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Abstract: Xerostomia is the phenomenon of dry mouth and is mostly caused by hypofunction of the
salivary glands. This hypofunction can be caused by tumors, head and neck irradiation, hormonal
changes, inflammation or autoimmune disease such as Sjögren’s syndrome. It is associated with a
tremendous decrease in health-related quality of life due to impairment of articulation, ingestion
and oral immune defenses. Current treatment concepts mainly consist of saliva substitutes and
parasympathomimetic drugs, but the outcome of these therapies is deficient. Regenerative medicine
is a promising approach for the treatment of compromised tissue. For this purpose, stem cells can be
utilized due to their ability to differentiate into various cell types. Dental pulp stem cells are adult
stem cells that can be easily harvested from extracted teeth. They can form tissues of all three germ
layers and are therefore becoming more and more popular for tissue engineering. Another potential
benefit of these cells is their immunomodulatory effect. They suppress proinflammatory pathways
of lymphocytes and could therefore probably be used for the treatment of chronic inflammation
and autoimmune disease. These attributes make dental pulp stem cells an interesting tool for the
regeneration of salivary glands and the treatment of xerostomia. Nevertheless, clinical studies are
still missing. This review will highlight the current strategies for using dental pulp stem cells in the
regeneration of salivary gland tissue.

Keywords: dental pulp stem cells; DPSC; salivary glands; xerostomia; tissue engineering; differentiation;
regenerative medicine; Sjogren syndrome

1. Introduction

The salivary glands (SG) play an essential role in the integrity of the orofacial system
as the production of saliva is crucial for digestion, articulation and oral immune defense.
Different reasons can lead to xerostomia, the phenomenon of dry mouth. Most cases of
xerostomia are caused by tumors, radiotherapy, hormonal changes or autoimmune diseases
and lead to a tremendous decrease in quality of life [1–9]. Dryness of the mouth causes
dysphagia, increased incidence of caries, impaired articulation and an imbalance of the
oral microbiome [10,11]. Current therapy concepts are based on saliva substitutes (oral
rinses, gels, powders and sprays) and systemic medication (e.g., pilocarpine, cevimeline).
However, none of these approaches provides a satisfying outcome [12].
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Recent studies show that tissue engineering is a promising approach for SG regenera-
tion [13–16]. The principle of tissue engineering is to use cells in combination with different
biomaterials and biochemical/physicochemical factors to build tissues in vitro [16–20]. Not
only primary cells but also stem cells can be utilized for this purpose. By using embry-
onic stem cells (ESC), Tanaka et al. succeeded in engineering the first fully functional SG
organoid in 2018 [13]. Nevertheless, harvesting ESCs is difficult as they must be extracted
from the inner cell mass of the blastocyst. This can cause the destruction of the blastocyst
and thereby jeopardizes the life of the embryo. Thus, ESCs raise ethical issues and cannot
be implemented into clinical practice yet.

An alternative to ESCs is adult stem cells, which can be harvested from a tissue speci-
men of the patient. A popular source of adult stem cells is the adipose tissue [21]. Adipose
tissue-derived stem cells (AdSC) were shown to have the ability of transdifferentiating to
acinar cells in vitro [22]. Furthermore, they seem to have a protective effect on SG tissue un-
dergoing irradiation, which may be caused by antioxidative features [23–25]. Nevertheless,
AdSCs are harvested by liposuction, which is associated with several severe complications,
such as bowel perforation, pneumothorax and sciatic nerve injury [26–28].

Besides AdSC, bone marrow-derived stem cells (BMdSC) were intensively inves-
tigated throughout recent years and showed similar effects on compromised SGs like
AdSC [29–31]. However, harvesting of BMdSCs requires a biopsy of the bone marrow or
the application of drugs like filgrastim, which can cause side effects such as bone pain or
other musculoskeletal symptoms [32].

Another promising approach is the use of induced pluripotent stem cells (iPS), which
are generated from reprogrammed somatic cells [33]. The conversion from somatic cells
to iPS was first conducted by delivering ESC-specific genes via retroviruses [34]. Unfor-
tunately, the tumorigenicity of iPS and the low efficacy of the conversion are only two of
many challenges of this technique, which inhibit the implementation of iPS in the clinic.

To implement stem cell therapy in the clinic, easy and harmless accessibility to the
cells is essential. For this reason, dental pulp stem cells (DPSC), which originate from
the neural crest, have been the focus of regenerative medicine since their first description
in 2000 [35–38]. DPSCs can be easily isolated from the pulp of extracted third molars in
many different ways. One way is the incubation of cut teeth in a culture flask, as shown
in Figure 1B. This method brings the risk of contamination with oral bacteria, which is
why the extracted teeth should be preserved in the antibiotic medium for at least 12 h
after extraction. The advantage of this method is the weighting of the pulp tissue, which
ensures direct contact of the cells with the culture flask’s ground. This contact is necessary
for the cells to attach to the ground and start migrating into the flask. To reduce the risk of
contamination, the pulp can be peeled off the cracked tooth and put into the culture flask
on its own (Figure 1C). This technique requires a higher level of experience, since the risk
of the tissue floating away in the culture medium is higher.

The extraction of third molars is a routine intervention in maxillofacial surgery and
can be conducted in a minimally invasive way and without general anesthesia. Most
complications, such as swelling, pain and mild bleeding, are transient and resolve sponta-
neously within a few days. Severe complications are rare and can be avoided by selecting
the right time and technique for extraction [39]. DPSCs can be cryopreserved, which makes
it possible to store them and use them later on for autologous therapy when needed [40].
In contrast to other mesenchymal stem cells (MSC), DPSCs express transcription factors
such as Oct-4, Sox2 and c-Myc, which are associated with pluripotency [41]. Still, they do
not show tumor formation after transplantation as ESCs or induced pluripotent stem cells
do [42]. Compared to BMdSCs, DPSCs show higher proliferation rates and a broader array
of lineages [35,43]. They can be differentiated into tissues of all three germ sheets [44–47].
This extensive array of lineages makes DPSCs a precious tool for tissue engineering and
regeneration of compromised SG tissue. Furthermore, DPSCs seem to have immunosup-
pressive effects by interfering with activated T-cells [48]. Therefore, they could be beneficial
for the treatment of chronic inflammatory diseases such as rheumatoid arthritis, degener-
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ative diseases of the nerval system, periodontitis or inflammatory bowel disease [49–52].
Similar to the aforementioned pathologies, Sjögren’s syndrome is also characterized by
chronic inflammation. Hence, it could be hypothesized that patients suffering from Sjögrens’
syndrome would benefit from treatment with DPSC as well.
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Figure 1. Harvesting of DPSCs; (A): Third molars in situ marked with red circles (panoramic X-ray); 
(B): Extracted third molars, split and digested in collagenase for explant culture; (C): DPSCs 
emigrating from dissolved pulp tissue (dark mass) and adhering to the culture flask investigated by 
light microscopy. This figure belongs to David Muallah, Department of Oral and Maxillofacial 
Surgery, University Hospital Hamburg-Eppendorf. 
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Figure 1. Harvesting of DPSCs; (A): Third molars in situ marked with red circles (panoramic
X-ray); (B): Extracted third molars, split and digested in collagenase for explant culture; (C): DPSCs
emigrating from dissolved pulp tissue (dark mass) and adhering to the culture flask investigated
by light microscopy. This figure belongs to David Muallah, Department of Oral and Maxillofacial
Surgery, University Hospital Hamburg-Eppendorf.
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Taking these aspects into consideration, DPSCs may play an outstanding role in new
approaches to regenerative medicine in the future [53]. Nevertheless, the use of DPSCs
for the regeneration of SGs is still far away from clinical application. This review briefly
describes the organogenesis of SGs to discuss frame conditions for regenerative approaches.
An overview of the current literature and recent strategies for using DPSCs in regeneration
of SGs will be provided. Subsequently, new aspects for further research will be discussed.

2. Organogenesis of Salivary Glands

The three major SGs are of different developmental origin. While the Glandula sub-
mandibularis and Glandula sublingualis derive from the endodermal germ sheet, the Glandula
parotis originates from the ectoderm and therefore has the same origin as DPSCs [36–38].
As the first step of SG organogenesis, an epithelial placode comes to exist in the oral cavity
during the seventh embryonic week. Subsequently, this placode infiltrates into the un-
derlying mesodermal mesenchyme. Through dichotomous branching, a canalized system
develops. The epithelial cells in the distal ends of the invaginating strands differentiate
into acinar cells which produce primary saliva. During the morphogenesis the ectodermal
cells continuously interact with the surrounding mesenchyme via several cytokines in both
directions. Although this mechanism is not yet fully understood, FGF 10 was identified
as one of these signaling molecules [44]. It is assumed that FGF 10 is expressed by cells
of the mesenchyme and promotes the maturation of the epithelial gland tissue. But also
vice versa, signals sent by the invaginating epithelium trigger the adjacent mesenchyme to
differentiate into myoepithelial and stromal cells that surround the ducts and acini of the
gland [54].

3. The Effect of DPSC on Primary Salivary Glands

The interaction between epithelial and mesenchymal cells led to different approaches
to use DPSCs for SG regeneration. It could be shown that coculturing DPSCs with pri-
mary SG cells (SGC) on Matrigel™ increases the number and size of spontaneous acinus
formation of the SGCs [55]. This in vitro observation by Reyes et al. was also confirmed
by transplanting DPSCs and SGCs embedded in hyaluronic acid hydrogel subcutaneously
into 2-month-old Rag1 null mice. Besides the typical acinar differentiation marker alpha
amylase-1, other specific markers such as CD 44 and LAMP-1 were also increased compared
to SGC-implantation alone [55]. It is hypothesized by many authors that DPSCs assume
the role of embryonic mesenchyme that surrounds the invaginating epithelium during
the organogenesis when they interact with primary acinar cells [55,56]. This assumption
is even more strengthened by results observed when DPSCs were directly injected into
compromised SGs of mice [57–59]. For instance, in a study by Yamamura et al., mice were
exposed to irradiation to induce hyposalivation. Subsequently, DPSCs were injected into
the submandibular glands. Eight weeks after irradiation, saliva flow was assessed. Mice
treated with DPSCs showed a significantly higher saliva flow compared to the PBS control
group [57]. Similar findings were reported for diabetic wistar rats by Narmada et al. and
Suciadi et al. [58,59]. In summary, these approaches seem to prove the ability of DPSC to act
as growth-supporting mesenchyme for acinar cells and thereby support the regeneration of
compromised salivary glands.

4. The Immunomodulatory Effect of DPSC

BMdSCss, AdSC and umbilical cord-derived stem cells are known for having high
immunomodulatory capacities as they are able to control inflammatory conditions [60–65].
It is believed that the immune response is regulated via cell–cell contact and/or paracrine
production of soluble factors [66,67]. Some of these cells have even already reached phase
I/II human trials [16,68,69].

According to DPSCs, only a few clinical trials have been conducted thus far and none
of them aimed at the therapy of hyposalivation [70–75]. Nevertheless, DPSCs were reported
to have immunomodulatory effects that even surpass those of other MSCs, which could be
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a precious tool in SG regeneration [76–78]. For instance, Ogata et al. found DPSCs to signifi-
cantly surpass mesenchymal stem cells derived from bone marrow in a Sjögren’s syndrome
mouse model according to anti-inflammatory factors such as IL-10, the downregulation
of T-helper 17 cells and the upregulation of regulatory T cells [76,78]. Similarly, Du et al.
injected DPSCs into the tail vein of mice with induced Sjögren’s syndrome [79]. The cells in
this experiment were harvested from the pulp of exfoliated deciduous teeth, also known as
stem cells from human exfoliated deciduous teeth (SHED). SHED were first isolated in 2003
and show similar characteristics as DPSCs [43]. It is noteworthy that they have an even
higher proliferation rate when compared to DPSCs [80,81]. Du et al. reported that SHED
have an anti-inflammatory and function-improving effect on damaged SGs of mice by
migrating to the spleen and liver. The authors assume that pulp stem cells affect the SGs in
an immunomodulatory way by influencing T-cell differentiation in these organs [79]. This
assumption is substantiated by another study published in 2019, which provides evidence
of the pulp stem cells’ effect on T-cells [77]. Ji found a decreased differentiation of CD4+
T-cells into T-helper 17 cells and, subsequently, a decreased secretion of IL-17 and TNF-α
after coculturing DPSCs with peripheral blood mononuclear cells. Furthermore, the DPSCs
promoted the polarization of CD4+ T-cells into regulatory T-cells, which have immunosup-
pressive effects [77]. Rasha et al. observed increased salivary flow rates and a reduction of
oxidative stress after injecting DPSCs into the tail veins of diabetic rats [82]. Nevertheless,
these experimental settings do not reveal whether the cell–cell communication between
DPSCs and immune cells happens in a paracrine or juxtacrine way as reported for other
MSCs. While the juxtacrine communication would require direct cell contacts, paracrine
communication could be carried out by proteins secreted by the DPSCs. This would raise
the question of whether the immunomodulatory effect of DPSCs could also be provided by
using only supernatants of DPSC cultures.

This approach was investigated by Takeuchi et al. [83]. Instead of using DPSCs, they
injected conditioned supernatant of a DPSC culture intravenously. Mice with an induced
defect of the Glandula submandibularis subsequently showed an increased regeneration
of the SGs compared to the control group [83]. Nevertheless, conditioned supernatants
contain several substances that are redundant and have no benefit for the aspired purpose
such as antibiotics, fungicides, fetal bovine serum and HEPES. While irresponsible use of
antibiotics can lead to bacterial resistance, other substances are discussed as being toxic or
allergenic [84,85]. Therefore, exosomes became an object of interest for many researchers.
Exosomes are small vesicles containing peptides and nucleic acids that are produced by
cells for intercellular communication. These vesicles can be derived from conditioned cell
supernatant via centrifugation. It has been found that MSC-derived exosomes could sup-
press T-cell activation and thereby stabilize an immune homeostasis [86]. BMdSC-derived
exosomes were successfully used to save salivary glands from diabetic complications in
rats [30]. Also, exosomes of DPSCs were shown to have the capacity of suppressing in-
flammation via facilitation of macrophages [87]. Compared to BMdSC-derived exosomes,
their immunosuppressing effects are even higher [77]. Unfortunately, the reason for this
remains unclear. It may be assumed that DPSC-derived exosomes contain different com-
positions of proteins, lipids, cytokines and RNAs that are responsible for their superior
immunomodulatory effect. Thus, further investigations are necessary before they can be
applied in the clinic.

However, these studies further aggravate the hypothesis of DPSCs supporting the
regeneration of compromised salivary glands. In the future, one of many possible ap-
plications could be the injection of DPSC exosomes into the SGs of patients suffering
from Sjögren’s syndrome, which is associated with an infiltration of lymphocytes into the
glands [78]. Moreover, other medical disciplines (e.g., rheumatology, plastic surgery, etc.)
could benefit from immunomodulatory features of DPSC as well.
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5. Differentiation of DPSCs into Acinar-like Cells

Nevertheless, the trials mentioned so far leave it unclear if DPSCs themselves could
be differentiated into acinar cells to replace damaged SG tissue. A recent study by Yan
et al. could clarify this question [15]. They induced the differentiation of DPSCs into
acinar cells by performing coculture with primary cells of the submandibular gland. The
cells were physically separated by a membrane that allowed the exchange of cytokines
and other molecules but not the juxtacrine communication [15]. After 2 weeks, specific
acinar markers such as amylase and cytokeratin 8 were observed in the DPSCs. They also
shaped cobblestone-like islands, which are typical for acinar cells [15]. As a control group,
fibroblasts were cocultured with acinar cells. The fibroblasts did not differentiate into acinar
cells, which proves that the differentiation is an exclusive feature of the DPSCs. With this
experimental setting, the authors could show that DPSCs not only support primary cells
in growth and regeneration but that they can also be affected by primary cells and form
SG-like tissue. Nevertheless, a detailed analysis of the cell signaling at the molecular level
that induces the differentiation is still missing. Therefore, further experiments should be
conducted to perform a protein analysis of the coculture’s supernatants at different time
points to retrace proteomic changes during the induction process.

While typical monolayers of cells as used by Yan et al. are two-dimensional arrange-
ments, in situ cells are organized three-dimensionally [15]. Therefore, three-dimensional
cell cultures, such as spheroids, more closely resemble in vivo conditions. These spheroids
are usually produced by seeding cells on low-cell adhesion plates. A new way of pro-
ducing DPSC spheroids was introduced by Adine et al. using a special 3D bioprinting
technology [14]. To generate the spheroids, cells were incubated with a solution containing
gold and iron oxide and subsequently printed using magnets beneath the well plate. The
cells on the spheroids’ surfaces could then be differentiated into SG-like cells using FGF
10. Furthermore, epithelial, ductal, myoepithelial and neural elements were detected in
the spheroids after immunostaining. The organoids even produced α-amylase. Since the
secretion of saliva is regulated by the autonomic nervous system, Adine et al. tried to
stimulate the organoids with the neurotransmitter derivatives carbachol and isoproterenol.
The cells reacted with intracellular calcium mobilization and a shift in transepithelial resis-
tance, which suggests physiological integrity by an action potential [14]. In an ex vivo SG
mouse model, the printed organoids even rescued epithelial growth after irradiation with
a single dose of 7 Gy. Furthermore, the neural compartments of the ex vivo glands were
integrated into the spheroids [88]. Nevertheless, an ex vivo model does not consider the
potential immune response after the implantation of a graft. Still, this experiment shows
the usefulness of 3D cultures for SG regeneration after irradiation.

Besides FGF 10, FGF 7 was also reported to induce acinar differentiation [89]. Akashi
et al. reported an upregulated expression of acinar-specific markers such as aqua-porin 5
after treating DPSC with FGF 7 in vitro and in vivo [89]. During the organogenesis of SGs,
an increased expression of FGF 7 and FGF 10 was observed in the embryonic mesenchyme
surrounding the SG rudiments, which could explain the findings of these studies [13]. In
conclusion, FGF 10 and FGF 7 seem to be potential additives for SG tissue engineering.

6. Discussion

DPSCs offer new aspects for SG tissue regeneration. They are easy to harvest and
can be cryopreserved without losing their differentiation potential [90]. Compared to
other stem cells, DPSCs have a higher proliferation rate, a broader array of lineages and a
smaller risk of tumor formation [35,42,44–47]. Several studies have shown therapeutical
effects of DPSCs, such as the differentiation to pancreatic tissue in rats with diabetes, anti-
inflammatory effects in mice with rheumatoid arthritis, lupus erythematosus or COPD
and even improved vascular function in patients with erectile dysfunction [49–51,72,91–94].
They either act by affecting the immune system or the primary cells or by differentiating
into other cell types. Also, for SG tissue engineering, DPSCs hold application potential
due to their ability to differentiate into acinar cells [14,15]. For this purpose, they could be
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embedded into a scaffold to replace damaged gland tissue in terms of a graft. Besides the
transdifferentiation, DPSCs are able to affect acinar cells or immune cells after injection into
compromised tissue or intravenously [58,59,79]. Even the supernatants of DPSC cultures
offer useful effects on primary acinar cells as well as the immune system [78,83]. While the
injection of DPSCs or their supernatants is technically easy, the transplantation of tissue-
engineered grafts poses the challenge of nerval and vascular supply. While thin grafts could
probably be supplied with nutrients and oxygen via diffusion from the adjacent tissues, for
thicker grafts, which would accomplish a rather satisfying production of saliva, alternative
steps such as microvascular surgery are necessary. Autologous submandibular gland
transplantation as a therapy for keratoconjunctivitis sicca reveals some interesting aspects
here. For this therapy, the whole submandibular gland is denervated and transplanted to
the temporal region. While blood supply can directly be restored by microvascular surgery,
a nerval connection cannot be implemented surgically. Still, the transplanted glands start
to produce saliva after a few months and thereby improve the moistening of the eyes,
which means that the glands become reinnervated after a hypofunctional period. The
reinnervation was histologically proven in a rabbit model [95]. Zhang et al. hypothesized
that the autonomic reinnervation originates from the auriculotemporal nerve, which runs
through the temporal region close to the transplant, but also from the sympathetic plexus
around the supplying arteries. According to these findings, tissue-engineered SG grafts
should be transplanted close to a bigger nerve or ganglion (e.g., ganglion submandibulare
or the lingual nerve) to increase the chance of innervation. Another approach could be
to relocate a blood vessel (e.g., the facial artery) so that it runs directly through the graft.
This may not only promote the reinnervation as shown by Zhang et al. but also the blood
supply of the graft.

Besides cell differentiation, the composition of the scaffold/extracellular matrix is
crucial for successful tissue-engineered grafts. None of the abovementioned studies investi-
gated whether differentiated DPSCs stay acinar cells for long, which, indeed, depends on
the surrounding extracellular matrix. Cells tend to dedifferentiate if they are not embedded
in a supportive environment that matches their requirements. Thus, the perfect matrix for
SG grafts needs to be functionalized with signaling molecules or growth factors such as FGF
10 or FGF 7, which were both shown to induce acinar differentiation in DPSCs and seem to
play a key role in SG organogenesis [13,14,89]. Moreover, the optimal scaffold material for
SG grafts needs to have mechanical properties that allow simple handling during surgery
and that withstand the motions caused by speaking or eating after implantation of the
graft. Furthermore, they should be degradable to be replaced by autologous tissue over
time. Possible options are platelet-rich fibrin, hydrogels, collagen matrices or silk as they
are already proved for tissue engineering in several studies and match the abovementioned
criteria [96–101].

To sum up, although many in vitro assays and animal studies have already proven
the value of DPSCs in SG regeneration, clinical studies are still missing (Table 1). For tissue
engineering of SGs, useful materials for artificial extracellular matrices need to be studied.
Nevertheless, DPSCs seem to be an outstanding tool for SG tissue regeneration since they
are easy to harvest, suppress pathological immune reactions, regenerate compromised
gland tissue and can be differentiated into the acinar cell lineage (Figure 2).
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Table 1. Different mechanisms of DPSCs affecting salivary gland regeneration.

Mechanism Author, Year

Effect on primary cells

Increased development of acinar structures and
expression of LAMP-1 and CD44 after coculture of

human salivary gland cells with DPSCs
[55] Reyes et al., 2013

Increased saliva flow after DPSC injection into
radiated salivary glands of mice [57] Yamamura et al., 2013

Decreased acinar cell vacuolization and increased
IL-10 serum levels after DPSC injection into diabetic

rats’ salivary glands
[58] Narmada et al., 2019

Increase of vascularization, TGF-β serum level and
acinar cell number after DPSC injection into diabetic

rats’ salivary glands
[59] Suciadi et al., 2019

Immunomodulatory effects

Decreased apoptotic cell number in salivary glands of
diabetic rats after injection of DPSCs in tail veins; also
reduced expression of ATG5 and Beclin-1 as well as

suppression of Th1 and Tfh cells in spleen while
increased number of Treg cells

[79] Du et al., 2019

Inhibition of CD4+T cells’ differentiation into T helper
17 cells and reduction of IL-17 and TNF-α, promotion
of Treg cells and increased release of IL-10 and TGF-β

[77] Ji et al., 2019

Downregulation of caspase-3 and upregulation of
VEGF, decreased blood glucose, improved gland

weight and salivary flow in diabetic rats after injection
of DPSCs into the tail vein

[82] Al-Serwi et al., 2021

Treatment of mice in salivary gland duct ligation
model with DPSC-conditioned medium leads to

increased expression of CK5, AQP5
[83] Takeuchi et al., 2020

DPSC exosomes caused macrophages to transform
from proinflammatory phenotype to

anti-inflammatory phenotype
[87] Shen et al., 2020

Differentiation of DPSC to acinar cells

Differentiation of DPSC via coculture with acinar cells
in monolayer and expression of specific acinar

morphology and markers such as CK8, amylase
[15] Yan et al., 2020

3D culture of DPSCs differentiated into acinar-like
cells using FGF 10 [14] Adine et al., 2018

Differentiation of DPSC into acinar-like cells
expressing AQP5 and αSMA after induction via FGF 7 [79] Akashi et al., 2021
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