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Abstract: The number and identity of proteins and proteoforms presented in a single human cell
(a cellular proteome) are fundamental biological questions. The answers can be found with sophis-
ticated and sensitive proteomics methods, including advanced mass spectrometry (MS) coupled
with separation by gel electrophoresis and chromatography. So far, bioinformatics and experimental
approaches have been applied to quantitate the complexity of the human proteome. This review
analyzed the quantitative information obtained from several large-scale panoramic experiments in
which high-resolution mass spectrometry-based proteomics in combination with liquid chromatogra-
phy or two-dimensional gel electrophoresis (2DE) were used to evaluate the cellular proteome. It is
important that even though all these experiments were performed in different labs using different
equipment and calculation algorithms, the main conclusion about the distribution of proteome com-
ponents (proteins or proteoforms) was basically the same for all human tissues or cells. It follows
Zipf’s law and has a formula N = A/x, where N is the number of proteoforms, A is a coefficient, and
x is the limit of proteoform detection in terms of abundance.

Keywords: human proteome; quantitation; formula

1. Introduction

To better understand the functionality of the human proteome, we need information
about the abundance of all proteome components—protein complexes, proteins, and
proteoforms. Identification and quantification of the proteome’s components in different
human tissues provide a valuable resource for understanding the multiple processes
performed [1]. The situation here is not straightforward because of the complexity of
proteins themselves. This complexity may arise from allelic variations, alternative splicing
of RNA transcripts, and post-translational modifications (PTMs). All these cellular events
create distinct proteoforms that modulate a wide variety of biological processes [2,3]. The
term “proteoform” encompasses all sources of biological variation that alter a protein’s
primary sequence and composition [2].

So far, it has been impossible to identify and calculate all proteoforms presented in
a single human cell or in the human plasma [1,3]. The main problem is the vast dynamic
range of abundance, in which the number of copies of different proteoforms is from one
to a billion molecules [4]. A combination of experimental and bioinformatics approaches
has been utilized to try to solve this problem [5,6]. Considering the heterogeneity of the
human population, it seems that detailed knowledge about all human proteoforms is a
task for the future. But based on genomics and proteomics data obtained from analysis
of different cells or tissues, it is possible to make some conclusions. The starting point
here is the number of genes. Currently, the data support 19,750 protein-coding genes in
humans (https://www.hupo.org/, accessed on 10 December 2022). However, not all of
these are expressed in a particular tissue or a cell line. Around 8,000 genes have been
observed to be expressed in all tissues and cell lines, and the number of the genes expressed
in most human tissues can be from 11,000 to 13,000, except in the testis, where this number
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is ~15,000 [7]. However, these numbers should be doubled when considering splice vari-
ants [8]. Important sources of genetic variation include single-nucleotide polymorphisms
(SNPs) and mutations. Finally, many human proteins undergo PTMs, such as glycosyla-
tion, phosphorylation, acetylation, among a few hundred others, which give rise to more
proteoforms [2]. Though many proteins are unmodified, some, like histones, are already
annotated with hundreds of modifications [9]. Fortunately, extreme complexity can be
avoided due to the high degree of control over the enzymatic writing and maintenance of
PTMs—not all theoretical proteoforms are actualized [2,10].

This review presents an analysis of available experimental information about the
amount and abundance distribution of proteins/protein groups/proteoforms in human
cells and tissues.

2. Quantification
2.1. Panoramic Quantification

Panoramic quantitation can be done based principally on two approaches—mass-
spectra analysis or densitometry of 2DE images. For MS quantitation, we assume that
the measured signal has a linear dependence on the amount of material in the sample.
MS-based quantitation itself can be performed using two different strategies: untargeted
global quantification of thousands of proteins and targeted quantification of only a few com-
ponents [11–14]. The untargeted quantification can be further divided into two subgroups:
label-based quantification utilizing stable isotopes and label-free quantification [15]. This
quantification can be relative or absolute. Using relative quantification, it is possible to com-
pare the amount of single proteins or whole proteomes in different samples. Conversely,
absolute quantification provides information regarding the total amount or concentration
of proteins within a model.

As the measurements are based on signals from the peptides that are generated by the
specific hydrolysis of polypeptides, protein inference is a significant problem in bottom-up
protein quantification. High-throughput approaches for proteoform analysis are based on “top-
down” mass spectrometry, in which the whole polypeptide (proteoform) is measured [16–20].
However, this method has mass limitations due to the capabilities of the instruments, and
quantification is technically challenging—only relative quantification of proteins can be per-
formed [20]. As the average mass of a human protein is ∼60 kDa, alternate methods are
necessary to identify and quantify all proteoforms at high throughput [21].

Currently it is only possible to perform the panoramic quantitative analysis of all
proteoforms by pre-separation using 2DE [22]. Coomassie blue protein staining can be
used for reliable quantitative abundance estimation. The linear properties of this dye in a
wide range of concentrations are utilized in a Bradford assay for protein measurement [23].
In gels, the linear range of Coomassie is from ~10 ng to 20 µg [24,25]. Using a scanner
with linear response over the 0–3.0 absorbance range, it is possible to quantitate all spots
in the 2DE gel [24] (Figure 1). The weak points are sensitivity and the chance of the
presence of different proteoforms in the same spot [26,27]. However, the combination of
2DE with bottom-up MS (ESI LC-MS/MS) can solve this problem. An additional level of
panoramic analysis of proteoforms can be reached using a sectional 2DE approach (sec2DE)
(Figure 1) [26,27]. We use this approach to kill two birds with one stone—identification and
quantification of proteoforms.

We should remember an important point regarding the quantification of proteins. In
all cases of protein quantification, the term “abundance” is used, but it can have different
meanings. In the case of spot staining, abundance is measured by the concentration of
protein mass in a spot. However, when using MS, the abundance is proportional to the
molar concentration (number of protein molecules, copy number). For instance, two
proteins, vimentin (MW 54,000) and cofilin (MW 18,000), have the same copy numbers
estimated by MS (emPAI, iBAQ, etc.). However, in the case of 2DE, the spot intensity
of vimentin will be 3 times higher than the spot intensity of cofilin, as each molecule of
vimentin is three times the size of the cofilin molecule. Accordingly, the level of vimentin
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measured by staining will be three times higher than that of cofilin. This must be kept in
mind when looking for a level of a particular protein.
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Figure 1. 2DE map of HepG2 proteins. Spots with proteins identified by MALDI TOF-MS are
annotated. Gel image analysis was performed using the program ImageMaster 2D Platinum 7.0 (GE
Healthcare, Pittsburgh, PA, USA). Sections (marked with letters and numbers) in the 2D gel selected
for following ESI LC-MS/MS analysis are shown. Reprinted with permission from [28].

2.2. Aspects of Cell Size

A human body contains, on average, 3.7 ± 0.8 × 1013 cells (BNID 109716, (https:
//bionumbers.hms.harvard.edu/search.aspx, accessed on 28 February 2023) [29], plus a
similar number of resident microorganisms (human microbiome) [30,31]. Among these
are over 200 different types of human cells that execute various functions. Thus, these
cells are called ‘specialized’. Six of the cell types comprise 97% of human cells: red blood
cells (71%), glial cells (8%), endothelial cells (7%), dermal fibroblasts (5%), platelets (4%),
and bone marrow cells (2%). Other cells account for the remaining 3% [29,31]. It is
interesting that ~90% of the human cells are enucleated. They are mostly red blood cells
and platelets circulating in the blood vessels. Conversely, in terms of mass, muscle and fat
account for 75% of body weight, although muscle and fat cells are quite large and make
up only 0.1% of the total cell number. The sizes of cells span a large range, as shown in
Table 1 [30]. The typical (average) size of the human nucleated cell is 20–40 µm, with a
volume of 2000–4000 µm3. For instance, hepatocytes are polyhedral cells with a volume of
~3.4 × 103 µm3 [31,32].

https://bionumbers.hms.harvard.edu/search.aspx
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Table 1. Characteristic average volumes of human cells of different types.

Cell Type Average Volume (µm3) BNID [30] 1

Platelet 10 [33]
Sperm cell 30 109,891

Red blood cell 100 107,600
Lymphocyte 130 111,439
Neutrophil 300 108,241

Beta cell 1000 109,227
Enterocyte 1400 111,216
Fibroblast 2000 108,244

HeLa, cervix 3000 103,725
Hepatocyte 3400 [32]
Osteoblast 4000 108,088

Cardiomyocyte 15,000 108,243
Fat cell 600,000 107,668
Oocyte 4,000,000 101,664

1 ID numbers are from the database BioNumbers (BNID) or the reference number.

The amount of protein mass in a cell depends on the cell size. The protein content
scales roughly linearly with cell volume, and the copy numbers of the majority of proteins
are proportional to the cell volume [34,35]. There are approximately the same number of
proteins per cell volume in different human cells [35]. These numbers are similar in bacteria
(E. coli), yeast, and human cell lines (HeLa) [35].

This situation was used for generation of the so-called “proteomic ruler”, in which
histone copy numbers are used for normalization of other proteins [13]. The mass of
histones is proportional to the mass of DNA in the sample, which in turn depends on the
number of cells.

2.3. Aspects of Proteome Variation

The abundance of proteins in the same population (tissue) can vary from cell to cell.
Also, they can be present in different forms (proteoforms), interact with other molecules,
or be in different locations. In clinical aspects, these variations have implications for
cancer research and cancer therapy, in which a drug’s impact may vary due to variations
in the proteome or the tumor heterogeneity [36]. One reason for proteome variability
can be changes during the cell cycle progression. As much as 40% of cell proteins are
cell-cycle dependent. Most of them exhibit changes in cellular localization, but ~11%
change in protein level [37]. There is a high abundance variation for some proteins when
entering the cell in M-phase, as shown by Beck et al. [38]. The proteins involved in cell
cycle processes, nuclear division, mitosis, and microtubule cytoskeleton organization were
increased in copy numbers up to 200 times, while multiple metabolic processes slowed
down simultaneously [38]. Amazingly, the total copy number and balance between proteins
with different copy numbers was not changed. For instance, see Figure 2, in which the
distribution of spots is symmetrical around the diagonal [38]. Besides cell-cycle dependence,
there is a general issue of cellular proteome heterogeneity. The proteome is composed of
multiple proteoforms with variable abundance and diverse distributions inside different
cells. This complexity is tightly regulated through the sophisticated molecular network
called the protein homeostasis, or proteostasis.

Proteostasis is a biological mechanism that controls biosynthesis, processing, fold-
ing, trafficking, and degradation of proteins in vivo. This mechanism contains over
1400 proteins with different functions. These proteins include chaperones, components of
the degradation pathway, stress response enzymes, and numerous members of signaling
pathways [39]. They are involved in proteome remodeling according to environmental
conditions. Accordingly, the levels of all proteoforms that compose the cellular proteome
should be properly presented.
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For these reasons, single-cell MS analysis is the method of choice, especially when
working with complex biological tissues [40]. It is constantly evolving, but because of
sensitivity issues, the data volume generated by this method is still more limited than that
produced by the widely used shotgun protocol [41]. Recent advances in sample processing,
separation, and MS instrumentation now make it possible to quantify ~1000 proteins
from individual mammalian cells [42]. Though the levels of these proteins vary between
different cells, protein abundance distribution in single cells follows the distribution in the
cell population [42,43]. Accordingly, the quantitative balance inside the cellular proteome
is strictly regulated by the mechanisms of proteostasis.

2.4. Aspects of Sensitivity

Bioinformatics approaches have revealed millions of proteoforms in a single human
cell [2,5], but the numbers obtained experimentally so far are at least 100 times smaller. This
gap will not be filled by new data very soon, considering the size of the human proteome
and the sensitivity of the available proteomics methods.

Many panoramic proteomics studies of different human cells or tissues have been
performed, and several drafts of proteome maps of the human body have been pub-
lished [44–47]. Though these maps are not complete, the massive volume of information
obtained allows detailed and deep analysis. Here, protein (proteoform) abundance and
the dependence of the number of proteins (proteoforms) on their abundance is an essential
point of analysis. A special review of the sensitivity of proteomics methods and the evalua-
tion of absolute copy numbers of proteins in a single cell was published by Orsburn [48].
In this paper, untargeted proteomics data were analyzed using the mean absolute copy
number of proteins in a single cancer cell to measure instrument performance. Higher-
sensitivity instruments generate more detected proteins and distributions with a lower
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maximum or median copy number. In the panel of the analyzed datasets, the log numbers
of these go from 6.17 (data from 618 proteins) to 4.2 (data from 14,179 proteins) [48].

Based on multiple datasets, the technical aspect of instrument sensitivity is a factor in
protein detection in areas of low abundance [48,49]. It was clearly shown, using the same
sample but different chromatography times in ESI LC-MS/MS analysis, that the number
of proteins in low abundance areas is often greatly underestimated [49]. Because of these
limitations, the distributions of the number of proteins according to their copy numbers
often are bell-shaped, and contain a peak corresponding to the proteins with the greatest
copy numbers [48,49]. This situation can be observed more precisely by comparing more
datasets and normalizing detected proteins not only to copy numbers but also to the %V,
where V is the sum of all protein (proteoform) abundance (Figure 3).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 15 
 

 

dependence of the number of proteins (proteoforms) on their abundance is an essential 

point of analysis. A special review of the sensitivity of proteomics methods and the eval-

uation of absolute copy numbers of proteins in a single cell was published by Orsburn 

[48]. In this paper, untargeted proteomics data were analyzed using the mean absolute 

copy number of proteins in a single cancer cell to measure instrument performance. 

Higher-sensitivity instruments generate more detected proteins and distributions with a 

lower maximum or median copy number. In the panel of the analyzed datasets, the log 

numbers of these go from 6.17 (data from 618 proteins) to 4.2 (data from 14,179 proteins) 

[48].  

Based on multiple datasets, the technical aspect of instrument sensitivity is a factor 

in protein detection in areas of low abundance [48,49]. It was clearly shown, using the 

same sample but different chromatography times in ESI LC-MS/MS analysis, that the 

number of proteins in low abundance areas is often greatly underestimated [49]. Because 

of these limitations, the distributions of the number of proteins according to their copy 

numbers often are bell-shaped, and contain a peak corresponding to the proteins with the 

greatest copy numbers [48,49]. This situation can be observed more precisely by compar-

ing more datasets and normalizing detected proteins not only to copy numbers but also 

to the %V, where V is the sum of all protein (proteoform) abundance (Figure 3).  

 

Figure 3. Examples of dependence of the number of detected proteins/proteoforms on their abun-

dance. A distribution of abundance of proteins/protein groups/proteoforms is taken from datasets 

published by Espadas et al. [49], Wang et al. [45], Nagaraj et al. [50], Bekker-Jensen et al. [51], 

Naryzhny et al. (sec2DE(glio) and 2DE(glio)) [52]. The abundance of proteins/proteoforms was es-

timated using MS. The intensities of the stained spots were analyzed only for 2DE(glio). 

Such proteomics normalization is usually used in the analysis of images produced 

by 2DE and allows comparing cells with different volumes. Initially, all protein abun-

dance is summed (V). Then each protein’s relative abundance (%V) is calculated, and pro-

teins are grouped according to their descending values. Because of the broad range of 

abundance, a log scale was used. Additionally, a ranking of protein copy numbers was 

obtained using the data from Bekker-Jensen et al. for HeLa (Figure 3) [51]. In the case of 

normalization by copy numbers, it is important to remember that the copy number will 

be proportional to the cell volume [34], but this is revealed only when analyzing data from 

cells with small volumes, such as platelets [53].  

Figure 3. Examples of dependence of the number of detected proteins/proteoforms on their abun-
dance. A distribution of abundance of proteins/protein groups/proteoforms is taken from datasets
published by Espadas et al. [49], Wang et al. [45], Nagaraj et al. [50], Bekker-Jensen et al. [51],
Naryzhny et al. (sec2DE(glio) and 2DE(glio)) [52]. The abundance of proteins/proteoforms was
estimated using MS. The intensities of the stained spots were analyzed only for 2DE(glio).

Such proteomics normalization is usually used in the analysis of images produced by
2DE and allows comparing cells with different volumes. Initially, all protein abundance is
summed (V). Then each protein’s relative abundance (%V) is calculated, and proteins are
grouped according to their descending values. Because of the broad range of abundance, a
log scale was used. Additionally, a ranking of protein copy numbers was obtained using
the data from Bekker-Jensen et al. for HeLa (Figure 3) [51]. In the case of normalization by
copy numbers, it is important to remember that the copy number will be proportional to
the cell volume [34], but this is revealed only when analyzing data from cells with small
volumes, such as platelets [53].

The instrumental sensitivity issue can be observed more clearly when the data is
presented in a slightly different way (Figure 4). Proteins are grouped according to their
%V. The first group includes all proteins with relative abundance of 1% or greater, the
second all proteins ≥ 0.5%, the third all proteins ≥ 0.25%, the fourth all proteins ≥ 0.125%,
and so on. Using Excel, the numbers of proteins in each group (N) are plotted against
relative abundance (%V). Visually, we can see that graphs of high abundance areas have
very similar profiles. But at some point of abundance, depending on instrument sensitivity,
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the curves diverge. Therefore, the quantitative distribution of proteins in lower abundancy
(sensitivity) areas must be carefully considered. Comprehensive analysis of available
datasets can help us to reach final conclusions.
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abundance limit. The datasets of HeLa proteins produced in three different labs [49–51], brain
extracts [45], and a classical 2DE analysis (spots) or sectional 2DE (sec2DE) analysis of proteoforms
(glioblastoma cells) were used [52].

2.5. Aspects of Cancer

In response to various external or internal stimuli, cell proteomes undergo multiple
changes. These changes can be analyzed by quantitative proteomics. In the case of cancer,
quantitative protein analysis can be applied to cancer classification, diagnostics, drug
selection, evaluation of drug resistance, assessment of therapeutic effects and toxicity, and
the discovery of therapeutic targets and biomarkers. For example, differentiation of tumor
subtypes is especially clinically important when choosing the type of treatment. Proteome-
based classification may distinguish clinical features of lung cancers (adenocarcinoma or
squamous cell cancer) and suggest therapeutic possibilities based on redox metabolism
and immune cell infiltrates [54]. For example, the data show the importance of cadherin
2 in angiogenesis and highlight its potential both for antiangiogenic treatment and as a
candidate prognostic marker for adenocarcinoma [55]. Furthermore, the Clinical Proteomic
Tumor Analysis Consortium (CPTAC) aims to accelerate the understanding of the molecular
basis of cancer through the application of proteomic technologies and workflows to clinical
tumor samples [56]. Already, proteomic profiling based on quantitative mass spectrometry
can categorize molecular subtypes for the propagation of 532 cancers [57]. SWATH/DIA-
MS (State-of-the-art sequential window acquisition of all theoretical fragment ion/data-
independent acquisition mass spectrometry) provides a promising supplement for stable
classification of ovarian cancer subtypes [58].

A large amount of information was obtained in the tumor biomarker studies. Typi-
cally, paired tumor and adjacent tissue samples from patients and healthy individuals are
prepared, digested into peptides, and analyzed using ESI LC-MS/MS. After quantification
and filtration, many potential tumor biomarkers are selected based on their upregulated or
downregulated level. The Human Protein Atlas (https://www.proteinatlas.org/, accessed
on 25 April 2023) is a resource that contains much of that information. The Human Protein
Atlas provides information on levels of gene and protein expression in the tissues and
blood of patients with various diseases and highlights the proteins associated with these
diseases. Importantly, in the case of cancer there is a panel of overexpressed proteins

https://www.proteinatlas.org/
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and a panel of downregulated proteins specific to each type of cancer. Therefore, during
malignant transformation, the total amount of protein in the cell is not altered as much as
the distribution profiles of protein/proteoform abundance.

2.6. Analysis of Proteomics Datasets

There are few proteomics datasets in which absolute quantitation of the detected
proteins in normal and cancer cells is available. Several publications were considered
as sources of information about the abundance of proteins or proteoforms in different
tissues or cell lines [26,27,44–47,50,52]. Some of them were used for the generation of
Figures 3 and 4 [44–46]. As shown in Figures 3 and 4, a classical 2DE analysis of spot
(proteoform) abundance is the least sensitive and allows a reliable quantitation of only
about 1000 spots/proteoforms. The advantage of this quantitation (2DE spots) is that it is
performed directly according to the estimation of protein mass by staining. The combination
of 2DE with ESI LC-MS/MS dramatically improves the sensitivity: the number of detected
proteins by sec2DE is increased to more than 5000 and the number of proteoforms to more
than 20,000 (Table 2).

Table 2. Equations of dependence of the number of spots/proteins/proteoforms on their abundance
in different cancer cells or a normal liver. The analysis is based on 2DE separation and 2DE maps.

Sample Equation Number Reference

Glio (2DE spots) y = 13.185x−1.085 R2 = 0.9261 1000 [51]
Glio (sec2DE) y = 13.653x−0.889 R2 = 0.9845 24,000 [51]

HepG2 (2DE spots) y = 17.459x−1 R2 = 0.9776 1300 [27]
HepG2 (sec2DE) y = 9.99x−0.984 R2 = 0.9758 20,000 [27]
Liver (sec2DE) y = 11.549x−0.98 R2 = 0.8952 15,000 [53]

Liver (2DE spots) y = 13.452x−1.16 R2 = 0.9113 700 [53]
MCF7 (2DE spots) y = 14.487x−1.06 R2 = 0.9792 700 [59]

The datasets from these publications were extracted and analyzed in the same way
as in Figure 4. The linear scale was used to better apply a trend line. In all cases, the
power function is the most appropriate trend for 2DE spot distribution (coefficient of
determination R2 is from 0.91 to 0.98) (Table 2). Ideally, each spot should represent a
single proteoform so that “spot abundance” is a synonym of “proteoform abundance”.
The situation is more complicated in practice, and a single spot may accommodate many
different proteoforms [26,27]. Usually, one proteoform is dominant and represents a
significant proportion of the spot (at least 70%) [26,27]. An alternative and reliable way
to evaluate proteoforms is to combine 2DE with ESI LC-MS/MS (a sectional 2DE with
following ESI LC-MS/MS), which makes a more precise evaluation of proteoforms possible
(Table 2) [28,52,60]. In all cases, the graphs (and formulas) are quite similar for all types of
cells and tissues (Table 2).

The additional analysis of datasets from panoramic studies of multiple samples makes
this observation even more reliable (Table 3, Figure 5). In a study by Wang et al. in which
label-free mass spectrometry was used, 13,640 proteins from 29 healthy human tissues
were quantified [45]. In a study by Jiang et al., 12,627 proteins across 32 normal human
tissues were quantified using the TMT labeling method and TS scores for tissue-enrichment
analysis [44]. A dataset produced by Kim et al. from the draft map of the human proteome
contains the proteomic profiling of 30 histologically normal human samples, including
17 adult tissues, 7 fetal tissues and 6 purified primary hematopoietic cells, and resulted in
identification of proteins encoded by 17,294 genes [46]. A mass-spectrometry-based draft
of the human proteome fluids (human body map) published by Wilhelm et al. contains
data from experiments involving 47 human tissues, cell lines, and body fluids [47]. A total
of 18,097 proteins were identified in this study. Doll et al. have built a healthy human heart
proteome by measuring 16 anatomical regions and three major cardiac cell types using
high-resolution mass spectrometry-based proteomics. They quantified over 10,700 proteins



Int. J. Mol. Sci. 2023, 24, 8524 9 of 14

in this tissue [61]. According to the detailed analysis, we can confirm that the dependence
of the number of proteoforms on their abundance is described by the power function [59].

Table 3. Equations of dependence of the number of proteins on their abundance in different human
tissues or cells. Panoramic MS-analysis.

Sample Equation Number Reference

Liver y = 7.0162x−1.056 R2 = 0.9398 16,000 [45]
Fetal liver y = 11.951x−0.943 R2 = 0.9484 16,000 [45]

Liver y = 10.955x−0.958 R2 = 0.9007 5000 [43]
Liver y = 7.2197x−1.047 R2 = 0.8961 5500 [43]

Adrenal y = 7.2765x−1.003 R2 = 0.8627 7000 [43]
Adult Adrenal y = 6.6905x−1.051 R2 = 0.9225 15,000 [45]
Adult Colon y = 13.745x−0.915 R2 = 0.9766 15,000 [45]

Colon y = 11.996x−0.944 R2 = 0.976 5000 [43]
Adult Esophagus y = 15.288x−0.876 R2 = 0.9544 9000 [45]

Frontal Cortex y = 12.544x−0.953 R2 = 0.9297 16,000 [45]
Adult gallbladder y = 14.781x−0.911 R2 = 0.9727 10,000 [45]

Adult Pancreas y = 12.281x−0.948 R2 = 0.9537 17,000 [45]
Pancreas y = 12.537x−0.894 R2 = 0.8619 7000 [43]
Prostate y = 12.246x−0.939 R2 = 0.973 4000 1 (11,000) [44]

Adult Prostate y = 14.466x−0.916 R2 = 0.9773 17,000 [45]
Adult Rectum y = 11.495x−0.932 R2 = 0.9755 17,000 [45]
Adult Retina y = 5.8187x−1.079 R2 = 0.9095 19,000 [45]
Spinal Cord y = 11.821x−0.946 R2 = 0.9288 15,000 [45]
Adult Testis y = 8.169x−1.045 R2 = 0.8192 20,000 [45]

Testis y = 11.105x−0.882 R2 = 0.8996 9000 [44]
Fetal Testis y = 5.439x−1.092 R2 = 0.9224 15,000 [45]

Placenta y = 9.3737x−0.998 R2 = 0.9267 11,000 [45]
Kidney y = 5.9506x−1.075 R2 = 0.9228 12,000 [45]
Heart y = 15.719x−0.927 R2 = 0.9755 1500 [44]
Heart y = 9.1228x−1.019 R2 = 0.9233 5000 [43]
Heart y = 12.319x−0.893 R2 = 0.9824 13,000 [45]
Aorta y = 12.254x−1.009 R2 = 0.9655 1200 [61]

Aortic valve y = 17.85x−0.698 R2 = 0.8931 6800 [61]
Stomach y = 10.254x−1.017 R2 = 0.8661 5000 [43]
Stomach y = 15.361x−0.905 R2 = 0.9698 4000 [44]
Thyroid y = 9.698x−1.023 R2 = 0.9185 5000 [43]
Muscle y = 11.563x−0.974 R2 = 0.9422 3500 [43]
Muscle y = 13.174x−0.994 R2 = 0.9409 9000 [44]
Brain y = 10.672x−0.985 R2 = 0.8955 6000 [43]

Fetal brain y = 8.584x−0.981 R2 = 0.9314 15,000 [45]
Lung y = 9.2953x−1.001 R2 = 0.9583 12,500 [45]
Lung y = 8.5254x−1.023 R2 = 0.6913 6000 [43]
Ovary y = 7.3857x−1.053 R2 = 0.931 19,000 [45]

Fetal ovary y = 7.4986x−1.045 R2 = 0.9368 17,000 [45]
Ovary y = 9.8454x−0.929 R2 = 0.9009 6800 [43]

Platelets y = 13.949x−0.949 R2 = 0.9909 3600 [52]
Platelets y = 7.3257x−1.127 R2 = 0.9575 11,300 [45]
Uterus y = 7.7271x−1.059 R2 = 0.9477 6000 [43]
B cells y = 6.5677x−1.051 R2 = 0.9319 17,000 [45]

CD4 Cells y = 7.5448x−1.051 R2 = 0.9533 14,000 [45]
NK Cells y = 7.8551x−1.029 R2 = 0.9616 16,000 [45]

HeLa y = 6.9393x−0.963 R2 = 0.9312 6000 1 (7000) [48]
HeLa y = 13.715x−0.931 R2 = 0.9453 4700 1 (10,200) [49]
HeLa y = 12.004x−0.931 R2 = 0.9187 6200 1 (14,000) [50]

1 Number of proteins taken for calculations.
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The available data should also be considered in terms of sensitivity. As previously
mentioned, and clearly represented in Figure 4, in all MS datasets, the left shoulder or
decline of the line is a result of lower instrumental sensitivity in the lower abundance
area. Accordingly, data in this area cannot reliably represent abundance distribution. If
we remove this area from our analysis (data marked with 1), the final graphs are very
similar to other charts (Table 3). Importantly, including these underestimated numbers
of low-copy proteins/proteoforms in analysis and graph building can distort the final
formulas presented in Table 3. For instance, according to the complete dataset presented by
Bekker-Jensen et al. (14,000 proteins), the equation of abundance distribution is as follows:

y = 41.443x−0.553 (1)

But taking for analysis the first 6200 proteins from this dataset, which represent 98.5%
of the sum protein mass, we get the equation:

y = 12.004x−0.931 (2)

Therefore, if the graphs are built based on the most reliable areas, they are very similar
(Tables 1 and 2). Accordingly, we can say that the final general formula is:

y = Ax−1 (3)

where y stands for the number of proteoforms (N) and x stands for the relative abundance
of a proteoform that can be expressed as a percentage of the total mass (%V). According to
the presented data, the coefficient A can be 5.5 to 15.4 (Table 3). This range may be a result
of the sample preparation or of instrument peculiarities, as the data performed in different
labs can produce different coefficients (Table 3).
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Finally, based on analysis of the available datasets, we can say that the proteoform
abundance distribution in different cancer and normal human cells follows the same power
function (3) or Zipfian probability distribution [59]. Zipf’s law has been identified in
physics, biology, and the social sciences [62–65]. This law states, in particular, that the
frequency of any word in a language is inversely proportional to its rank in the frequency
table [62].

So far, researchers have only been able to hypothesize about the specificity and ubiquity
of Zipfian distribution. Many theories have been proposed. In particular, it was suggested
that the distribution can be the inevitable outcome of a very general class of stochastic
systems [65,66]. An interesting explanation about the abundance of expressed genes and
proteins was presented by Furusawa and Kaneko [63]. Using an abstract model of a cell
with simple reaction dynamics, they showed that this power-law behavior in the chemical
abundance generally appears when the reaction dynamics lead to a faithful and efficient
self-reproduction of a cell. Therefore, these findings provide insights into the nature of the
organization of complex reaction dynamics in living cells [63]. In the case of the human
proteome, we can also say that distribution here reflects the functionality of different
proteins/proteoforms and their abundance within the proteome. On the one hand, a
human cell needs a high copy number (millions) of only a few proteins, such as actin or
tubulin, for its structural organization. However, only a few copies each of many thousands
of proteoforms are involved in processes such as signaling or protein turnover.

There is also a practical aspect of Zipfian probability distribution of proteoforms
inside the cell. We can apply the Formula (3) for proteoform number calculation to get an
answer to the question “how many human proteoforms are there?” [9]. If the Formula (3)
can be applied to the mass of proteoforms inside the cell, then the calculation task looks
definite—insert the minimal value of the %V and calculate N. The only problem is that we
don’t know to which proteoform population (%V or copy number) we should extrapolate
the calculations. If it is one copy, or 10¯8 %V, then according to Formula (3), an average
human cell has ~1 billion proteoforms.

Interestingly, if we look at the platelet, which has a volume ~400 times smaller than
the average human cell (Table 1), the protein abundance of ~0.00005 %V corresponds to
the range of single copies. In this case, according to Formula (3), N = 200,000. Therefore,
there are ~200,000 different proteoforms in a single platelet. Hence, knowing the formula
of proteoform abundance distribution inside the cell, we can get an impression about the
whole cellular proteome organization and calculate the proteoform number.

3. Conclusions

Protein homeostasis (proteastasis) implies that the quantitative qualities of the human
cellular proteomes persist in the stable state. Even though the cells have different volumes
and different specialties, they have very similar quantitative characteristics to the proteomes.
The proteoform abundance distribution in normal and cancerous human cells follows
the same power function or Zipfian probability distribution [59]. In the case of cellular
proteomes, this means that in a cell, the number of different proteoforms is inversely
proportional to their abundance.
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Abbreviations

MS Mass spectrometry
ESI LC-MS/MS Liquid chromatography–electrospray ionization tandem mass spectrometry
2DE Two-dimensional gel electrophoresis
Sec2DE Sectional two-dimensional gel electrophoresis
emPAI Exponentially modified Protein Abundance Index
iBAQ intensity Based Absolute Quantification
SNP Single-Nucleotide Polymorphism
TMT Tandem Mass Tag
TS Tissue Specificity
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