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* Correspondence: janusz.rak@ug.edu.pl (J.R.); stephan.denifl@uibk.ac.at (S.D.)

Abstract: When modified uridine derivatives are incorporated into DNA, radical species may form
that cause DNA damage. This category of molecules has been proposed as radiosensitizers and is
currently being researched. Here, we study electron attachment to 5-bromo-4-thiouracil (BrSU), a
uracil derivative, and 5-bromo-4-thio-2′-deoxyuridine (BrSdU), with an attached deoxyribose moiety
via the N-glycosidic (N1-C) bond. Quadrupole mass spectrometry was used to detect the anionic
products of dissociative electron attachment (DEA), and the experimental results were supported by
quantum chemical calculations performed at the M062X/aug-cc-pVTZ level of theory. Experimentally,
we found that BrSU predominantly captures low-energy electrons with kinetic energies near 0 eV,
though the abundance of bromine anions was rather low compared to a similar experiment with
bromouracil. We suggest that, for this reaction channel, proton-transfer reactions in the transient
negative ions limit the release of bromine anions.

Keywords: BrSU; BrSdU; uracil derivatives; low-energy electron attachment; DEA

1. Introduction

Radiotherapy is among the most commonly used treatments for cancer though the
tumor environment’s specificity, such as a low concentration of oxygen (hypoxia), limits the
efficacy of this modality [1–3]. Hypoxia, a feature of solid tumors, induces tumor cells to
develop resistance to ionizing radiation (IR) [4]. IR is used in radiation therapy to deposit
energy in the biological medium. As the radiation passes through the medium, a large por-
tion of the deposited energy is channeled into the generation of low-energy electrons (LEEs)
with kinetic energies less than a few hundred eV and an energy distribution maximum of
approximately 9–10 eV [5]. When DNA is exposed to so-called ballistic electrons, the latter
are known to induce DNA damage such as single- and double-strand breaks, base release,
and sugar modifications upon dissociative electron attachment (DEA) [6–9]. However,
electrons are just not detrimental to hydrated DNA with respect to strand breaks [10,11].
Given that solid tumor cells are hypoxic, they are also resistant to hydroxyl radicals (•OH),
a significant harmful agent of native DNA generated during radiotherapy [12], addition-
ally to LEEs. To be effective, radiotherapy should be combined with radiosensitizers,
which are compounds that can sensitize cells to ionizing radiation. However, according
to the current clinical trials, the number of radiosensitizers being evaluated is relatively
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low [13]. The circumstance is even worse when it comes to clinically permitted radiosensi-
tizers. For example, no radiosensitizers are utilized in medical care against gastrointestinal
cancers [14].

Nimorazole, 4-[2-(5-nitroimidazol-1-yl)ethyl]morpholine, is a brilliant example of
a radiosensitizing molecule that has been approved to treat head and neck cancers [15]
but is only used in Nordic countries. Uridine analogs that are incorporated into DNA
are radiosensitizers that include the most thoroughly studied 5-bromo- and 5-iodo-2′-
deoxyuridines [16]. They are phosphorylated in the cytoplasm to produce 5-triphosphates
before being incorporated into cellular DNA by human DNA polymerases [17]. Being a
component of DNA, they are prone to the electron-attachment-induced dissociation of the
C5-X bond, which produces a halide anion and leaves behind a reactive uracil-5-yl radical
in the biopolymer molecule [18]. Although numerous studies suggest that the increased
level of damage and cell death is caused by dissociative electron attachment to DNA labeled
with BrdU or IdU, none of the compounds is presently used in clinics [15,19]. Thus, other
radiosensitizers should be studied for a possible clinical application.

Regarding the basic molecular mechanisms of radiosensitizers, DEA may be exploited,
in which an electron is resonantly captured at a particular electron energy, leading to the
formation of a transient negative ion (TNI). The TNI is usually unstable in terms of electron
detachment or dissociation. In the latter process, the TNI dissociates into an anion and
neutral radical [20,21].

e− + AB→ (AB)*− → A− + B (1)

Here, AB is the parent molecule, (AB)•− represents the TNI, while A− and B stand for
the fragment anion and the corresponding neutral species, respectively. It is worth noting
that DEA can be extremely effective at electron energies near zero eV (see results section of
this study) in comparison to the spontaneous emission of the excess electron. Consequently,
in more recent studies, it has been demonstrated that the presence of high-electron-affinity
substituents in nucleobases makes them more susceptible to DEA. Rak and coworkers
proposed a number of 5-substituted pyrimidine derivatives as potential radiosensitizers of
hypoxic cells. Such compounds, which include 5-trifluoromethanesulfonyl-uracil (OTfU),
uracil-5-yl O-sulfamate (SU), and 5-selenocyanatouracil (SeCNU), have been researched
theoretically and experimentally through stationary radiolysis in an aqueous solution and
single-molecule studies in the gas phase [22–24]. Earlier, the favorable attachment behavior
had already been observed in thoroughly researched halogenated uracil derivatives [25–28]
such as 5-bromouracil (BrU). Further studies showed that 5-bromouridine (BrdU), similar
to halouracils, is very sensitive to low-energy DEA, with Br- as the dominant product [29].
Recently, it has been shown that ISdU (5-iodo-4-thio-2′-deoxyuridine), a substituted uridine,
increases the extent of tumor cell killing with ionizing radiation. Amazingly, a similar
derivative of 4-thio-2′-deoxyuridine, 5-bromo-4-thio-2′-deoxyuridine (BrSdU), lacks ra-
diosensitizing properties in cell culture studies [30]. Further radiolysis studies of BrSdU
combined with quantum chemical calculations indicated that BrSdU lacks favorable DEA
characteristics in the solution phase. The B3LYP/6-31++G(d,p) kinetic barriers for breaking
the C5-Br and C5-I bond are equal to 0.27 and 0.13 eV, respectively. The abovementioned
barriers suggest thus that, at ambient temperature, the lifetime of the BrSdU radical anion
is nearly 200-fold longer than that of ISdU. Such a significant lifetime difference probably
enables BrSdU to be protonated before the actual C5-Br bond dissociation, and protonation,
in turn, may prevent dissociation due to a significant increase in the barrier for C5-Br
cleavage [31]. Thus, a higher activation barrier for DEA leads to the quenching of DEA and
probably to protonation of the TNI [30].

In order to investigate whether the quenching of DEA to BrSdU is a particular effect
of the solution phase and not an intrinsic property of the molecule, we performed elec-
tron attachment studies with the isolated compound in the gas phase. Herein, we report
the results of crossed electron–molecular beam experiments on the anion formation and
fragmentation pathways prompted by the attachment of electrons with kinetic energies
between ~0 and 10 eV. Since, during the experiments, it turned out that BrSdU is prone
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to thermal decomposition upon transfer into the gas phase by thermal heating, we experi-
mentally focused on 5-bromo-4-thiouracil (BrSU), a derivative of uracil. Quantum chemical
calculations on the thermodynamic thresholds of fragmentation reactions for BrSU support
the experimental findings. In spite of the experimental difficulties with BrSdU, we also
calculated the thermodynamic thresholds of DEA reactions for this molecule. A compari-
son of the computational results for the nucleobase and the nucleoside species allows the
investigation of the influence of the deoxyribose ring on the DEA process.

2. Results and Discussion
2.1. Formation of BrSU− Anions and the Dehydrogenated (BrSU-H)− Anions—Cleavage of the
Br-C5 Bond

The anion efficiency curve for the parent anion of BrSU (m/z 206) is shown in Figure 1a.
It is formed most abundantly in a peak at ~0 eV. Similar behavior was observed for BrU,
which led to the formation of the corresponding parent anion BrU− [32] as well as for
BrdU, which also showed the formation of a detectable parent anion [29]. From the
anion efficiency curve shown in Figure 1a, we derived another low-intensity peak at
0.55 eV. These peak positions are also listed in Table 1, which summarizes all the peak
maxima of the detected anions from DEA to BrSU. The raw data of the measurements are
included in the Supplementary Materials (BrSU-BrSdU-Raw data.xlsx file). The proposed
reaction pathways for anions resulting from BrSU are shown in Figure 2. According to
our calculations, the electron affinity (EA) of BrSU is positive and amounts to 1.18 eV. The
positive EA agrees well with the experimental detection of the parent anion.
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Table 1. The mass-to-charge ratio (m/z) of the fragment anions formed upon DEA to BrSU, including
the peak positions, experimental onsets, and thermochemical thresholds obtained at the M062X/aug-
cc-pVTZ level of theory. Superscripts in the column “Theory” correspond to reaction numbers
in Figure 2.

Mass (m/z) Anion
Peak Positions (eV) Threshold (eV)

1 2 3 4 5 Exp. Theory

206 BrSU− ≈0 0.55 – – – ≈0 −1.18 1

205 (BrSU-H)− ≈0 0.2 0.5 0.8 1.3 ≈0 −0.82 2a

1.54 2b

127 (BrSU-Br)− ≈0 0.17 0.54 – – ≈0
−1.03 3a

1.17 3b

−0.44 3c

126 (BrSU-HBr)− ≈0 0.25 0.7 – – ≈0
0.21 4a

0.70 4b

1.27 4c

79 Br− ≈0 0.4 1.0 2.3 4.8 ≈0 0.13 5

42 CNO− ≈0 1.0 2.5 3.4 4.6 ≈0 1.13 6a

1.30 6b

33 SH− 0.1 1.2 2.4 5.1 – ≈0 1.74 7
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the most abundant processes observed in the crossed electron–molecular beam experiment.

The anion yield of the dehydrogenated parent anion of (BrSU-H)− (m/z 205) is de-
picted in Figure 1b and represents the following reaction (Figure 2, reaction 2a):

e− + BrSU→ (BrSU)*− → (BrSU-H)− +H• (2)

(BrSU-H)− is detected in the first peak close to ~0 eV. A previous DEA study with
uracil demonstrated that the N1-H site is the thermodynamically favored one for dehy-
drogenation [33]. According to our thermodynamic calculations, H abstraction from the
N3-H site of BrSU is already an exothermic reaction with a threshold of −0.82 eV. From the
thermodynamic aspect, we also investigated H-loss from the C6 site, which is, however,
endothermic by 1.54 eV (Figure 2, reaction 2b).

DEA to 2-thiouracil (TU) and 1-methyl-2-thiouracil was studied by Kopyra and co-
workers [32]. The 0 eV peak observed for (TU-H)− production was proposed in ref. [32] to
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be initiated by the capture of the excess electron into the π*
1 orbital (shape resonance) [34].

In addition to shape/core-excited resonances, it has been demonstrated that dipole-bound
anions (DBAs), i.e., the attachment of the electron by the molecule’s long-range dipo-
lar field [35–37], can be a major gateway for DEA via vibrational Feshbach resonances
(VFRs) [38–40].

In this case, DEA occurs if the dipole-bound state couples to some dissociative valence
state. For the canonical nucleobases uracil and thymine, the antibonding σ*

N−H was sug-
gested to result in the formation of the dehydrogenated parent anion [41,42]. On the other
hand, in thymine and uracil, the H atom may be also removed through the cleavage of the
N3-H, C5-H, and/or C6-H bonds. However, previous studies with uracil and thymine [43]
found no formation of the dehydrogenated parent anion by C-H bond cleavage despite
the fact that it was thermodynamically accessible at higher energy [40,44]. As a result,
the dehydrogenation of the nucleobase anion must result merely from the rupture of the
N-H bond.

From the anion efficiency curve for (BrSU-H)− shown in Figure 1b, we deduced five
features: in addition to the peak at ~0 eV, two higher-intensity peaks at 0.2 eV and 0.5 eV
are detected, which grow in a sequence and are followed by weaker shoulders near 0.8
and 1.3 eV. All these features lie below the calculated threshold for H-loss from the C-6
position (Figure 2, reaction 2b). Thus, it can be excluded that the H-loss from the carbon
site contributes to the ion yield.

In the present study, the fragment anions formed by cleavage of the Br-C5 bond were
the most abundant ones. However, for the present case, it was the radical Br• that was
formed predominantly along with the respective ion (BrSU-Br)− at m/z 127 (Figure 2,
reactions 3a and 3b),

e− + BrSU→ (BrSU)*− → (BrSU-Br)− + Br• (3)

(BrSU-Br)−, in this context, represents the fragment anion formed by the release of
the bromine radical from the TNI. The corresponding molecular structure of this fragment
anion is (C4H3N2SO)−. The anion yield is shown in Figure 1c and reveals three features
for this anion, dominated by a sharp peak at ~0 eV, another resonance at 0.17 eV, and a
broad bump around 0.54 eV. We note that, in the previous DEA study with BrU, three peaks
at ~0 eV (major peak), 1.4 eV, and 6 eV were observed in the (BrU-Br)− anion yield [45].
Therefore, the yields for bromine release from BrSU and BrU just share the abundant peak
near zero eV. Our calculated thermodynamic threshold for bromine release from BrSU was
−1.03 and −0.44 eV, as calculated at the M062X/aug-cc-pVTZ level. These processes are
related to proton transfer from N1-H to the C5 site or from N3-H to the C5 site, respectively,
in the BrSU radical anion followed by the bromine atom release (Figure 2, reaction 3a),
as suggested for BrU in ref. [46]. The thermodynamic threshold for the Br atom release
proceeding without the abovementioned proton transfer (Figure 2, reaction 3b) amounts
to as much as 1.17 eV. No peak is observed in the (BrSU-Br)− ion yield above this energy,
and thus, this channel can be excluded. Here, one may ask how 0 eV electrons lead to a
process associated with high-barrier proton transfer. It is worth noticing that the EA of
BrSU amounts to 1.18 eV (Table 1), and the experiment is carried out in a single-collision
regime, which means that the excess energy originating from electron attachment is not
dissipated in the collisions with molecules from the surrounding. In order to propose
a possible proton-transfer mechanism, we calculated an energy profile for the stepwise
proton transfer between neighboring proton-acceptor sites in the BrSU radical anion. A
simpler, direct proton transfer between N1 and C5 is not probable since, in the respective
transition state, the proton would be almost completely detached from N1 while a new
bond (C5-H) would not be formed. Therefore, we assumed the following proton-transfer
sequence: N1 to O2, N3 to S4, O2 to N3, and S4 to C5. Already, the first step, the N1 to
O2 transition, is associated with an energy barrier of 1.80 eV. Thus, 1.18 eV, originating
from the electron attachment to BrSU, is not sufficient for the N1 to O2 proton transfer.
One should note, however, that the theoretical threshold due to proton transfer from N1
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to C5 (−1.03 eV; Table 1 and Figure 2—reaction 3a) reproducing the experimental result
may not be the only one. Indeed, a theoretical threshold associated with the N3 to C5
transition is equal to −0.44 eV (see Table 1 and Figure 2—reaction 3c), which still agrees
with the 0 eV threshold measured experimentally. What is more important, the respective
tautomer (reaction 3c in Figure 2) may form in a two-step proton-transfer process: N3 to S4
and S4 to C5, coupled with the activation barriers of 1.41 and 1.02 eV, respectively. Finally,
the energy difference between the second transition state and the BrSU− radical anion
amounts to 1.63 eV. Although the EA of 1.18 eV is somewhat smaller (0.45 eV) than the
latter value, this discrepancy may result from the employed theoretical model (an average
error for EA prediction at the M06-2X level amounts to as much as 0.19 eV [47], while that
for thermochemistry and kinetics amounts to ca. 0.06 eV [46]) and 0.1 eV resolution of
electron energy in the experiment. All these uncertainties account for an error of at least
0.35 eV that could lower the abovementioned difference to ca. 0.1 eV.

Another abundant fragment anion accompanied by cleavage of the Br-C5 bond was
detected at m/z 126 and is assigned to (BrSU-HBr)− (Figure 2, reactions 4a, 4b, and 4c)

e− + BrSU→ (BrSU)*− → (BrSU-HBr)− + HBr (4)

This fragment anion appears as the second most abundant one in the experiment (see
Figure 1d). The anion yield curve exhibited two narrow peaks at ~0 and 0.25 eV, followed
by a broad bump near 0.7 eV. We computationally investigated reaction (4) by considering
H abstraction from the N1 position (Figure 2, reaction 4a). The calculated thermodynamic
threshold predicts an endothermic reaction with a threshold of 0.21 eV. Taking into account
the accuracy of the calculations (mean unsigned error for thermochemistry amounts to
about 0.06 eV [48] for the assumed level of theory) and the vibrational excitation of the
neutral molecule at the used sublimation temperature, the agreement is reasonable. The loss
of hydrogen from the N3 nitrogen or C6 carbon (Figure 2, reaction 4c and 4b) is associated
with a threshold of 0.70 and 1.27 eV, respectively. Below the first electronically excited state
for uracil, estimated at ~5.0 eV [49], the transitory anion can be formed through one of the
following two mechanisms: (1) shape resonance (occupation of a π* molecular orbital by
the extra electron and subsequent coupling to dissociative σ∗ state) [50] or (2) vibrational
Feshbach resonances (VFRs) [51]. Differences in the dissociation mechanism may then
serve as an explanation for the relative abundances of peaks observed; for example, the
broad bump above 0.5 eV is more pronounced for (BrSU-HBr)− than for (BrSU-Br)−.

Figure 3 presents the anion efficiency curve for the formation of the anion at m/z
79 upon DEA to BrSU. It is obvious to assign this yield to the single-bond cleavage reaction
(Figure 2, reaction 5),

e− + BrSU→ (BrSU)*− → Br− + (BrSU-Br)• (5)

We obtained two sharp peaks at ~0 eV and 0.4 eV, followed by far weaker signals
between 1 and up to about 7 eV. The calculated thermodynamic threshold signifies an
endothermic reaction with a threshold of 0.13 eV. This threshold would be consistent
with the onset of the main peak observed at 0.4 eV, while the sharp peak near zero eV
may correspond to DEA to vibrationally excited neutral BrSU. The same fragment anion
was observed upon DEA to BrU [27,45] in a strong zero-eV resonance. Different energy
resolutions of the electron beam may account for the difference that just one single zero-eV
peak was obtained in [27,45]. However, it is interesting to note that, contrary to previous
observations for BrU [27,45], we discovered Br− as only the third most abundant anion
for BrSU. A tentative explanation for the low abundance of Br− may be the competition to
reaction 3a (complementary reaction with the excess charge localized on the nucleobase
moiety). Reaction 3a is exothermic, i.e., accessible for electrons with energies of ~0 eV. The
reciprocal dependence of the electron attachment cross section on the electron energy may
lead to the high yield [52], though the proton-transfer reaction in the (BrSU-Br)− anion
must occur as well. Another competitive channel of Br− abstraction would be the release
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of HBr, reaction 4. In this case, electron attachment to BrSU may lead first to a TNI state
with the excess charge mainly localized at the bromine atom. Before the release of the
atomic anion happens, a proton transfer from the neutral moiety leads to the formation
of the HBr molecule and (BrSU-HBr)−. Such a mechanism was previously proposed for
fluorouracil, in which the formation of F− was weak compared to the release of neutral HF
molecules [53,54].
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2.2. Light Anions Formed upon DEA to BrSU

In the course of the present study, we also observed two lighter fragment anions at
m/z 42 and m/z 33 that can be formed through dissociation of BrSU upon DEA. Figure 4a,b
depict the corresponding anion efficiency curves. The fragment anion at m/z 42 can be
assigned to NCO− (Figure 2, reaction 6a and 6b),

e− + BrSU→ (BrSU)*− → NCO− + (BrSU-NCO) (6)
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Reaction (6) represents a more complex reaction involving multiple bond cleavages
followed by rearrangements. The ion yield shown in Figure 4a shows two low-intense
peaks at ~0 eV and 1.0 eV, followed by the main feature centering around 3 eV. Another
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abundant peak can be found near 5 eV. The earlier studies with BrU reported NCO−

formation as well [27,45]; however, the ion yield included a rather narrow, intense peak
near 1.6 eV, which is absent in Figure 4a. For NCO−, two different sites of formation in the
pyrimidine ring are possible: N1-C2=O and/or O=C2-N3 (see Figure 2, reactions 6b and
6a). The threshold of 1.13 eV was calculated for the former site, while it was 1.30 eV for the
latter one. Thus, the main signals in Figure 4a are formed above this threshold, and the
minor features near zero and 1 eV may be ascribed to other pathways.

The small fragment anion at m/z 33 may form due to the cleavage of the double bond
S=C and the transfer of one hydrogen atom from another position in order to connect to
SH− (Figure 2, reaction 7),

e− + BrSU→ (BrSU)*− → SH− + (BrSU-SH) (7)

Similar to the release of neutral HBr, H-atoms from different sites in the molecule
may contribute. In the calculation, we considered H abstraction from the N3 position and
obtained a threshold of 1.74 eV, reaction (7). Compared with the measured anion efficiency
curve shown in Figure 4b, the computed threshold would match with the onset of the main
peak at 2.4 eV. Two features quite similar to the NCO− ion yield were observed at lower
energies. Thus, those peaks may correspond to other dissociation reactions.

Finally, we note that Kopyra and Abdoul-Carime reported SCN− and S− formation
in DEA to 2-thiouracil [55]. Remarkably, we did not observe signals for these two anions
in our study with BrSU. Such a different result may be only explainable by the different
position of the sulfur atom at the pyrimidine ring (C4 in the present molecule and C2 in the
thiouracil). The chemistry induced by the initial electron attachment may then be initiated
very locally and strongly depending on the electronic structure of the corresponding
temporary negative ion.

2.3. Possible Dissociation Channels of BrSdU

Due to the experimental problems with thermal decompositions mentioned in Sec-
tion 3, the measured energy scans for the observed fragment anions of BrSdU are not
discussed here in detail. The ion yields cannot be unambiguously assigned to DEA to
an intact BrSdU sample, and therefore, we show them in the Supplementary Materials
(see Figure S5) for the sake of completeness. The corresponding peak positions and the
experimental thresholds are listed in Table S1. Just to note, the three major anions are the
same as for BrSU and show quite similar anion yields as well as ion yield ratios. If the
sample thermally decomposed to BrSU, one may then also expect BrSU−, as presented in
the results above, but its absence may be explained by internal excitation due to pick-up of
the hydrogen atom after decomposition.

Our computational results for BrSdU are summarized in Figure 5 and Table 2. We
focused on the anions formed in the experiment. Moreover, the calculations predict that
the parent anion of BrSdU (EA = +1.28 eV), reaction A in Figure 5, is slightly more stable
than that of BrSU. If we look at the most important dissociation reaction with reference to
radiosensitization, we obtain a threshold of 0.14 eV for the release of Br− and the neutral
radical (BrSdU-Br)• (see Figure 5, reaction 6). This threshold is very close to that for BrSU
(0.13 eV). If we consider localization of the excess charge at the nucleobase moiety, the
threshold is 1.00 eV (Figure 5, reaction B). In the case of additional cleavage of the glycosidic
bond (this nominally corresponds then to the (BrSU-HBr)− anion), we obtain a threshold of
0.31 eV and 1.23 eV; see Figure 5, reactions 4a and 4b, respectively. Both values also include
bond formation between the bromine atom and the sugar moiety, which are both released
from the negative ion. Then, the threshold is just slightly higher than that for HBr release
from BrSU (0.21 eV).
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Table 2. Thermodynamic thresholds calculated at the M062X/aug-cc-pVTZ-level for the formation
of possible fragment anions resulting from DEA to BrSdU. Superscripts in the column “Theory”
correspond to reaction numbers in Figure 5.

Mass (m/z) Anion T (K) Threshold (eV)
Theory

205 (BrSdU-deoxyribose)− 385.15 −0.34 1

190 (BrSdU-deoxyribose-NH)− 385.15 1.40 2

127 (BrSdU-deoxyribose-Br+H)− 387.15
0.45 3a

0.66 3b

1.68 3c

126 (BrSdU-deoxyribose-Br)− 387.15 0.31 4a

1.23 4b

98 (C5H6O2)− 385.15 2.71 5

79 Br− 387.15 0.14 6

42 NCO− 387.15 1.15 7a

2.48 7b

33 SH− 387.15 1.70 8

The ambiguity of the experimental results is further indicated by the threshold calcula-
tions for the release of the (BrSU-Br)− anion (m/z 127). To nominally form this anion from
BrSdU, the C5-Br bond and the glycosidic bond must be broken with additional hydrogen
migration to the base moiety (Figure 5, reactions 3a, 3b, and 3c).

Depending on the final positions of the three hydrogens at the nucleobase moiety,
the threshold amounts to at least 0.45 eV (hydrogen atoms attached to N1, C6, and sulfur
atom; Figure 5, reaction 3a), followed by 0.66 eV (N3, C6, and sulfur; Figure 5, reaction
3b) and 1.68 eV (N1, N3, and C6, Figure 5, reaction 3c). From these values, one may
expect a different shape of the anion efficiency curve at m/z 127 for BrSdU and BrSU
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(threshold −1.03 eV, see above), which is not the case. On the other hand, thresholds
for the light fragment anion NCO− can be obtained in the case of BrSdU, which are not
substantially different from those for BrSU. The deviation is just 20 meV, if the closure of
the pyrimidine ring after excision of NCO− is considered (see Figure 5, reactions 7a). For
SH− formation, the thresholds are almost identical as well (1.70 eV for BrSdU and 1.74 eV
for BrSU). We also calculated the thresholds for two anions not found for BrSU (m/z 98 and
m/z 190, see Figure 5, reactions 5 and 2). However, substantially endothermic threshold
values were obtained (≥1.40 eV), while the experimental results showed zero-eV peaks (see
Supplementary Materials). The ion at m/z 98 is assigned to the localization of the excess
charge at the sugar moiety.

3. Materials and Methods
3.1. Experiments

The experimental results presented in this paper were acquired using a crossed
electron–molecular beam experiment that has been previously described in detail [6]. We
only provide a brief description of this experiment here. A homemade hemispherical elec-
tron monochromator (HEM) was used to create a well-defined electron beam. Additionally,
a copper oven with glass inset as a sample container, a quadrupole mass analyzer (QMA),
and a detector to count the mass-analyzed ions comprised the setup. The beam of neutral
molecules was formed by heating the sample in the oven and guiding the vapor through
a 1mm diameter capillary into the interaction zone with low-energy electrons. The BrSU
was synthesized according to the procedure described by Łapucha [56] (Figures S1 and S2),
while the BrSdU sample was synthesized via the procedure described by Spisz et al. [30]
(Figures S3 and S4). An electron beam with an energy resolution of ~100 meV at FWHM
(full width at half maximum) was generated by the HEM. The used electron current was in
the range of 25–38 nA. With such a current, the optimum balance between resulting ion
beam intensity and electron energy resolution was achieved. A weak electrostatic field
extracted the ions formed by (dissociative) electron attachment to the QMA entrance. The
anions were mass-analyzed in the QMA and detected by a channeltron secondary electron
multiplier operating in the single-pulse counting mode. A scan of the electron energy was
used to track the anion efficiency curves, while the QMA was set for the transmission of a
specific anion. The well-known Cl−/CCl4 resonance at 0 eV [57] was used to calibrate the
electron energy scale and to determine the energy resolution. Using the method proposed
in [58], the experimental thresholds for detected DEA reactions with both compounds
were determined.

Before beginning the negative ion measurements, the temperature dependence of the
electron ionization mass spectrum at the electron energy of ~70 eV was checked up to 383 K
to ensure a suitable ion signal without sample decomposition in the oven. For nucleosides
such as thymidine and uridine, the presence of the native nucleobase cation combined
with a relative increase to other signals in the mass spectrum at higher temperatures was
associated with thermal decomposition [59]. In this case, the glycosidic bond between sugar
and base moieties breaks upon heating, and the base moiety picks up a hydrogen atom,
forming the intact base. Thus, the results of negative ion formation for the decomposed
nucleoside also resembled that of the nucleobase [60,61]. Regarding the cation mass
spectrum of BrSdU, we indeed observed the analogous symptomatology, i.e., we observed
a BrSU+ signal at m/z 206, which grew stronger with temperature than other signals and
thus indicated the presence of thermally decomposed BrSdU. Subsequently, the energy
scans of detected anions were measured up to the maximum temperature of 387 K.

For the studied BrSU sample, the same procedure was carried out as for BrSdU. Since
the parent cation of BrSU showed up in the mass spectrum, it was easily traceable that no
thermal decomposition product appeared in the studied temperature range up to 382 K.
Subsequently, the energy scans of the detected anions were measured up to the maximum
temperature of 389 K.
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3.2. Quantum Chemical Calculations

In order to obtain the lowest-energy geometries of the neutral BrSU and BrSdU, as
well as their anions and the respective molecular fragments, the unconstrained geometry
optimizations were performed at the M06-2X [48]/aug-cc-pVTZ [55,62] level of theory
(method/basis set) using restricted and unrestricted wavefunction for closed- and open-
shell species, respectively. All such obtained geometries were geometrically stable, which
was confirmed by the analysis of harmonic frequencies (all force constants were positive for
minima, while all but one were negative for the first-order transition states). The activation
barriers were calculated as the difference between the enthalpy of the transition state (TS)
and the substrate. The intrinsic reaction coordinate (IRC) [63] procedure was used to verify
that the transition state connects the proper minima. The energies of the optimized reactants
were used for the calculations of thermodynamic thresholds related to the anions observed
in the crossed electron–molecular beam experiments. The thresholds (∆H) were calculated
as the difference between the enthalpies of products and the neutral substrate in their
electronic ground states. The enthalpies of the reactants result from correcting the relevant
values of electronic energies for zero-point vibration terms, thermal contributions to energy,
and the p,V term. These terms were obtained using the rigid rotor–harmonic oscillator
approximation for T equal to 298.15, 385.15, 387.15, and 389.15 K. In the reaction studied
within the experiment, electron energy is absorbed by a substrate that allows the system to
move from the initial enthalpy level to that of the products. Therefore, the computational
reaction enthalpy (thermodynamic threshold) should correspond to the electron energy,
matching the onset of the experimental signal for the endothermic reactions. On the other
hand, the computationally exothermic processes should be triggered by 0 eV electrons (an
experimental thermodynamic threshold of 0 eV). All calculations were performed with the
Gaussian 16 [64] suite of programs.

4. Conclusions

In the present study, we investigated electron attachment to the modified nucleobase
BrSU and the corresponding nucleoside BrSdU. For the latter molecule, we observed the
indication of thermal decomposition during the thermal heating process, which leads to
ambiguous experimental results. Alternative methods are needed to transfer this compound
into the gas phase. For example, laser-induced acoustic desorption was reported to be
a gentle method for the preparation of neutral targets in the gas phase [65]. Previous
experiments with thermally labile molecules such as D-ribose-5-phosphate [61] have already
demonstrated that this method may also be applicable for DEA experiments.

For BrSU, thermal decomposition did not play a role, and we observed strong decom-
position of the molecule upon attachment of a low-energy electron with a kinetic energy of
about zero eV. While cleavage of the Br-C5 bond turned out to be very efficient, as expected,
the experimentally observed low abundance of the bromine anion was rather surprising.
Instead, (BrSU-Br)− was observed as the most abundant fragment anion. The present
calculations of the thresholds for BrSU indicate that a proton transfer in the (BrSU-Br)−

fragment anion would lead to an exothermic threshold and explain the observed ion signals
near zero eV. Such a proton-transfer reaction may also solve a contradiction for DEA to
BrU in the literature, since experimentally a zero-eV peak was observed in the (BrU-Br)−

yield [27,45], while calculations of the threshold assuming the single Br-C5 bond cleavage
predicted a high threshold of 1.25 eV [66]. In addition, the high abundance of (BrSU-HBr)−

may also indicate that subsequent proton transfer to the Br− in the transient negative ion
may be another limiting factor for the release of the bromine anion. The calculations for
BrSdU indicate almost the same endothermic threshold for the release of the bromine anion
as that for BrSU, i.e., there is no significant influence of the deoxyribose moiety on the
energetics of this channel.

If we consider BrSU as a model compound for radiosensitization studies in solution,
this experimental result in the gas phase would support the limited effects observed in
radiolysis studies with BrSdU [30]. In a water solution, proton-transfer reactions with sur-
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rounding molecules would even more effectively influence DEA reactions, as for example
suggested in [67].
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53. Arthur-Baidoo, E.; Schöpfer, G.; Ončák, M.; Chomicz-Mańka, L.; Rak, J.; Denifl, S. Electron Attachment to 5-Fluorouracil: The
Role of Hydrogen Fluoride in Dissociation Chemistry. Int. J. Mol. Sci. 2022, 23, 8325. [CrossRef] [PubMed]

54. Li, X.; Sanche, L.; Sevilla, M.D. Dehalogenation of 5-Halouracils after Low Energy Electron Attachment: A Density Functional
Theory Investigation. J. Phys. Chem. A 2002, 106, 11248–11253. [CrossRef] [PubMed]

55. Woon, D.E.; Dunning, T.H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum through
Argon. J. Chem. Phys. 1993, 98, 1358–1371. [CrossRef]

56. Łapucha, A.R. A Rapid and Efficient Synthesis of Sulfur Analogues of Pyrimidine Bases. Synthesis 1987, 1987, 256–258. [CrossRef]
57. Gallup, G.A.; Aflatooni, K.; Burrow, P.D. Dissociative Electron Attachment near Threshold, Thermal Attachment Rates, and

Vertical Attachment Energies of Chloroalkanes. J. Chem. Phys. 2003, 118, 2562–2574. [CrossRef]
58. Meißner, R.; Feketeová, L.; Bayer, A.; Postler, J.; Limão-Vieira, P.; Denifl, S. Positive and Negative Ions of the Amino Acid Histidine

Formed in Low-Energy Electron Collisions. J. Mass Spectrom. 2019, 54, 802–816. [CrossRef]
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