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Abstract: Subgingival microbiome dysbiosis promotes the development of periodontitis, an irre-
versible chronic inflammatory disease associated with metabolic diseases. However, studies regard-
ing the effects of a hyperglycemic microenvironment on host–microbiome interactions and host
inflammatory response during periodontitis are still scarce. Here, we investigated the impacts of a
hyperglycemic microenvironment on the inflammatory response and transcriptome of a gingival
coculture model stimulated with dysbiotic subgingival microbiomes. HGF-1 cells overlaid with
U937 macrophage-like cells were stimulated with subgingival microbiomes collected from four
healthy donors and four patients with periodontitis. Pro-inflammatory cytokines and matrix met-
alloproteinases were measured while the coculture RNA was submitted to a microarray analysis.
Subgingival microbiomes were submitted to 16s rRNA gene sequencing. Data were analyzed using
an advanced multi-omics bioinformatic data integration model. Our results show that the genes krt76,
krt27, pnma5, mansc4, rab41, thoc6, tm6sf2, and znf506 as well as the pro-inflammatory cytokines IL-1β,
GM-CSF, FGF2, IL-10, the metalloproteinases MMP3 and MMP8, and bacteria from the ASV 105, ASV
211, ASV 299, Prevotella, Campylobacter and Fretibacterium genera are key intercorrelated variables
contributing to periodontitis-induced inflammatory response in a hyperglycemic microenvironment.
In conclusion, our multi-omics integration analysis unveiled the complex interrelationships involved
in the regulation of periodontal inflammation in response to a hyperglycemic microenvironment.

Keywords: microbiome; dysbiosis; periodontitis; hyperglycemia; inflammation; cytokines;
metalloproteases; computational biology; omics integration; metagenomic

1. Introduction

Periodontitis is an irreversible chronic inflammatory disease induced by the infiltration
of immune cells into the gingival sulcus and is caused by a dysbiosis of the subgingival
microbiome [1]. Untreated, periodontitis leads to destruction of the teeth-supporting
tissues, bone resorption and ultimately loss of teeth [2,3]. Tissue destruction is caused by the
production of inflammatory mediators, including cytokines and matrix metalloproteinases
(MMPs), and generates oxidative stress by the excessive production of free radicals that
contribute to the inflaming of their environment [4].

Hyperglycemia, or high blood glucose level, is a common manifestation of type 2
diabetes. Hyperglycemic patients have a higher risk of developing periodontitis than
normoglycemic patients [5]. Conversely, periodontitis may affect diabetes outcomes [6],
indicating that hyperglycemia and periodontitis are bidirectionally interconnected. The
2009–2012 National Health and Nutrition Examination Survey (NHANES) has established
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that more than 62% of US adults > 65 years with diabetes also have periodontitis [7,8].
Several studies have thereby demonstrated that subgingival microbiome composition is a
risk factor for impaired glucose metabolism and insulin resistance [9–11]. Periodontitis is
thus considered the sixth complication of diabetes [12]. Consequently, the 2017 classification
of periodontal disease now considers systemic diseases a key factor for the diagnosis of
periodontitis [13].

Inflammation has been proposed as the key factor linking periodontitis and hyper-
glycemia [14]. Subgingival microbiome dysbiosis has been associated with increased
susceptibility to periodontitis in diabetic patients due to a potentially blunted metabolic
and immune response from the host [15]. It has also been proposed that inflammation
caused by oral bacteria induces insulin resistance [16–18]. In cell culture models, high
glucose level is known to modulate inflammation associated with periodontitis. The in-
flammatory response of human U937 macrophages stimulated with lipopolysaccharides
(LPS) isolated from the periodontopathogen Porphyromonas gingivalis was enhanced by
high glucose concentration [19]. Recently, Zhang et al. have also demonstrated that
high glucose level activates the inflammasomes in the gingival epithelium [20]. Addition-
ally, periodontitis-induced inflammation can be influenced by subgingival microbiome
dysbiosis [1].

At a molecular level, knowledge of the effects of hyperglycemia on the regulation of
periodontitis-associated host inflammatory responses and host–microbiome interactions
is still scarce. To better understand this knowledge gap, we investigated the impacts of a
hyperglycemic microenvironment on the inflammatory response and gene expression of
a gingival fibroblast–macrophage coculture model stimulated with dysbiotic subgingival
microbiomes using an advanced multi-omics bioinformatic data integration model. Our
multi-omics integration model revealed key variables (amplicon sequence variant (ASV),
mRNA and cytokines) contributing to periodontitis-induced inflammatory response in a
hyperglycemic microenvironment.

2. Results
2.1. The Hyperglycemic Microenvironment Impacts Pro-Inflammatory Cytokine and Matrix
Metalloproteinase Secretion by a Gingival Coculture Model

To assess the impacts of glycemic microenvironments on pro-inflammatory cytokine
and metalloproteinase secretion, we measured their secretion rate in the supernatant of
a coculture model stimulated with subgingival microbiomes from healthy donors and
from patients with periodontitis. We observed that healthy subgingival microbiomes have
the same pro-inflammatory potential as dysbiotic subgingival microbiomes (Figure 1A–F).
Interestingly, interleukin (IL) 1β (IL-1β) (Figure 1A) and matrix metalloproteinase 3 (MMP3)
(Figure 1D) secretion were increased when the coculture model was stimulated with
subgingival microbiomes in a hyperglycemic microenvironment (25 mM glucose) compared
with a normoglycemic microenvironment (5 mM glucose). In addition, microbiomes from
patients with periodontitis increased IL-6 and MMP8 secretion in 25 mM glucose but not
in 5 mM glucose (Figure 1C,E). Finally, the glycemic microenvironment did not have an
impact on the secretion profiles of tumor necrosis factor α (TNF-α) (Figure 1B), MMP9
(Figure 1F), granulocyte-macrophage colony-stimulating factor (GM-CSF) (Figure S1A),
basic fibroblast growth factor (FGF2) (Figure S1B) or IL-10 (Figure S1C).

2.2. Subgingival Microbiome Highlights Enrichment of Particular ASV

Bacterial DNA was extracted from both the healthy and the periodontitis subgingival
microbiome samples and was submitted to 16S rRNA gene sequencing. Taxonomic annota-
tion of the ASVs revealed that subgingival microbiomes from patients with periodontitis
display a different diversity than the samples from the healthy donors (Figure 2A). The
Bray–Curtis dissimilarity index (β-diversity) was calculated using the ASV abundance
matrix and visualized via a principal component analysis (PCA). The group annotation
(healthy/periodontitis) of the samples shows their separation following the first axis of
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their PCA (Figure 2B), indicating that the subgingival microbiome samples of healthy
donors differ in terms of ASV entities and abundance from the corresponding samples of
patients with periodontitis.
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Figure 1. The hyperglycemic microenvironment stimulates pro-inflammatory cytokine and matrix 
metalloproteinase secretion in a gingival coculture model. Pro-inflammatory cytokine and matrix 
metalloproteinase secretion of (A) IL-1β, (B) TNF-α, (C) IL-6, (D) MMP3, (E) MMP8 and (F) MMP9 
by the coculture model following 24-h stimulation with subgingival microbiomes from healthy par-
ticipants (healthy) and patients with periodontitis (periodontitis) in 5 mM and 25 mM glucose. The 
dashed line represents the baseline secretion by the untreated coculture model in both 5 mM and 25 
mM glucose. Results are the mean ± SEM. One independent replicate and two technical replicates 
were undertaken for each condition. Two-way ANOVA with the Tukey post hoc test. 
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Figure 1. The hyperglycemic microenvironment stimulates pro-inflammatory cytokine and matrix
metalloproteinase secretion in a gingival coculture model. Pro-inflammatory cytokine and matrix
metalloproteinase secretion of (A) IL-1β, (B) TNF-α, (C) IL-6, (D) MMP3, (E) MMP8 and (F) MMP9
by the coculture model following 24-h stimulation with subgingival microbiomes from healthy
participants (healthy) and patients with periodontitis (periodontitis) in 5 mM and 25 mM glucose.
The dashed line represents the baseline secretion by the untreated coculture model in both 5 mM and
25 mM glucose. Results are the mean ± SEM. One independent replicate and two technical replicates
were undertaken for each condition. Two-way ANOVA with the Tukey post hoc test.
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Figure 2. The subgingival microbiome highlights the enrichment of particular amplicon sequence
variants (ASVs). (A) Relative abundance of most abundant genera following 16s rRNA gene se-
quencing of subgingival microbiome from healthy participants and patients with periodontitis.
(B) Principal component analysis (PCA) of the ASV analysis of microbiomes from healthy par-
ticipants and patients with periodontitis. (C) Enrichment of ASV of microbiomes from healthy
participants and patients with periodontitis. Samples from healthy donors are identified h1 to h4
while the samples from patients with periodontitis are identified p1 to p4.

Differential analyses between the two experimental groups allowed the identification
of 12 ASVs (Figure 2C). Eleven ASVs were more abundant in the subgingival microbiome
samples from healthy donors. Of these 11 ASVs, 7 were absent from the periodontitis group
(for example ASV 178, ASV 519 and Serratia genera). ASV 54, associated with Prevotella,
was more abundant in the periodontitis group. In addition, we found that ASV 299
was more abundant in the periodontitis group and absent from the healthy microbiomes.
Unfortunately, it was not possible to annotate ASV 299. It thus may correspond to an
uncultured bacterium.

2.3. Multi-Omics Correlations by Computational Biology Analyses Reveal Key Variables
Contributing to Periodontitis-Induced Inflammatory Response in a Hyperglycemic
Microenvironment

In order to find novel associations or correlations between the project’s 3 omics layers
(ASV, mRNA and cytokines) while discriminating between the 2 experimental groups
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(healthy/periodontitis), a multi-omics data integration model was used. It should be noted
that data obtained with the multi-omics integration model should not be compared with
individual data. First, an arrow plot was generated (Figure 3A). We found that the subgin-
gival microbiome samples from the healthy group and the subgingival microbiomes from
the periodontitis group formed two clusters. Second, variables (or data) that are redundant
between themselves were selected to bring more information into the multi-omics system.
To further understand the relationship between the mRNA, ASV and cytokine variables,
a varplot (correlation circle plot) was generated (Figure 3B). We found that positively
correlated variables are grouped together, and that negatively correlated or anti-correlated
variables are positioned on opposite sides of the plot origin (opposed quadrants).

Finally, the more important variables contributing to the varplot components have
been dissected and are presented in Figure 4. Figure 4A is the projection of the individual
dots contributing to the 3-layer omics model component 1 while Figure 4B is the projec-
tion of the individual dots contributing to the 3-layer omics model component 2. Our
results show that the genes keratin 76 (krt76), keratin 27 (krt27), paraneoplastic antigen-
like protein 5 (pnma5), MANSC domain-containing protein 4 (mansc4), ras-related protein
rab-41 (rab41), THO complex subunit 6 (thoc6), transmembrane 6 superfamily 2 (tm6sf2),
and zinc finger protein 506 (znf506) as well as the pro-inflammatory cytokines IL-1β,
GM-CSF, FGF2, IL-10, the metalloproteinases MMP3 and MMP8, and bacteria from the
ASV 105, ASV 211, ASV 299, Prevotella, Campylobacter and Fretibacterium genera are key
correlated variables contributing to periodontitis-induced inflammatory response in a
hyperglycemic microenvironment.
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Figure 3. Multi-omics correlations by computational biology. (A) Arrow plot. This plot is the
superposition of 3 PCAs corresponding to the 3 layers of omics data. For each sample, one arrow
represents a set of omics data and the mean of the 3 layers is the centroid. If the arrows are close, the
3 layers of data are similar. On the contrary, if the arrows are apart, then the 3 layers are different.
(B) Varplot. Positively correlated variables are grouped together. Negatively correlated or anti-
correlated variables are positioned on opposite sides of the plot origin (opposed quadrants). Samples
from healthy donors are identified h1 to h4 while the samples from patients with periodontitis are
identified p1 to p4.
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tion of the most important variables contributing to the varplot’s component 2.

3. Discussion

Hyperglycemia and periodontitis are interconnected. However, knowledge of the
molecular mechanisms involved in the regulation of periodontitis-associated host inflam-
matory response and host–microbiome interactions in a hyperglycemic microenvironment
is scarce. This knowledge gap was investigated in a gingival fibroblast–macrophage co-
culture model stimulated with dysbiotic subgingival microbiomes by using an advanced
multi-omics bioinformatic data integration model. Multi-omics technologies are powerful
tools to integrate biological data [21]. As of the time of this writing very few studies
have used these tools to identify the key variables implicated in subgingival microbiome
dysbiosis-induced inflammatory response. Our study, one of the first to use this technology,
has comprehensively uncovered new relationships between gingival inflammation and
hyperglycemia by the integration of microbiome, pro-inflammatory cytokine secretion
profile and transcriptomic data. Nevertheless, a major limitation of our multi-omics data
integration was the level of biological complexity. mRNA and pro-inflammatory cytokines
have been measured in the coculture cells model following stimulation with subgingival
microbiomes from two experimental groups in 5 mM and 25 mM glucose. However, signif-
icant results were only observed for cytokine secretion in 25 mM glucose. Three layers of
omics data (ASV, mRNA and cytokines) in 25 mM glucose have thus been used in addition
to the experimental groups (healthy vs. periodontitis) for the data integration. It would not
have been possible to perform the multi-omics integration with both glucose concentrations
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due to the biological complexity of our experimental design. The second limitation of our
study is the low number of participants per group, which impacted the data interpretation.

Though the impacts of hyperglycemia on individuals’ pro-inflammatory cytokine
and MMP secretions have been reported [12,14,22,23], our multi-omics integration model
highlighted new relationships between genes, pro-inflammatory cytokines and bacteria
genera implicated in periodontitis-induced inflammatory response in a hyperglycemic
microenvironment. Highlighted genes have been associated with DNA damage response
(znf506) [24], cancer (pnma5) [25] and oral cancer (krt76, rab41) [26–28]. We have also identi-
fied tm6sf2, which is associated with both the risk and the severity of nonalcoholic fatty
liver disease [29] as well as with the regulation of inflammatory responses in atherosclerotic
lesions [30]. Notably, none of the highlighted genes revealed by our multi-omics model
have so far been involved in the regulation of gingival inflammation. Although MMP8 and
MMP3 and IL-1β are important inducers of inflammation in our hyperglycemic coculture
model, the multi-omics data integration model showed that FGF2, GM-CFS and IL-10 are
key pro-inflammatory cytokines that play a major role in periodontitis-induced inflamma-
tory response in a hyperglycemic microenvironment. FGF2 and IL-10 are known to enhance
periodontal tissue regeneration [31] and to decrease gingival inflammation [32], respectively.
Their highlighted role during periodontitis-induced inflammation may suggest that they
are secreted by the coculture model to counteract pro-inflammatory cytokines and matrix
metalloprotease secretion. Our multi-omics data integration model unveiled three ASVs
(ASV 105, ASV 211, and ASV 299) that contribute to periodontitis-induced inflammation
in a hyperglycemic microenvironment while confirming the role of the known periodon-
topathogens. Prevotella, Campylobacter and Fretibacterium are well known contributors to
microbiome dysbiosis during periodontitis [33]. To our knowledge, unannotated ASV 105,
ASV 211 and ASV 299 have never been associated with subgingival microbiome dysbiosis or
hyperglycemia microenvironments and may correspond to uncultured bacteria. Advance-
ments in culturomics and metagenomics technics may help to further characterize these
ASVs. We can thus propose that subgingival microbiome dysbiosis and hyperglycemic
microenvironments bring to light both new bacteria genera and gingival fibroblast genes
that can play key roles in the host’s inflammatory response. However, future in vitro
studies are needed to confirm this hypothesis.

Recent studies have shown that mature biofilms containing pathogenic bacteria have an
increased pro-inflammatory capacity over biofilms that contain commensal bacteria [34–36].
Contrary to these studies, we found that microbiomes from healthy persons and from
patients with periodontitis have the same pro-inflammatory potential in our coculture
model. This discrepancy could be due to the nature or composition of the biofilms studied.
For many years, scientists have attempted to build in vitro subgingival biofilms to mimic
natural subgingival microbiomes in oral health research, with limited success. Whilst
reconstructed biofilms in vitro can be used as multispecies community models [37], they do
not offer a 100% match with their inoculum after culture enrichment [38,39]. Discrepancies
have also been reported between bacteria isolated from oral clinical samples and their
counterpart laboratory strains [40,41], indicating that the culture conditions blunted the
virulence factors of these microorganisms and impacted biofilm formation. Nevertheless,
these studies have clearly demonstrated the complexity of biofilm pathogenicity.

Reactive oxygen species (ROS) are known contributors to both periodontitis- and
type 2 diabetes-induced inflammation [42]. Recently, it has been demonstrated that hyper-
glycemia exacerbates periodontitis in an ROS dependent manner [43] and that pregnant
women with gestational diabetes have a higher level of oxidative markers in the saliva,
gingival crevicular fluid and serum than healthy pregnant women [44]. Further work is
thereby warranted to study the impacts of oxidative stress in our experimental cell culture
model. Finally, periodontitis is controlled with frequent and invasive periodontal therapy
(scaling and root planing (SRP)) to remove the subgingival microbiome (dental plaque).
Adjunctive periodontal treatments to SRP may be developed to improve periodontal clini-
cal outcomes. Candidates for adjunctive periodontal treatments could be natural molecules.
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Among these natural molecules, polyphenols, probiotics and parabiotics are interesting
as they can be used to reduce bacterial load and to control inflammation induced by oral
pathogens [45–53]. However, future in vitro work and long-term clinical studies are needed
to confirm the antibacterial and anti-inflammatory potentials of these natural molecules.

4. Material and Methods
4.1. Samples Collection

The project was conducted in accordance with the Declaration of Helsinki and was
approved by the Research Ethics Committees of Université Laval (ethics number: 2021–013).
Samples of subgingival microbiome were collected from four sex-matched, healthy donors
(no more than slight gingivitis and no probing pocket depth or attachment loss ≥ 3 mm)
and four patients with untreated, moderate-to-severe periodontitis (at least 1 tooth per
quadrant with bleeding on probing, pocket depth ≥ 5 mm, and attachment loss ≥ 4 mm)
using sterile curettes. Participants that had consumed antibiotics, probiotics, and prebi-
otics three months prior to the microbiome collection or that had been diagnosed with
systemic/metabolic diseases were excluded. Six subgingival sites (tooth) were collected
in reduced transport fluid (RTF) medium [54] per participant and pooled to increase the
microbial diversity. Each pooled sample was then divided into two parts for: (1) 16s rRNA
gene sequencing and (2) coculture cells stimulation. Prior to the coculture model stimu-
lation, the pooled samples optical density (660 nm) was adjusted to 0.2 and the samples
heat-inactivated for 30 min at 70 ◦C to prevent Streptococcus spp. overgrowth during the
stimulation period (see Figure S2 for a summary of the experimental design).

4.2. Coculture Model and Stimulation with the Subgingival Microbiome

Primary human gingival fibroblasts (HGF-1) (ATCC #CRL-2014) were immortalized
by retroviral-mediated expression of SV40 large T-antigen [55]. Immortalized HGF-1 were
cultivated in DMEM supplemented with 10% heat-inactivated (HI)-FBS, 4 mM L-glutamine
and 100 µg/mL penicillin/streptomycin + 0.25 µg/mL amphotericin B at 37 ◦C in 5%
CO2. Human U937 monocytes (ATCC CRL-1593.2) [56] were cultivated in RPMI medium
supplemented with 10% HI-FBS and 100 ug/mL penicillin/streptomycin + 0.25 ug/mL
amphotericin B at 37 ◦C in 5% CO2. Two weeks prior to the experiments, the cells were
maintained in culture media containing either 5 mM or 25 mM glucose. The 5 mM
glucose mimics a normal glycemic microenvironment while the 25 mM represents a
hyperglycemic microenvironment.

The coculture model was composed of immortalized HGF-1 overlaid with U937-
macrophage-like cells. An arbitrary ratio of 10:1 macrophages to fibroblasts was used. U937
monocytes were differentiated into macrophage-like cells in the presence of 50 ng/mL
of phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich, Oakville, ON, Canada) for 72 h.
Macrophage-like cells were then washed to remove non-adherence cells, harvested by
scraping, suspended in their culture medium and placed over the immortalized HGF-1.
The coculture model was incubated overnight at 37 ◦C in 5% CO2 to allow macrophage
adhesion prior to stimulation. The subgingival microbiome samples were used to stimulate
the gingival coculture model cultivated either in 5 mM or 25 mM glucose concentration for
24 h. Untreated coculture models served as negative controls.

4.3. Pro-Inflammatory Cytokines and Matrix Metalloproteinases Measurement

After stimulation with the oral microbiome for 24 h, the coculture model supernatants
were collected, the bacteria in the supernatants removed by centrifugation and the pro-
inflammatory cytokines and metalloproteinases were then measured by a Luminex assay
(R&D Systems, Toronto, ON, Canada). The cells were washed, lysed and the proteins quan-
tified to normalize the results. Experiments were performed for each collected microbiome
sample in two technical replicates for each condition. Results were analyzed using two-way
ANOVA test in combination with the Tukey post hoc test to assign statistical significance
(p < 0.05).
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4.4. 16s rRNA Gene Sequencing

Bacterial DNA from each pooled microbiome sample was extracted by using the
ZymoBIOMICS extraction kit from Zymo Research (Irvine, CA, USA). The concentration of
DNA was determined with a Nanodrop device (ThermoFisher, Mississauga, ON, Canada).
The DNA sequencing (16s rRNA gene sequencing) was performed by the Centre d’expertise
et de services Génome Québec (Montreal, QC, Canada) on an Illumina MiSeq apparatus
using v3–v4 primers (PE 300 bp (100,000 reads)). The DNA sequencing data were deposited
in the SRA database server under accession number PRJNA912124.

4.5. RNA Microarray

After stimulation with the oral microbiome for 24 h, the cells were washed with
ice-cold PBS and the RNA extracted from the coculture models using the Direct-zol RNA
extraction kit from Zymo Research. The concentration of RNA was determined with a
Nanodrop device. The RNA sequencing was performed using human Clariom S Affymetrix
gene array chips (ThermoFisher, Mississauga, ON, Canada) by the Centre d’expertise et de
services Génome Québec. The microarray data were deposited in the GEO database server
under accession number GSE222883. Experiments were performed one time in a single
biological replicate for each experimental condition.

4.6. Bioinformatic Analyses and Data Integration
4.6.1. 16s rRNA ASV Analysis Method

A mean of 32 945 16S sequences were analyzed with an amplicon sequence variant
(ASV) methodology using DADA2 pipeline [57]. Briefly, the 16s amplicons were trimmed
for their adapters using cutadapt [58] and the options (-m 270 -M 330-discard-untrimmed).
The remaining reads were processed using DADA2 commands [57]. The dada2 pipeline
allowed us to filter and trim the data based on their quality profile and to remove chimera
using an error model based on the sequenced data. A count table of the retrieved ASVs
was achieved using the makeSequenceTable function.

4.6.2. Taxonomic Annotation of ASVs

The ASVs were analyzed using Blastn v2.4.0 against RefSeq nt and only hits with a
p value < 10−5 and a percentage of similarity > 95 were considered correct. Remaining
ASVs were left with no taxonomy association. The analysis and data representation were
produced using R4.2.2. Pseudomonas and related ASVs were discarded from the data
because they were considered to be contaminants and not a member of the oral subgingival
microbiome. ASV counts were normalized using the total annotation depth with the
decostand function of the vegan package (v2.6–4) in order to produce relative abundance
graphs. ASV counts were also obtained using the DESeq2 R package in order to normalize
counts and produce a biplot using the prcomp function of the stats package.

4.6.3. Microarray Analysis

The affymetrix clariom S human CEL files were analyzed in R v4.0.3 [59]. CEL files
were imported and normalized using the robust multichip average (RMA) methodology
implemented in the oligo v1.54.1 package [60]. The probes were annotated using the
affycoretools v1.62.0 [61] and the pd.clariom.s.human v3.14.1 packages [62]. The expression
value of genes associated with multiple probes was calculated as the mean of the expression
of all the probes targeting it.

4.6.4. Data Integration (16s, Microarray, Cytokines in Hyperglycemic Microenvironment)

Multi-omics data integration was performed using mixOmics R package [63]. Prior
to integration, a log2 transformation and centered log ratio (CLR) were applied to the
cytokine and ASV data, respectively. Then, a multiblock sparse PLSDA was performed on
the microarray and the 16s gene sequencing and cytokine data with 2 principal components
were used to identify similar expression profiles within the experimental groups. Finally,
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we performed a feature selection step to identify the most discriminant profiles between
experimental groups; 10 genes and 25 ASV were selected for the first component and
5 genes and 20 ASV were selected for the second component. No selection was performed
on the cytokine data. A circle correlations plot was extracted as well as various graphical
outputs to depict correlations between molecular features.

5. Conclusions

In conclusion, our multi-omics integration analysis unveiled unique interrelated bac-
terial genera, genes and pro-inflammatory cytokines involved in the regulation of the
inflammatory response in a hyperglycemic microenvironment. These data highlight the
importance of considering hyperglycemic conditions in the management or development of
new treatments for periodontal disease linked with type 2 diabetes. An interesting potential
research avenue could be the development of adjunctive periodontal treatments based on
natural molecules such as polyphenols, probiotics and parabiotics to reduce bacterial load
and to control inflammation induced by oral pathogens.
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