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Abstract: The prediction of a ligand potency to inhibit SARS-CoV-2 main protease (M-pro) would be a
highly helpful addition to a virtual screening process. The most potent compounds might then be the
focus of further efforts to experimentally validate their potency and improve them. A computational
method to predict drug potency, which is based on three main steps, is defined: (1) defining the drug
and protein in only one 3D structure; (2) applying graph autoencoder techniques with the aim of
generating a latent vector; and (3) using a classical fitting model to the latent vector to predict the
potency of the drug. Experiments in a database of 160 drug-M-pro pairs, from which the pIC50 is
known, show the ability of our method to predict their drug potency with high accuracy. Moreover,
the time spent to compute the pIC50 of the whole database is only some seconds, using a current
personal computer. Thus, it can be concluded that a computational tool that predicts, with high
reliability, the pIC50 in a cheap and fast way is achieved. This tool, which can be used to prioritize
which virtual screening hits, will be further examined in vitro.

Keywords: virtual screening; graph autoencoders; graph regression; graph convolutional networks;
neural networks; molecular descriptors; molecular potency; SARS-CoV-2; drug; prediction

1. Introduction

Many efforts were made at the start of the COVID-19 pandemic to identify a drug that
would stop the replication of the SARS-CoV-2 virus [1]. The main protease (M-pro) and the
RNA-dependent RNA polymerase have been investigated as two major targets, and a drug
for each target, nirmatrelvir (PF-07321332) [2] and remdesivir [3], has been approved by the
European Medicines Agency and the U.S. Food and Drug Administration to treat COVID-19 [4].

Virtual screening (VS) and other computer-aided drug design techniques have been
widely used to suggest new compounds that inhibit M-pro [5–7] and other SARS-CoV-2
targets [8–10]. A crucial component of drug research is drug potency expressed in terms
of the amount required to generate an effect of a specific strength. The hit compounds
suggested by a VS typically do not have enough potency to be used as drugs but may be
the starting point for a process of hit optimization [11–13]. A prediction of a compound’s
potency would be a highly helpful addition to a VS process. The most potent compounds
might then be the focus of further efforts to experimentally validate their potency and
improve them. Free-energy simulations, such as free-energy perturbation, have been used
to accurately predict protein–ligand free energies [14]. Nonetheless, these methods require
a great amount of computing power. Specifically, their application to calculate ∆Gbind in VS
require the use of supercomputer or cloud-computing resources (e.g., [15,16]).

Molecular graphs are an example of a very natural way to describe a set of atoms and
their interactions [17–19]. A graph, in general, is a data structure depicting a collection of
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entities (e.g., atoms), represented as nodes, and their pairwise relationships, represented as
edges. There is a growing interest in having graph-based techniques applied to machine
learning [20,21]. This can be attributed to their effectiveness in visualizing and charac-
terizing instances of data with complex structures and rich attributes [22], capturing the
inter-relationships between a system and its components.

In this paper, we propose a computational method to predict the quantitative activity
of potential non-covalent inhibitors of the SARS-CoV-2 Mpro, which is quantified by the
corresponding pIC50 (i.e., the negative log of the half maximal inhibitory concentration
value when converted to molar). It is called ReGenGraph: Regression on Generated Graphs.
The method’s input is the crystallographic pose of a compound at the catalytic site of
M-pro, but docked poses could also be used. The crystallographic or docked pose is
then treated as a molecular graph. We apply graph regression techniques based on graph
autoencoders (GAEs) [17,23] to predict the pIC50. The drug potency prediction is achieved
in two steps. First, the 3D structure of the M-pro/drug complex is converted into an
interaction graph, which represents the M-pro/drug complex as a whole structure. Then,
the potency value is deduced through an autoencoder and a graph autoencoder. Since the
reconstruction of the interaction graph is needed for learning purposes, we can visualize
the reconstructed M-pro/drug complex and verify its quality. Figure 1 summarizes the
scheme of the proposed approach.

Figure 1. General scheme of our approach: ReGenGraph. The input is a protein–ligand 3D complex,
while the output is their reconstructed structure and also the predicted drug potency.

In the next subsections, we briefly explain the main ideas behind autoencoders, which
are the basics of our method.

1.1. Autoencoders

Autoencoders are a particular class of neural networks that are employed in machine
learning to capture the most basic representations of an entity. To achieve this, they are
trained to reconstruct the input data after having generated an intermediate data called
latent space [24]. Autoencoders can be used for dimensionality reduction, data denoising, or
anomaly detection. The obtained intermediate representations can also be used as learning
tokens for classification and prediction tasks or for the generation of synthetic data.

An autoencoder consists of two components: an encoder that converts the input space
into a latent space, resulting in a latent vector, Z, and a decoder that converts the lower-
dimensional representation back to the original input space. We define W0 and W1 as the
trainable weights in the encoder and decoder, respectively. The latent space, Z ∈ RN×a, is
defined by the number of entities, N, (e.g., atoms in a molecule) and the features extracted
in the latent space, a. Encoders and decoders include non-linear activation functions. This
non-linearity typically increases the expressive ability of the network and enables it to learn
a range of tasks at various levels of complexity.

1.2. Graph Autoencoders

There has been a growth in using neural networks on data represented as graphs
across various domains, despite the complexity of graphs that results from their inter-
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twined characteristics. For the scope of this work, we focus on applications concerning
drug potency prediction [25]. The currently used techniques can be divided into four
categories: recurrent graph neural networks, convolutional graph neural networks, graph
autoencoders, and spatial–temporal graph neural networks [22].

A graph with attributes, represented by a node attribute matrix, X, and an adjacency
matrix, A, can be represented as G(X,A), where X ∈ Rn× f is a matrix of size n× f , with n being
the number of nodes and f being the number of attributes. The adjacency matrix, A ∈ Rn×n,
is of size n× n, where Ai,j = 1 if there is an edge between the ith and the jth node, and 0
otherwise. The graph’s edges are unattributed and undirected, meaning that if there is an edge
from node i to node j, there is also an edge from node j to node i, which is represented by the
equality, Ai,j = Aj,i.

GAEs are based on the concept of a graph convolutional network (GCN), which, in
turn, is built on the notion of generalizing convolution-like processes on normal grids, e.g.,
images to graph-structured data through neural network layers [17].

The key idea behind GCNs is to define the neighborhood of a node in the graph
using the information from the neighboring nodes to update the node’s representation.
This can be accomplished by defining a convolution operation on the graph, which is
typically implemented as a weighted sum of the representations of the neighboring nodes.
A learnable weight matrix is often used to determine the weights of this sum, which the
network learns as it updates the node’s representation [26]. Node attributes can also be
used to infer global properties about the graph’s structure and the links between its nodes.

GAEs are composed of two main components: an encoder and a decoder. The encoder
embeds input graphs through a GCN, as defined in [17], returning a latent matrix, Z ∈
Rn×b, with the graph unique properties. The number of features in the latent space is b.
Equation (1) shows the encoder’s function:

Z = GCN(X, A) = ÃReLU
(

ÃXW ′0
)
W ′1 (1)

where Ã is a symmetrically normalized adjacency matrix computed from A, while W ′0 and
W ′1 are the weight matrices for each layer, which are learned through a learning algorithm.
Note that ReLU is the classical non-negative linear equation.

The decoder is defined as Equation (2):

A∗ = σ
(

ZZT
)

(2)

where σ(·) is the sigmoid function and T means the transposed matrix. The output, A∗, is
a matrix of real numbers between 0 and 1 that represents the probability of an existing edge
in the reconstructed adjacency matrix. Note that, in order to deduce the final reconstructed
matrix, a round function is applied to A∗ to discern between non-edge and edge, i.e., zero
and one values.

As the aim of the GAE is to reconstruct the adjacency matrix such that it is similar to
the original one, the learning algorithm minimizes the mean square distance between these
matrices defined by Equation (3):

L =
1
n2

n

∑
i=1

n

∑
j=1

wpos Ai,jlogA∗i,j + wneg(1− Ai,j)log(1− A∗i,j) (3)

where wpos and wneg are introduced to deal with the value imbalance between pairs of
nodes with an edge and pairs of nodes without an edge.

2. Results and Discussion

A total of 160 M-pro crystallized structures bound to a non-covalent inhibitor for which
its pIC50 is known were used. Details about this database can be found in Section 3.1.
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2.1. Molecule Reconstruction

The aim of this section is to give an example of the reconstruction of the ligand. As
commented in the previous section, it seemed logical to think that a latent vector, Z, is
representative enough of whether the system is able to return a good approximation of the
ligand it comes from.

The adjacency matrix, A∗, produced by the GAE decoder (Equation (2)), is utilized to
generate the bonds of the ligand. Note that the elements in A∗ are real numbers between 0
and 1. As a consequence, a link between atoms i, j was to be imposed if A∗i,j > 0.5 and no link
otherwise. Additionally, the atomic number is reconstructed by the decoder of the autoencoder.

Figure 2 illustrates the ligand Mpro-x0830 from the selected database and the com-
pound generated by our method. It is evident that three chemical bonds, the edges in the
graph, were not reconstructed properly. For future work, the imposed bond could be set to
have a maximum length. As mentioned earlier, graph reconstruction is not the primary
objective but rather the ability of the latent space to capture different graph structures
by reconstructing them. In this sense, it could be the case that both the original and the
reconstructed compounds produce almost the same latent vector despite not being identical
compounds. Therefore, the fitting module might deduce similar properties, given the
compounds are not identical.

Figure 2. (Left) A ball-and-stick representation of ligand Mpro-x0830. (Right) The compound gener-
ated by our autoencoder and GAE. The ligand Mpro-x0830 was randomly selected from the database.

2.2. Drug Potency Prediction

As mentioned in the Introduction section, a dual method was defined, in which
the chemical compound composed of a drug and a protein is reconstructed through an
autoencoder and a GAE. Since this is a novel method, the aim is to heuristically validate
the need of using an autoencoder and a GAE instead of applying a classical scheme that is
composed of only one of them, namely, an autoencoder or GAE.

Figure 3 shows three scatter plots of computed and experimental pIC50 values cor-
responding to the compounds in the database. In the first case, only an autoencoder and
a fitting function were used. That is, the module for encoding–decoding in Figure 1 was
composed of a single autoencoder. Note that, in this scenario, the bonds of the compounds
are not reconstructed. In the second case, only a GAE and a fitting function were used,
meaning that the encoding–decoding mechanism in Figure 1 was composed of a single
GAE. In this scheme, the compound can be reconstructed. Finally, our method was applied
by combining latent representations derived from both the autoencoder and the GAE to be
used by the fitting function.

The first technique returns the highest mean square error (MSE), with a value of 0.82,
followed by the GAE technique where the MSE = 0.77, and, finally, the proposed method,
with an MSE = 0.67. These outcomes validate the architecture in a practical example, which
is based on splitting the node attributes—the features of the atom—into two parts: one
that is independent of the graph edges—the existence and type of bond—while the other
remained dependent on them. Hence, by carefully deciding which attributes should be
taken into account and which ones should be discarded, it was demonstrated that it is
worthwhile to define a dual model that applies this split of attributes.
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Figure 3. Three scatter plots showing the predicted and experimental pIC50 of the compounds in
the database. From top to bottom: using only an autoencoder, using only a GAE, and ReGenGraph
(proposed model). The mean square errors appear on the top of the scatters.
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As practical analysis confirmed the potential of our proposal, another set of experi-
ments was carried out. To compensate for the small size of the dataset, this experiment
was conducted with the “leave-one-out” method. That is to say, all the graphs were used
for training while reserving one graph for testing. This process was repeated until all the
data were used for both training and testing the model. The pIC50 was predicted given
the resulting vectors from the autoencoder, the GAE presented in [17], followed by the
concatenated vectors from ReGenGraph (the proposed method).

The first column of Table 1 shows the mean of MSE and the standard deviation, given
the semantic vectors resulting from the autoencoder applied to regression. The second
column shows the same measures of the regression module applied to vectors obtained
through a GAE, where the classical method was followed by using both semantic and
structural knowledge without splitting. The third column shows the regression module
applied to the ReGenGraph. The results indicate that there was a reduction in error when
applying our approach in comparison to a classical one. Moreover, the standard deviation
drastically decreased, which means ReGenGraph is less dependent on the data.

Table 1. MSE and standard deviation obtained by an autoencoder, GAE, and ReGenGraph
(our proposal).

Autoencoder GAE ReGenGraph

Mean 0.83576 0.7456 0.6717
Std. Dev. 0.3188 0.9382 0.1796

2.3. Runtime Analysis

The runtime for each training cycle varied from a few minutes to up to 40 min.
Technical specifications: the experiments were conducted on a 2.4 GHz dual-core Intel
Core i7 processor using Matlab R2022a.

3. Materials and Methods

The database is detailed in Section 3.1, our specific architecture is detailed in Section 3.2,
and, finally, the learning algorithm is explained in Section 3.3.

3.1. SARS-CoV-2 M-pro Database

As mentioned previously, the dataset used consisted of 160 M-pro crystallized struc-
tures bound to an inhibitor for which its pIC50 is known. A total of 53 of them came from
the well-know Protein Data Bank (PDB) database, and the other 107 structures came from
FRAGALYSIS [27] database. Table A1 in the appendix shows a list of the M-pro crystallized
structures used for training the model.

Given a pair of ligand–protein, only one attributed graph was generated. This graph
represents the whole ligand and only the atoms and bonds of the protein that are close to
some atom of the ligand, specifically at a distance lower than seven Å. Graph nodes are
atoms of both the ligand and the protein. Graph edges represent bonds of both the ligand
and the protein. Attributes on the nodes represent the three-dimensional positions of the
atoms and their atomic number. Edges are unattributed, and there is an edge if there is any
type of bond between atoms. The maximum number of atoms in the compound composed
of “ligand + binding site atoms” is 146, and for this reason, all the generated graphs have
146 nodes.

As an example, Figure 4 shows the ligand at the x0689 FRAGALYSIS entry with
(right) or without (left) the binding site environment. Note that only the parts of the Mpro
with a distance smaller than 7 Å to the ligand are displayed, which is the part used for
our purposes.
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Figure 4. (Left): Ligand in complex x0689. (Right): Ligand and only the part of the Mpro close to the
ligand (distance lower than 7 Å).

3.2. Architecture Configuration

The basis of the GAE approaches is the constraint that knowledge associated with
nodes is related to knowledge attached to edges and vice versa [17]. That is, it is assumed
that there is a relationship between the local structural pattern and the node attributes.
In our case, the node attributes consist of the three-dimensional position of the atom and
its atomic number. In the case of the first attribute, one can observe a clear relationship
between having a bond, an edge in the graph, between two atoms, two nodes in the graph,
and the proximity between these atoms. Contrarily, in the case of the second attribute,
there is no relationship between the type of atom and being connected to a similar one. The
contrary option would be, for instance, that oxygen tends to be connected to oxygen but
not to other atoms.

The designed model was based on a GAE that handles graphs with nodes that have
these two types of attributes: those that are impacted by structural patterns and those
that are not related to edges. Specifically, our approach is based on two modules that
work accordingly. The first one is an autoencoder [28] that captures semantic information,
i.e., atomic number, without structural relations but rather by only utilizing certain node
attributes. The other module is a GAE [17] that captures structural knowledge, i.e., atomic
three-dimensional position, which is achieved by exploiting the remaining node attributes
and edges. Both modules project their data into a latent domain, which is then used for
any fitting mechanism, as shown in Figure 5. The GAE architecture defined in [29] and
summarized in Section 1.2 was used. It is important to note that both the autoencoder
and the GAE are used for extracting features in the encoder stage that can be used in a
prediction or classification model. Nevertheless, whole models and encoder and decoder
stages are also useful for reconstructing the graph.

The decision on which node attributes to use in the autoencoder and which to use
in the GAE is made through a validation process. This can involve randomly selecting
attributes for each architecture and determining the combination that results in the lowest
loss for both. However, in specific problems, the user can make this decision based on their
knowledge of the problem.

The latent space of the proposed architecture is created by combining the latent space
of the autoencoder, represented as Zsem, and the latent space of the GAE, represented
as Zstr. Graphs are structures that must be invariant to the order of the nodes, meaning
they have the property of being node-position invariant. A common way to achieve this
property is by computing the sum, mean, minimum, or maximum of each feature for
all nodes. The choice was settled on calculating the mean, as it makes the architecture
independent of the number of nodes. Applying this mean is commonly known as the
global average pooling. Then, the given Zstr vector rstr is generated by computing their
mean. Note that the length of the vector, rstr, is independent of the number of nodes, n.
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This is an important feature because it means that we can fit the system with graphs that
have different numbers of nodes.

Finally, the fitting module utilizes the concatenated vector composed of Zsem and rstr .
This vector is used to determine the global property of the graph, which is in the current
approach the drug potency.

Figure 5. Schematic view of our architecture for graph regression based on an autoencoder, a graph
autoencoder, and a fitting module.

The autoencoder was modeled with a fully connected neural network, which only
has one hidden layer with 20 neurons, and the length of Zsem is 20. The input and output
layers have 146 neurons. W0 ∈ R146×20 and W1 ∈ R20×146. Moreover, the hidden layer
used a sigmoid activation function, while the output layer used a linear function. The
back-propagation algorithm was used for learning.

The input X of the GAE is composed of a matrix of 146 (number of nodes) times 4 (3D
position + atomic number). Additionally, the input A of the GAE is composed of a square
matrix of 146 times 146. W ′0 ∈ R146×20 and W ′1 ∈ R20×20. Zsem is a matrix of 146 times 20,
and thus, rstr is a vector that has a length of 20.

Finally, the fitting function is modeled by a classical regression. Thus, it receives a
vector of 40 elements, composed of 20 elements from Zsem and 20 elements from rstr. It
outputs only one real number that represents the pIC50.

3.3. The Learning Process

The learning process was achieved in two steps. Initially, by both weights, W0, W1, of
the autoencoder, and W ′0 , W ′1 in the GAE are learned given all graphs Gg, where g = 1, ..., k.
Following that, the regression weights are learned, given the returned latent vectors Zg

sem
and Zg

str of all graphs Gg in the training set, where g = 1, ..., k. For the scope of this paper
and its application, we focus on GAEs. More on the learning process of the autoencoder
and weights, W0 and W1, can be found in the original work [24].

GAEs (Section 1.2) were modeled to reconstruct only one, usually huge, graph. Thus,
the aim of the learning process, which minimizes Equation (3), is to reconstruct this unique
graph. In that case, Z would have to be defined such that it resembles the inherent
properties of this graph. We are in a different scenario. We wish that all latent spaces,
Zg , generated by all k graphs Gg are able to reconstruct their corresponding graphs G∗g,
given only one GAE, i.e., the same weights for all the graphs. In this way, the minimization
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criterion was redefined as the sum of Equation (3) to represent the loss function of all k
graphs in the dataset as expressed in Equation (4):

L =
1
k

k

∑
g=1
Lg (4)

where

Lg =
1
n2

n

∑
i=1

n

∑
j=1

wpos Ag
i,jlogA∗gi,j + wneg(1− Ag

i,j)log(1− A∗gi,j ) (5)

describes the loss function per each graph Gg.

4. Conclusions

Finding a fast and inexpensive method for predicting the potency of antiviral drugs
against SARS-CoV-2 has been a cornerstone of research in drug discovery in the last two
years. Given the experimental data on 160 M-pro/drug non-covalent complexes, this aim
can be achieved by modern computational methods based on machine learning. A drug
potency predictor of non-covalent ligand inhibitors was presented, which was based on
two steps. The first part is the conversion of the ligand–protein complex into the interaction
graph. The second is a new architecture composed of an autoencoder, a graph autoencoder,
and a regression module. Additionally, a third step can be introduced to reconstruct the
ligand, allowing one to visualize and evaluate the reconstructed compound.

A key aspect of our approach is the separation of the semantic and the structural
knowledge of the compounds. The first is processed through the autoencoder, while the
second is processed through the graph autoencoder. This main feature is independent of
the application, which means that the proposed method could have different applications
in other fields. The only important aspect to be considered is discerning between attributes
that are dependent on the structure and attributes that are not.

Practical experiments show the ability of ReGenGraph to predict drug potency. In
addition to that, they also show that the mean square error of the drug potency prediction
using a graph autoencoder is larger than using our method.

In future work, we plan to test our proposal by using different architectures for the
autoencoder and also to apply other fitting functions in the regression model, such as
neural networks. Despite the simplicity of the chosen functions, the results are promising.
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Abbreviations
The following abbreviations were used in this manuscript:

GAE Graph Autoencoder
GCN Graph Convolutional Network
MSE Mean Squared Error
VS Virtual Screening

Appendix A

Table A1. List of M-pro ligands used in this study.

Source Ligand Code

FRAGALYSIS Mpro-x0689, Mpro-x0691, Mpro-x0755, Mpro-x0770, Mpro-x0830, Mpro-x10236,
Mpro-x10322, Mpro-x10338, Mpro-x10371, Mpro-x10387, Mpro-x10417, Mpro-
x10422, Mpro-x10423, Mpro-x10466, Mpro-x10535, Mpro-x10565, Mpro-x10638,
Mpro-x10679, Mpro-x10789, Mpro-x10820, Mpro-x10870, Mpro-x10871, Mpro-
x10876, Mpro-x10942, Mpro-x10959, Mpro-x11011, Mpro-x11271, Mpro-x11276,
Mpro-x11294, Mpro-x11313, Mpro-x11317, Mpro-x11318, Mpro-x11366, Mpro-
x11368, Mpro-x11454, Mpro-x11458, Mpro-x11488, Mpro-x11498, Mpro-x11499,
Mpro-x11501, Mpro-x11507, Mpro-x11508, Mpro-x11530, Mpro-x11541, Mpro-
x11542, Mpro-x11543, Mpro-x11548, Mpro-x11562, Mpro-x11564, Mpro-x11609,
Mpro-x11612, Mpro-x11616, Mpro-x11641, Mpro-x11642, Mpro-x11723, Mpro-
x11742, Mpro-x11743, Mpro-x11757, Mpro-x11764, Mpro-x11789, Mpro-x11790,
Mpro-x11797, Mpro-x11798, Mpro-x11801, Mpro-x11810, Mpro-x11812, Mpro-
x11813, Mpro-x11831, Mpro-x12000, Mpro-x12073, Mpro-x12143, Mpro-x12171,
Mpro-x12177, Mpro-x12202, Mpro-x12207, Mpro-x12300, Mpro-x12321, Mpro-
x12419, Mpro-x12423, Mpro-x12582, Mpro-x12587, Mpro-x12659, Mpro-x12661,
Mpro-x12674, Mpro-x12679, Mpro-x12686, Mpro-x12692, Mpro-x12695, Mpro-
x12696, Mpro-x12698, Mpro-x12699, Mpro-x12710, Mpro-x12715, Mpro-x12716,
Mpro-x12731, Mpro-x12740, Mpro-x1336, Mpro-x1386, Mpro-x1418, Mpro-x2563,
Mpro-x2572, Mpro-x2646, Mpro-x2649, Mpro-x2908, Mpro-x2910, Mpro-x2912,
Mpro-x3303

PDB 6M2N, 6W63, 7AU4, 7B2J, 7B2U, 7B5Z, 7B77, 7E18, 7E19, 7KX5, 7L0D, 7L10,
7L11, 7L12, 7L14, 7LCT, 7LMD, 7LME, 7LMF, 7M8M, 7M8N, 7M8O, 7M8P, 7M8X,
7M8Y, 7M8Z, 7M90, 7M91, 7N44, 7N8C, 7NT3, 7O46, 7P2G, 7QBB, 7RLS, 7RM2,
7RMB, 7RME, 7RMT, 7RMZ, 7RN4, 7RNH, 7RNK, 7S3K, 7S3S, 7S4B, 7TVX,
7VIC, 7VLP, 7VLQ, 7VTH, 7VU6, 7VVP, 7VVT, 7X6K, 8ACD
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