of NGS is more applicable to novel biomarker discovery and can be compa-
rable to hotspot mutation panels in sensitivity and cost [50,208]. Some NGS platforms for
ctDNA analysis have been FDA-approved for use in clinical settings: the Guardant360 [209]
and FoundationOne Liquid CDx [210] platforms can both be used to detect clinically action-
able mutations in ctDNA for late-stage NSCLC cancer cases and have been recommended
in lieu of smaller panels such as EGFR mutation PCR tests [50]. Targeted NGS panels such
as these sequence a large but limited set of cancer-associated genes, and they have high
sensitivity since they sequence genes of interest with high depth, but rare variants are not
within the scope of analysis. Whole-genome or whole-exome sequencing can screen for all
variants, but the tradeoff is lower sensitivity in comparison with targeted NGS due to the
decreased sequencing depth, which can be prohibitive when there are low concentrations
of ctDNA available for analysis [211].

Table 2. Capabilities of selected sequence-based detection methods that have been used to analyze
liquid biopsy samples in the context of lung cancer. The limit of detection (LOD) for a genetic test
is generally defined as the lowest mutant allele fraction (MAF) that can be detected with a given
probability (usually 95%) and depends on the sample type, the sample concentration, and the variant
being detected.

Detection Method Multiplexing
(Number of Markers) Turnaround Time (TAT) Sensitivity/Limit of Detection

(LOD)

Multiplex-hybridization-
based
methods

nanoString nCounter: 800+
target genes Dependent on panel [212]

Sensitivity of 95% and specificity
of 82% [213]
0.02–2% MAF [214]

PCR-based methods Small, predetermined
gene panels

~2–3 days depending on panel
[72]

qPCR: >10% MAF [215]
dPCR: ~0.01% MAF [216]

NGS-based methods

WES: entire exome. WGS:
entire genome. Targeted
panels: large number of
genes (e.g., TSO500 uses
500-gene panel [217])

~13 days depending on panel
[72,218]

<1% MAF, can be <0.1% with
specialized methods [211]

Abbreviations: dPCR: digital polymerase chain reaction; qPCR: quantitative polymerase chain reaction; MAF:
mutant allele fraction; WES: whole-exome sequencing; WGS: whole-genome sequencing.
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5.3. Fragmentomics and Long-Read Sequencing

Fragmentomics is the analysis of the non-random fragmentation patterns of cfDNA [219],
and these fragments have been observed to be promising biomarkers for detecting tissue of
origin in liquid biopsy. Conventional NGS methods can have limited utility in fragmen-
tomic analyses, as NGS tends to output reads shorter than 500 base pairs [220,221]. Some
recent approaches for obtaining fragmentomic signatures using NGS include linked-read
sequencing used for obtaining long-read information from short reads [222], and the DNA
evaluation of fragments for early interception (DELFI) approach [223,224]. Another form
of NGS, called hybrid capture sequencing, has been used to measure the ctDNA fragment
length and detect minimal residual disease in stage II-IIIA NSCLC patients [225].

Long-read sequencing technologies, including Oxford Nanopore Technologies (ONT)
and PacBio devices, can directly read long nucleic acid fragments and their methylation
patterns [226–228]. This makes them well suited to fragmentomics studies and the analysis
of repetitive regions of the genome. Recently, a customized workflow using ONT was
developed to sequence ctDNA. This successfully detected copy number alterations in
lung cancer patients [229]. PacBio technology has recently been used to assess the length
and methylation scores of plasma DNA in hepatocellular carcinoma (HCC) patients. An
HCC methylation score was developed to differentiate liver-derived ctDNA from other
tissue DNA. Using longer DNA fragments improved the diagnostic capability of the HCC
score [230].

5.4. Single-Cell Sequencing

The motivation to perform single-cell sequencing of CTCs is to obtain an up-to-
date molecular profile of metastatic cancer cells, to study mechanisms of metastasis, and
to characterize the cells’ progression and evolution. The low volume of DNA or RNA
derived from a CTC necessitates whole-genome sequencing (WGS) or whole-transcriptome
amplification (WTA) to meet the required limit of detection for sequencing [231]. A recent
comparison of four WTA methods for use in the single-cell sequencing of CTCs found
that multiple annealing and looping-based amplification cycles (MALBAC) followed by
low-pass WGS outperformed the other three methods in coverage breadth, reproducibility,
and uniformity, though none of the methods met the sensitivity or specificity required for
clinical use [232]. A study using MALBAC for the single-cell sequencing of CTCs isolated
from lung cancer patients found that while most genomic features were heterogeneous
among all CTCs, copy number variations were consistent for CTCs derived from the same
patient and could be used to discriminate between lung adenocarcinoma and SCLC [233].
Another study that performed single-cell sequencing of CTCs derived from SCLC patients
observed that copy number alterations were predictive of the response to chemotherapy
and that the evolutionary history of cells could be deduced from copy number alterations
detected at different times over the course of treatment [234]. Facilitated by WGS and WTA
methods, the single-cell sequencing of CTCs is a promising approach to monitoring the
progression of metastatic lung cancer.

6. Emerging Approaches for Liquid Biopsy of Lung Cancer

Nucleic-acid-based methods to detect ctDNA and CTC or EV-derived biomarkers in
liquid biopsy are well studied and used with increasing frequency in clinical settings. Here,
we highlight two less common approaches to biomarker detection that show promise for
NSCLC monitoring: the lung microbiome and tumor-educated platelets (TEPs).

6.1. Microbiome

The interest in understanding the link between the microbiome and the development
and progression of lung cancer has increased in recent years. It is known that the micro-
biome plays an important role in human health and disease by modulating a host’s innate
and adaptive immune system, immune responses, and metabolism, and by protecting
from invading pathogens [235–237]. The tumor microenvironment (TME) influences cancer
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progression and therapy responses [238] and many recent studies have demonstrated associ-
ations between the TME and microbiota composition and responses to immune checkpoint
inhibitors in cancer patients, including NSCLC patients, suggesting that modulation of
the microbiota through diet, probiotics, and fecal microbiota transplantations (FMT) could
improve treatment efficacy [238–244]. There is also a possibility that the lung microbiome
change could be used as a biomarker for detecting clinical phenotypes [245]. Some studies
have focused on the analysis of the tumor tissue microbiome and showed evidence of
its link with metastasis [246,247], while others have focused on liquid biopsies and the
analysis of the microbiome as potential markers. Epithelial brushing samples collected
via bronchoscopy from patients with lung cancer, incident cancer, and those who did not
develop cancer after a 10-year follow-up were analyzed through 16S ribosomal RNA gene
(rDNA) sequencing. Results suggested that a shift in Veillonella, Streptococcus, Prevotella,
and Paenibacillus may occur in the airways of patients with incident lung cancer months
before the bronchoscopy date [245]. Emerging evidence has demonstrated that alterations
of circulating microbiome DNA in blood could serve as promising non-invasive biomarkers
for cancer detection, including lung cancer [236]. Microbe-derived plasma cfRNAs were
consistently detected by different computational methods across lung cancer and four other
cancers, and the highest bacterial abundance was found for Proteobacteria, followed by
Firmicutes and Actinobacteria [248]. NGS analysis of bronchoalveolar lavage fluid showed
that the bacterial diversity was lower in lung cancer than in benign lung nodules, where
four species of Porphyromonas somerae, Corynebacterium accolens, Burkholderia cenocepacia, and
Streptococcus mitis were enriched in lung cancer compared with benign lung nodules [249].
The same study also concluded that the abundance of the lung microbiota is closely related
to the development of infiltrating adenocarcinoma. Moreover, 16S rRNA gene sequencing
on malignant pleural effusion (MPE) samples and controls has shown that there are compo-
sitional differences among pleural effusions related to non-malignant, para-malignant, and
malignant disease [250]. The pleural fluid of MPE-Lung and Mesothelioma was associated
with Rickettsiella, Ruminococcus, Enterococcus, and Lactobacillales. Mortality in MPE-Lung
was associated with enrichment in Methylobacterium, Blattabacterium, and Deinococcus.

These findings suggest the potential use of lung microbiome profiling using liquid
biopsies as a promising method of diagnosis. However, more research is needed with
robust cohorts of patients to understand the relationship between the microbiome and lung
cancer to validate findings.

6.2. Tumor-Educated Platelets (TEPs)

Besides CTCs, other types of circulating cells, such as platelets and circulating immune
cells, can have altered abundances or phenotypes due to cancer, and can also be investigated
as biomarkers [251,252]. Platelets and macrophages are known to be exploited by cancer
cells to support the immune evasion of tumor cells and angiogenesis. Platelets in particular
are abundant in circulation, easy to isolate, and known to be altered in cancerous patients, so
they present an attractive target for liquid biopsy. TEPs are defined as platelets derived from
cancer patients that have distinctively altered RNA and protein content [253]. Potential
mechanisms underlying the “education” of platelets include the absorption of factors
derived from tumors, cell-signal-driven changes in platelets’ RNA processing, and modified
platelet manufacturing by megakaryocytes. Tumor-educated platelets may influence the
overexpression of additional cancer-promoting signals, including genes associated with
EMT, such as TGFβ, and invasion-promoting genes such as matrix MMP-9 [254]. Metastatic
NSCLC has been shown to be associated with the significant downregulation of several
genes in platelets [255], and mRNA signatures have been used to detect NSCLC using
TEPs [256]. A diagnostic sequencing pipeline called ThromboSeq has been able to identify
characteristic changes in RNA splicing in TEPs and has been used to distinguish both
early- and late-stage NSCLC patients from healthy controls [257,258]. Given the relatively
high accuracy of TEP RNA-seq panels, TEPs are a promising emerging biomarker for
lung cancer.
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7. Conclusions

Liquid biopsy is a minimally invasive technique that has shown promise in detecting
tumor biomarkers in the body fluids of patients with lung cancer. Due to its advantages,
such as test repeatability and suitability for patients with poor clinical conditions, it offers
an option for patients who are not suitable candidates for traditional solid tissue biopsies.
Monitoring and identifying minimal residual disease in patients undergoing treatment is
of great importance in clinical practice as it enables early therapeutic intervention with the
potential of reducing disease recurrence.

Furthermore, significant advancements have been observed in the ability of liquid
biopsies to identify specific mutations associated with lung cancer in advanced disease
stages, which can facilitate individualized treatment strategies and lead to enhanced treat-
ment responses and survival rates. However, continued research is required to improve
the sensitivity and specificity of liquid biopsy tests, with the ultimate goal of enabling the
detection of serious clinical complications in lung cancer, such as recurrence and distant
metastases, before they become clinically evident. With ongoing technological advance-
ments, liquid biopsy tests will become a routine part of clinical practice for lung cancer
patients, providing personalized therapies and improving patient outcomes.
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