
Citation: Ferrasi, A.C.; Puttini, R.;

Galvani, A.F.; Hamamoto Filho, P.T.;

Delafiori, J.; Argente, V.D.; de

Oliveira, A.N.; Dias-Audibert, F.L.;

Catharino, R.R.; Silva, O.C.; et al.

Metabolomics Approach Reveals

Important Glioblastoma Plasma

Biomarkers for Tumor Biology. Int. J.

Mol. Sci. 2023, 24, 8813. https://

doi.org/10.3390/ijms24108813

Academic Editor: Raffaele Addeo

Received: 10 March 2023

Revised: 26 April 2023

Accepted: 9 May 2023

Published: 16 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Metabolomics Approach Reveals Important Glioblastoma
Plasma Biomarkers for Tumor Biology
Adriana C. Ferrasi 1 , Ricardo Puttini 1, Aline F. Galvani 1, Pedro T. Hamamoto Filho 2 , Jeany Delafiori 3,
Victoria D. Argente 1, Arthur N. de Oliveira 3, Flávia L. Dias-Audibert 3, Rodrigo R. Catharino 3,
Octavio C. Silva 1 , Marco A. Zanini 2 , Gabriel A. Kurokawa 1 and Estela O. Lima 1,*

1 Laboratory of Molecular Analysis and Neuro-Oncology, Department of Internal Medicine, Botucatu Medical
School, São Paulo State University, Botucatu 18.618-687, Brazil; adriana.ferrasi@unesp.br (A.C.F.);
ricardo.puttini@kroton.com.br (R.P.); alinefgalvani@gmail.com (A.F.G.); victoria.argente@unesp.br (V.D.A.);
octavio.castro@unesp.br (O.C.S.); gabrielkurokawa@gmail.com (G.A.K.)

2 Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University,
Botucatu 18.618-687, Brazil; pedro.hamamoto@unesp.br (P.T.H.F.); marco.a.zanini@unesp.br (M.A.Z.)

3 Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas,
Campinas 13.083-877, Brazil; jeanydelafiori@gmail.com (J.D.); arthurnoin95@gmail.com (A.N.d.O.);
flaviald.nutricao@gmail.com (F.L.D.-A.); rrc@fcm.unicamp.br (R.R.C.)

* Correspondence: estela.lima@unesp.br; Tel.: +55-14-3880-1453

Abstract: Glioblastoma (GB) is the most aggressive and frequent primary malignant tumor of the
central nervous system and is associated with poor overall survival even after treatment. To bet-
ter understand tumor biochemical alterations and broaden the potential targets of GB, this study
aimed to evaluate differential plasma biomarkers between GB patients and healthy individuals
using metabolomics analysis. Plasma samples from both groups were analyzed via untargeted
metabolomics using direct injection with an electrospray ionization source and an LTQ mass spectrom-
eter. GB biomarkers were selected via Partial Least Squares Discriminant and Fold-Change analyses
and were identified using tandem mass spectrometry with in silico fragmentation, consultation of
metabolomics databases, and a literature search. Seven GB biomarkers were identified, some of which
were unprecedented biomarkers for GB, including arginylproline (m/z 294), 5-hydroxymethyluracil
(m/z 143), and N-acylphosphatidylethanolamine (m/z 982). Notably, four other metabolites were
identified. The roles of all seven metabolites in epigenetic modulation, energy metabolism, protein
catabolism or folding processes, and signaling pathways that activate cell proliferation and invasion
were elucidated. Overall, the findings of this study highlight new molecular targets to guide future
investigations on GB. These molecular targets can also be further evaluated to derive their potential
as biomedical analytical tools for peripheral blood samples.

Keywords: glioblastoma; metabolomics; biomarkers; plasma samples; 5-hydroxymethyluracil; NAPE

1. Introduction

Glioblastoma (GB) is the most frequent primary malignant tumor of the central nervous
system (CNS), and only 7.2% of patients survive for five years post-diagnosis [1]. For the
initial diagnosis, imaging techniques, such as computed tomography (CT) and magnetic
resonance imaging (MRI) with intravenous contrast, are essential guides for planning
surgical and radiotherapeutic strategies and the treatment follow-up [2]. Despite advances
in strategies for the diagnosis and treatment of CNS tumors, GB management remains
challenging. If neuroimaging is not practicable for extensive screening when a clear clinical
indication does not exist, patients with brain tumors may experience diagnostic delays,
especially in the early stages, in which the clinical symptoms are not well defined. The
standard care strategy for GB is surgical resection [3]; however, surgical intervention is
limited by the high rate of tumor infiltration, which impairs the total removal of tumor cells.
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Adjuvant treatment with chemotherapeutic agents, such as temozolomide, often results in
relapse, even after a good initial response [4].

Genetic and epigenetic alterations [4], such as IDH1/IDH2 mutations [5], MGMT
methylation [6], and 1p19q co-deletion, are relevant for estimating prognoses and appro-
priate treatments [7]. However, the molecular pathways involved in this disease remain
unclear. Further, limiting studies to nucleic acids restricts the possibility of better thera-
peutic and diagnostic approaches. Thus, investigating molecules that enhance the current
understanding of GB biology and shed light on early tumor biomarkers and new signaling
pathways for tumorigenesis comprehension, therapeutic intervention, or evaluation of
treatment progression is of particular importance [8].

Considering the intratumoral heterogeneity and alterations induced by cancer at the
whole-body level, analyses performed on blood samples may reflect the global phenotype
of GB. Studies based on the metabolomics of biological matrices, such as plasma, serum,
and urine, have revealed differential metabolite profiles in several types of cancer [9].
Metabolites reflect the end point of cellular biochemical interactions as they are by-products
of biological processes, representing the possibility of a connection between molecular
changes and phenotypes. This linkage highlights the extensive understanding of cellular
biochemical pathways and their corresponding outcomes, such as cancer [10].

In this context, the search for metabolites in patients with GB is important, espe-
cially for investigations at the whole-body level, which might reveal widespread metabolic
changes and highlight possible organic responses to the disease. Thus, the primary aim
of this study was to evaluate the differential profile of metabolites in the blood plasma of
patients with GB compared with healthy individuals. As our results enabled the identifica-
tion of GB biomarkers in blood samples, the secondary goals were to clarify the metabolic
alterations in these patients and propose biochemical pathways altered in GB biology.

2. Results
2.1. Epidemiological Characteristics

The control group comprised healthy individuals between 18 and 80 years old (median
age of 41.5 years old (range 22–80)) with no comorbidities. This group of 50 participants
consisted of 50% female and 50% male volunteers. The GB group comprised 15 male and
9 female patients with GB, with a median age of 57.5 years old (range, 20–79 years). The
incidence of GB in males was 1.6 times higher than that in females, in accordance with the
incidence rate by sex reported by CBTRUS [11].

2.2. Biomarker Selection, Identification, and Distribution

Partial least squares discriminant analysis (PLS-DA) of the GB and CT datasets re-
vealed an evident separation between the groups (Figure 1), which indicates that the set
of m/z (mass-to-charge ratio) features selected by variable importance in projection (VIP)
scores could differentiate both groups through the importance of each m/z feature. Consid-
ering a VIP score > 2.5 (Figure S1), the five most important m/z features for the GB group
could be selected: m/z = 111, m/z = 143, m/z 294, m/z = 819, and m/z = 931 (Table 1). In
addition to VIP scores, m/z features were ranked using fold change (FC) univariate analysis,
with a threshold of FC ≥ 2, represented by Log2(FC) > 1.0 (Figure 2). As a complementary
result, FC analysis was associated with a Student’s t-test (p-value < 0.05) represented by
a volcano plot graphic (Figure 3). These analyses were performed to observe the most
intense m/z features of the GB group compared with the CT group, which were: m/z = 931,
m/z = 294, m/z = 112 (isotope of m/z = 111), m/z = 936, and m/z = 982 (Table 1). Both
statistical analyses resulted in a total of seven GB biomarkers. To evaluate the distribution
of each metabolite selected by both analyses among individuals, a heatmap was built that
revealed a clear difference in biomarker intensity between samples from GB and CT par-
ticipants (Figure 4). An accuracy analysis was also performed for the selected biomarkers
using receiver operating characteristic (ROC) curves, two of which presented remarkable
results. Pyruvate (m/z = 111) alone had an AUC of 0.974 (Figure 5a), with sensitivity and
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specificity of 99.2% and 94.6%, respectively (Figure 5b). When pyruvate was combined with
5-hydroxymethyluracil (m/z = 143) for ROC curve analysis, the graph displayed a better
performance, with an AUC of 0.986 (Figure 5c), a sensitivity of 98.3%, and a specificity of
97.2% (Figure 5d).
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Figure 1. PLS-DA highlighting the ability to discriminate between the GB and CT groups. Score
scatter plot based on partial least square-discriminant analysis (PLS-DA) of metabolomics data from
serum samples of the control (CT) and glioblastoma (GB) groups, with a clear separation between the
groups and clustering of samples from the same group. CT (•) and GB (•) groups.
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Figure 2. Fold change (FC) representation of the metabolites according to abundance. The diagram
was generated based on Log2(FC) according to the relative abundance of metabolites (biomarkers)
in GB/CT. GB biomarkers were considered when FC > 2.0, i.e., Log2(FC) > 1.0. The indicated m/z
values correspond to more abundant biomarkers of GB.
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Figure 3. Volcano plot with the most discriminant m/z values for GB samples. Univariate statistical
analysis of the detected metabolites in which their relative abundances (GB/CT) are presented on
a volcano plot, where m/z values with p < 0.05 and fold change > 2.0 (−1.0 > Log2(FC) > 1.0) were
considered significant to discriminate glioblastoma and healthy samples.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 14 
 

 

 

Figure 4. Heatmap depicting the increased intensity of the seven selected GB metabolites in GB 

patients. Heatmap demonstrating the distribution of metabolites according to the individuals and 

their groups, represented by superior horizontal green and red bars (Control group—CT: ▬; 

Glioblastoma group—GB: ▬). On the graphic right-lateral side, each line represents one metabolite, 

where the color gradation represents the peak intensity from red (more intense) to blue (less 

intense). * NAPE: N-acylphosphatidylethanolamine. 

 

Figure 5. ROC curve presents AUC > 0.95 when performed with Pyruvate alone or combined with 

5-hydroxymethyluracil. Analysis of the ROC curve performance with pyruvate (a) and its confusion 

Figure 4. Heatmap depicting the increased intensity of the seven selected GB metabolites in GB pa-
tients. Heatmap demonstrating the distribution of metabolites according to the individuals and their
groups, represented by superior horizontal green and red bars (Control group—CT:

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 14 
 

 

 

Figure 4. Heatmap depicting the increased intensity of the seven selected GB metabolites in GB 

patients. Heatmap demonstrating the distribution of metabolites according to the individuals and 

their groups, represented by superior horizontal green and red bars (Control group—CT: ▬; 

Glioblastoma group—GB: ▬). On the graphic right-lateral side, each line represents one metabolite, 

where the color gradation represents the peak intensity from red (more intense) to blue (less 

intense). * NAPE: N-acylphosphatidylethanolamine. 

 

Figure 5. ROC curve presents AUC > 0.95 when performed with Pyruvate alone or combined with 

5-hydroxymethyluracil. Analysis of the ROC curve performance with pyruvate (a) and its confusion 

; Glioblastoma
group—GB:

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 14 
 

 

 

Figure 4. Heatmap depicting the increased intensity of the seven selected GB metabolites in GB 

patients. Heatmap demonstrating the distribution of metabolites according to the individuals and 

their groups, represented by superior horizontal green and red bars (Control group—CT: ▬; 

Glioblastoma group—GB: ▬). On the graphic right-lateral side, each line represents one metabolite, 

where the color gradation represents the peak intensity from red (more intense) to blue (less 

intense). * NAPE: N-acylphosphatidylethanolamine. 

 

Figure 5. ROC curve presents AUC > 0.95 when performed with Pyruvate alone or combined with 

5-hydroxymethyluracil. Analysis of the ROC curve performance with pyruvate (a) and its confusion 

). On the graphic right-lateral side, each line represents one metabolite, where the
color gradation represents the peak intensity from red (more intense) to blue (less intense). * NAPE:
N-acylphosphatidylethanolamine.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 14 
 

 

 

Figure 4. Heatmap depicting the increased intensity of the seven selected GB metabolites in GB 

patients. Heatmap demonstrating the distribution of metabolites according to the individuals and 

their groups, represented by superior horizontal green and red bars (Control group—CT: ▬; 

Glioblastoma group—GB: ▬). On the graphic right-lateral side, each line represents one metabolite, 

where the color gradation represents the peak intensity from red (more intense) to blue (less 

intense). * NAPE: N-acylphosphatidylethanolamine. 

 

Figure 5. ROC curve presents AUC > 0.95 when performed with Pyruvate alone or combined with 

5-hydroxymethyluracil. Analysis of the ROC curve performance with pyruvate (a) and its confusion 

Figure 5. Cont.



Int. J. Mol. Sci. 2023, 24, 8813 5 of 13

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 14 
 

 

 

Figure 4. Heatmap depicting the increased intensity of the seven selected GB metabolites in GB 

patients. Heatmap demonstrating the distribution of metabolites according to the individuals and 

their groups, represented by superior horizontal green and red bars (Control group—CT: ▬; 

Glioblastoma group—GB: ▬). On the graphic right-lateral side, each line represents one metabolite, 

where the color gradation represents the peak intensity from red (more intense) to blue (less 

intense). * NAPE: N-acylphosphatidylethanolamine. 

 

Figure 5. ROC curve presents AUC > 0.95 when performed with Pyruvate alone or combined with 

5-hydroxymethyluracil. Analysis of the ROC curve performance with pyruvate (a) and its confusion 
Figure 5. ROC curve presents AUC > 0.95 when performed with Pyruvate alone or combined with
5-hydroxymethyluracil. Analysis of the ROC curve performance with pyruvate (a) and its confusion
matrix are represented with the statistical parameters (b). The same data are presented when pyruvate
and 5-hydroxymethyluracil were evaluated together, whose ROC curve (c), confusion matrix, and
statistical parameters are shown in (d).

Table 1. Identity data of the proposed chemical markers for glioblastoma according to the m/z features
selected based on the statistical parameters of VIP score > 2.5 (PLS-DA) and fold change > 2.0.

m/z ID Metabolite Molecular Formula Adduct MS/MS c Log2FC d

111 MID 117 a Pyruvate C7H12O2 [M+ Na]+ 69, 55, 93, 83 2.4179
143 MID 5456 a 5-Hydroxymethyluracil C5H6N2O3 [M + H]+ 116, 111, 117, 97, 125 1.3418
294 MID 85632 a Arginyl-Proline C11H21N5O3 [M + Na]+ 268, 254, 250, 236, 266 2.7526
819 MID 78327 a Phosphatidylserine (38:9) b C44H68NO10P [M + NH4]+ 184, 636, 760, 147, 113 1.1817
931 MID 5096 a 3-O-Sulfogalactosylceramide (42:1) b C48H93NO11S [M + K]+ 109, 112, 121, 135, 184 2.4353
936 MID 58189 a 3-Oxodecanoyl-CoA C31H52N7O18P3S [M + H]+ 522, 184, 113 1.8450
982 MID 76593 a NAPE (N-acylphosphatidylethanolamine) C57H108NO9P [M + H]+ 644, 360, 113, 184 1.9059

a METLIN Representative ID; b carbon number: double bond; c fragmentation profile of tandem mass spectrometry;
d fold change; molecules with the same m/z and a similar fragmentation profile.

3. Discussion

To assist with the comprehension of GB pathophysiology and identification of bio-
chemical pathways, seven relevant biomarkers with increased levels in the plasma of
patients with GB compared with healthy participants were selected. To evaluate their
potential for brain tumor screening, a receiver operating characteristic (ROC) curve was
constructed for each biomarker and their combinations (Figure 5). Notably, GB plasma sam-
ples might comprise pyruvate (m/z = 111) alone as an important discriminating biomarker
(Figure 5a,b) that indicates tumor presence. However, pyruvate is not a GB-exclusive
metabolite. Therefore, we evaluated its association with other biomarkers and obtained
an interesting ROC curve when pyruvate was combined with 5-hydroxymethyluracil
(m/z 143) (Figure 5c,d). Both metabolites could be useful in the follow-up of patients with
GB and could be employed for the early detection of recurrence and establishment of faster
diagnostic and therapeutic guidance.

Beyond the appraisal of their biomarker screening potential, the biological roles of
these metabolites in human metabolism were evaluated, and interesting correlations were
observed as described below.

Among the seven GB chemical markers selected in our analyses, the most frequent
metabolite was represented by m/z = 294 and was identified as the peptide, arginyl-proline
(RP). RP is now being first reported as a plasma biomarker in patients with GB. According
to some studies, the catabolism of proteins and amino acids is increased in hypoxic GB cells,
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in accordance with the protein degradation observed in chronic hypoxia [12,13], which
might explain the selection of RP as a relevant biomarker. Interestingly, different studies
have reported that the dipeptide proline/arginine is associated with neurodegenerative
conditions that have been suggested for GB [14]. This aggressive brain tumor is associated
with synaptic loss and neurodegeneration, an important component of lethality in GB [15].
Proline and arginine repeats are associated with cell death owing to their toxic effects, which
are represented by the binding of chaperones, such as prolyl isomerases, and interference
in protein folding [14,16]. Misfolded proteins are defective and dysfunctional, which is
concerning, especially if they affect tumor suppressor proteins, which corroborates with cell
cycle dysregulation and cancer development [17]. Therefore, the RP dipeptide, proposed
as an unedited biomarker (m/z = 294), might be involved in neurodegeneration associated
with GB (Figure 6); however, this hypothesis requires further testing.
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glial cells.

In this scenario of molecular alterations, tumoral cells tend to present epigenetic
modulation of gene expression through diverse biochemical modifications, such as methy-
lation and demethylation processes. Owing to the aberrant methylation of CpG islands
in cancers, DNA-demethylation is known to be involved in epigenetic changes, especially
in cancer. One of the selected biomarkers corresponded to m/z = 143 and was identi-
fied as 5-hydroxymethyluracil, which is a byproduct derived from different pathways
(Figure 7), including (i) the active DNA-demethylation process through deamination of 5-
hydroxymethylcytosine [18] and (ii) the oxidation/hydroxylation of thymine derived from
intense oxidative stress [19,20]. These processes can lead to harmful mutagenic alterations,
such as base pair exchanges, culminating in tumorigenesis [21]. Some cancers, such as breast
and colorectal cancers, are associated with higher levels of anti-5-hydroxymethyluracil an-
tibodies. In fact, in women with breast cancer, higher levels of 5-hydroxymethyluracil have
been detected, especially in blood samples [22,23]. Although human cells are susceptive
to an imbalance in the redox state, the brain tissue is particularly vulnerable to a hypoxic
environment and oxidative stress due to its high demand for oxygen and high expres-
sion of superoxide dismutase (SOD), associated with OH- synthesis and its consequences,
including metabolic changes and chromosomal instability [24]. SOD overexpression is
especially observed in astrocytes [24], the primary source of GB [2], and may serve as
one of the reasons for the remarkable aggressiveness of GB and the difficulty associated
with treating this tumor compared with other tumors. Together, these data support the
hypothesis that 5-hydroxymethyluracil might indicate genomic instability, highlighting a
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potential plasmatic biomarker for tumor screening for GB. To our knowledge, this is the
first study to highlight the presence of 5-hydroxymethyluracil in the plasma of GB patients.
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In addition to epigenetic modulation and redox imbalance, energy metabolism is affected
in tumorigenesis, which was reinforced by the identification of pyruvate (m/z = 111) as one
of the biomarkers in the present study. Notably, pyruvate is commonly found at increased
levels in tumors. This characteristic may be partly explained by the Warburg effect, which
refers to metabolic reprogramming in cancer cells that prioritizes alternative energetic
routes instead of mitochondrial respiration [25,26]. Mutations associated with enzymes
involved in energy metabolism, such as isocitrate dehydrogenase (IDH), are commonly
observed in gliomas. IDH1 mutant cells were demonstrated to overexpress pyruvate
dehydrogenase kinase 3 (PDK3), a well-known downregulator of the activity of pyruvate
dehydrogenase (PDH) [27,28], the enzyme responsible for pyruvate conversion to acetyl
CoA. Therefore, glioma cells are prone to increased pyruvate levels, as revealed in the
blood samples tested in the present study.

Although the energy metabolism of cancer cells relies on aerobic glycolysis [29], some
studies have shown that gliomagenesis presents glycolysis and fatty acid oxidation (FAO)
in a dynamic relationship that is critical for cellular metabolism in the heterogeneous
environment of GB cells [30]. McKelvey et al. revealed the upregulation of glycolytic
and FAO enzymes in GB tumors. When both energy pathways were targeted in vivo, the
survival rate of GB mice was found to increase [31]. Our metabolomic analysis revealed an
increased frequency of an FAO metabolite in GB samples, 3-oxodecanoyl-CoA (m/z = 936),
which corroborates the importance of energetic alternatives for the maintenance of the GB
environment. Overall, 3-oxodecanoyl-CoA and pyruvate highlight the importance of both
glycolysis and FAO dynamics in GB and reinforce the proposal of targeting both pathways
to improve conventional therapeutic approaches.

In this scenario, in which metabolic reprogramming occurs via diverse pathways,
endocannabinoid biosynthesis may also be affected. Anandamide (AEA), one of the most
studied endocannabinoids, is an important neuromodulatory lipid in the central nervous
system [32]. AEA is synthesized from N-acylphosphatidylethanolamines (NAPEs) by the
NAPE-phospholipase D enzyme (NAPE-PLD), which is less active in GB tissue, leading
to decreased levels of anandamide [33]. In accordance with NAPE-PLD-reduced activity,
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NAPE levels were observed to be higher than those in non-tumor tissues [33], not only for
GB but also for different tumors [34], which might indicate a retroactive stimulus for NAPE
biosynthesis. In the present study, NAPE was among the most important features of GB
plasma samples, represented by m/z = 982. NAPE prominence indicates that AEA might
not be synthesized, and its function in tumors through the cannabinoid receptor, CB1 [35],
might be reduced. If not activated, the endogenous levels of cAMP tend to increase and
activate protein kinase A, resulting in the activation of downstream signaling pathways,
such as mitogen-activated protein kinases (MAPKs), through the cAMP response element-
binding protein (CREB), which is associated with cellular proliferation, tumor growth,
and invasion [36,37], as shown in Figure 8. As the antitumoral effects of anandamide are
frequently reported [38,39], tumoral alterations, either at the gene or biochemical level,
may induce the inhibition of AEA biosynthesis and favor GB progression, leading to a
worse prognosis.
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MAPK signaling is mediated via the serine/threonine Raf kinase, which must interact
with membrane-acidic cytoplasmic domains to be activated [40]. The most abundant acidic
phospholipid in the brain cortex and exclusively present at the cytoplasmic leaflet plasma
membrane is phosphatidylserine (PS) [41]. PS is the critical membrane phospholipid that
interacts with Raf kinase, resulting in its activation and consequent ERK phosphorylation,
caspase-3 inhibition, and suppression of apoptotic signaling, thereby corroborating tumor
survival [42]. In the present study, PS (m/z = 819) was selected as one of the most important
and frequent biomarkers in GB plasma samples, which aligns with the findings of some
studies that revealed that higher levels of PS enhance Raf-1 activation [42,43]. This result
is consistent with aberrant Ras/MAPK activation and cancer progression [44]; however,
this is not the only biochemical pathway affected by increased levels of PS. PI3K/Akt
has also been extensively reported to be an important pathway in tumorigenesis [45]
and is positively affected by PS. Akt activation depends on its association with PS in the
cytoplasmic leaflet, which leads to conformational alterations and exposes the Akt kinase
domain to enable phosphorylation by mTORC2, thereby enhancing Akt activation [46,47].
Once activated, Akt phosphorylates diverse cytoplasmic proteins implicated in several
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downstream tumorigenic events, such as cellular proliferation, control of apoptosis, and
invasiveness [48,49] (Figure 8).

Another metabolite known to interfere with tumor progression and the Akt pathway
is sphingolipid ceramide, which mediates the downregulation of Akt and elicits mitochon-
drial apoptotic signaling [50]. However, tumors tend to have reduced levels of ceramide
due to intensive metabolism, which enhances Akt signaling and tumorigenesis [51]. Among
the GB-abundant features selected in our study, a product of ceramide metabolism, 3-O-
sulfogalactosylceramide (a glycosphingolipid; m/z = 931) was identified. This product
is a sulfatide, a class of sulfated glycolipids that is considered the most abundant in the
myelin sheath [52]. This compound is composed of a sphingosine C18 carbon chain asso-
ciated with the fatty acid C24, which is present at increased levels in human glioma cell
lines [53,54]. Additionally, the level of 3-O-sulfogalactosylceramide has been found to be
increased in the plasma of patients with meningioma [55] and different tumors [56–58]
and has been associated with metastasis risk [59]. In addition, sulfated glycolipids are
known to attach to adhesion molecules, especially P-selectin, one of the main membrane
glycoproteins responsible for cell adhesion in endothelial cells, [60] and are overexpressed
in GB cells [61]. Therefore, increased levels of 3-O-sulfogalactosylceramide may indicate the
occurrence of metastasis associated with a brain tumor and may be a potential biomarker
of aggressiveness and invasiveness.

This study could guide future investigations of altered biochemical pathways in GB.
The present biomarkers highlight the different pathways affected. Further, some of these
metabolites are described, for the first time, in association with GB, especially in plasma
samples. Our findings corroborate the understanding of GB through the establishment of
the correlations among biomarkers and the biochemical pathways associated with GB. In
addition, our data provide new opportunities to investigate brain tumor pathophysiology
and new potential targets for pharmacological interference.

Although we did not evaluate genetic and epigenetic alterations, we attempted to
elucidate the intracellular connections of each biomarker with disease pathophysiology
and establish well-defined molecular interactions between genes and metabolites. We also
used a small number of GB samples, which serves as another limitation of this study. As the
incidence of GB remains at approximately 10 cases per 100,000 individuals [2], this result
is in accordance with the area where the study was Although it is a preliminary analysis,
we recognize more studies with a larger number of samples are necessary to validate our
findings, especially if the proposal is to be employed in the biomedical field. In this context,
our study highlights new research topics for further investigation, enabling the elucidation
of the behavior of GB and an evaluation of the use of these biomarkers in medicine.

4. Materials and Methods
4.1. Patient Selection

This study was approved by the Research Ethics Committee of Botucatu Medical
School (number 3.491.414; CAAE 16610019.9.0000.5411) and aligned with the guidelines
of the Declaration of Helsinki. Blood samples were collected from 50 healthy individuals
(Control—CT group) and 24 patients with GB (GB group) at the Neurosurgery Service
of the Outpatient Clinic of Botucatu Medical School, UNESP, São Paulo, Brazil. Plasma
samples were stored at −72 ◦C until metabolite extraction and analysis.

4.2. Sample Preparation

The protocol by Melo et al. was used to extract the metabolites [62]. Briefly, 20 µL
of plasma was poured into 200 µL of tetrahydrofuran, homogenized under vortex, and
centrifuged at 3200 rpm for 5 min. Thereafter, the supernatant was collected and poured into
780 µL of methanol. This mixture was then subjected to homogenization and centrifugation
using the same parameters mentioned above. A total of 50 µL of the supernatant was
solubilized in methanol q.s. 500 µL and homogenized. Finally, 0.1% formic acid was added
to the mixture to assist with ionization.
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4.3. Mass Spectrometric Analysis

For mass spectrometric analysis, the solution was directly injected into an Electrospray
Ionization source and analyzed using an LTQ Mass Spectrometer (ESI-LTQ-XL Discovery,
Thermo Scientific, Bremen, Germany) in positive ion mode in the mass range of 100–1400 m/z.
The spectra were analyzed using XCalibur software (v. 2.4; Thermo Scientific, San Jose, CA,
USA). Ten analytical spectra were generated for each biological sample, resulting in 240
and 500 spectra for the GB and CT groups, respectively. For spectral data acquisition, the
following parameters were employed: capillary temperature, 280 ◦C; flow rate, 10 µL·min;
spray voltage, −15 kV; and sheath gas, 10 arbitrary units.

4.4. Statistical Analysis

The CT and GB datasets were inputted into the MetaboAnalyst 4.0 platform
(www.metaboanalyst.ca (accessed on 10 February 2020)) [63] for statistical analysis, which
was initially performed using partial least squares discriminant analysis (PLS-DA). As
a result, a score plot was generated to observe the separation between the GB and CT
groups. The variable importance in projection (VIP) scores established by PLS-DA were
used to select the most important metabolites in each group; a VIP score greater than 2.5
was defined as the threshold for the present analysis. Fold-change (FC) and a Student’s
t-test analyses were performed to assist in the selection of the most abundant metabolites
for each group. FC > 2 was defined as the threshold and used to generate the fold-change
graphic using Log2FC as a statistical parameter. p-value < 0.05 was added to FC analysis
and generated a volcano plot. A heat map of the most important and significant biomarkers
was generated using Ward’s clustering algorithm and Euclidean distance measurements to
illustrate the distribution of the selected metabolites in the samples from each group. To
assess the potential of the selected biomarkers as a screening test, accuracy was evaluated
using a receiver operating characteristic (ROC) curve and the linear SVM algorithm. A
ROC curve was constructed for each biomarker, and the area under the curve (AUC) was
evaluated. The statistical parameters of sensitivity and specificity were calculated from the
confusion matrix. Only biomarkers with AUC > 0.95 were considered.

4.5. Molecular Identification

The selected m/z biomarkers for the GB group were identified using tandem mass
spectrometry (MS/MS) and Mass Frontier software (v. 6.0, Thermo Scientific, San Jose, CA,
USA), and analyzed in online metabolomics databases, such as METLIN (http://metlin.
scripps.edu), Human Metabolome Database (https://hmdb.ca/ (accessed during the year
of 2020)), and LIPID Maps (https://www.lipidmaps.org/ (accessed during the year of
2020)). Altogether, these analyses were the basis for proposing the biological significance of
the metabolites and pathways involved in disease.
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