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Abstract: Foodborne infections are an important global health problem due to their high prevalence
and potential for severe complications. Bacterial contamination of meat during processing at the
enterprise can be a source of foodborne infections. Polymeric coatings with antibacterial properties
can be applied to prevent bacterial contamination. A composite coating based on fluoroplast and
Ag2O NPs can serve as such a coating. In present study, we, for the first time, created a composite
coating based on fluoroplast and Ag2O NPs. Using laser ablation in water, we obtained spherical
Ag2O NPs with an average size of 45 nm and a ζ-potential of −32 mV. The resulting Ag2O NPs at con-
centrations of 0.001–0.1% were transferred into acetone and mixed with a fluoroplast-based varnish.
The developed coating made it possible to completely eliminate damage to a Teflon cutting board.
The fluoroplast/Ag2O NP coating was free of defects and inhomogeneities at the nano level. The
fluoroplast/Ag2O NP composite increased the production of ROS (H2O2, OH radical), 8-oxogualnine
in DNA in vitro, and long-lived active forms of proteins. The effect depended on the mass fraction of
the added Ag2O NPs. The 0.01–0.1% fluoroplast/NP Ag2O coating exhibited excellent bacteriostatic
and bactericidal properties against both Gram-positive and Gram-negative bacteria but did not affect
the viability of eukaryotic cells. The developed PTFE/NP Ag2O 0.01–0.1% coating can be used to
protect cutting boards from bacterial contamination in the meat processing industry.

Keywords: silver oxide nanoparticles; polytetrafluoroethylene; foodborne illness; antibiofilm activity;
reactive oxygen species; cytotoxicity
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1. Introduction

Bacterial contamination of meat products can occur at any stage of its journey to
the consumer: from slaughter and carcass-cutting to storage at points of sale [1,2]. At
the same time, bacteria can form biofilms on work surfaces that are resistant to classical
disinfection methods [3,4]. Contamination of meat processing products with bacteria of
epidemiological significance (Listeria monocytogenes, Clostridium perfringens) is a serious
global health problem. In total, in worldwide in 1990–2012, approximately 2 billion cases
of foodborne infections were registered and caused over 1,000,000 deaths [5]. In the
European Union, the number of cases of foodborne infections registered in 2005 exceeded
197,000 cases per year. In 2016, this figure increased to 240,000 cases per year [6,7]. In
Canada, the incidence of foodborne infections is comparable [8]. In the United States, the
number of cases of foodborne illness (foodborne illness) of a bacterial nature exceeds 48
million cases per year, of which there are 128,000 hospitalizations and over 3000 deaths [9].
In Africa and Asia, foodborne infections are of particular danger, as they are so common
among children [10]. Danger to the life and health of consumers is not only due to the
microorganisms themselves but also due to the produced or bacterial toxins with various
natures [11]. In this regard, it is very important to prevent bacterial contamination during
the initial stages of meat preparation in order to minimize the possible accumulation of
bacterial toxins. In some cases, foodborne infections can lead to serious complications, as
well as death.

Among the complications of bacterial infections were reported lesions of the gas-
trointestinal tract (gastritis, stomach ulcers, severe forms of diarrhea), CNS (meningitis,
encephalitis), kidneys, liver, spleen, musculoskeletal system (reactive arthritis), cardiovas-
cular system (endocarditis), and reproductive system (premature birth, stillbirth) [12–18].

According to the NCBI, the first studies on bacterial food contamination date back to
the first half of the twentieth century. Over the past 60 years, the rate of publications on
this subject has grown from a few dozen papers per year to hundreds and even thousands
of papers per year. This indicates not only the high significance of the problem but also the
lack of a solution and the continuation of active research in this direction.

One of the promising methods for combating the bacterial contamination of work
surfaces at food industry enterprises is the use of polymer coatings designed to reduce the
adhesion of bacteria to treated surfaces [19–21].

One of the most promising polymers for this application is fluoroplasts (Teflon, fluo-
roplast, polytetrafluoroethylene, PTFE). It has been shown that the adhesion of bacteria
to working surfaces coated with fluoroplasts is lower than to other surfaces, in particular,
ceramic ones [22]. Fluoroplasts are a polymer consisting of 1,1,2,2-tetrafluoroethylene
monomers and can be described by the formula -(CF2-CF2)n-.It is an opaque and smooth
milky white material. Fluoroplastics are widely used in various fields: mechanical engineer-
ing, chemical production, space and marine industries, biomedicine in the manufacture of
implants, and in the food industry [23–31]. The breadth of applications of fluoroplastics is
due to its unique properties: high mechanical and chemical resistance, thermal and electri-
cal stability, low coefficient of friction, self-lubrication, and self-healing ability [32–35]. An
additional advantage of fluoroplasts is its very low toxicity to mammals in vivo [36]. Due
to pronounced hydrophobic properties and mechanical resistance, fluoroplasts can be used
to reduce adhesion to working surfaces in food production [32–34].

In a number of studies, the antibacterial activity of polymeric materials was enhanced
by adding metal NPs and their oxides, for example, Ag, Cu, ZnO, or Ag2O [37–40]. The
antimicrobial properties of metal NPs and their oxides are well described in numerous
works [41–44]. Among the general pool of works, since 2005, a significant part (over 30% of
publications) are publications devoted to the antibacterial activity of silver NPs, including
those in the form of silver oxide. Ag2O NPs are able to realize their antibacterial action
through several mechanisms: enzyme inactivation, genotoxic action, disruption of cell wall
integrity, and photocatalytic action (Table 1).
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Table 1. Mechanisms of antimicrobial action of Ag2O/Ag NPs.

№ Agent Mechanism Ref

1 Ag+ Binding to the SH-groups of enzymes, leading to their inactivation. Violation of the
functioning of respiratory chain enzymes, accumulation of ROS in the cell. [45–48]

2 ROS Oxidative stress: genotoxic effect, modification of bacterial proteins in DNA
(genotoxic effect) [49,50]

3 Whole NPs Direct binding to bacterial cell walls and their destruction [47,48]
4 Ag+ Genotoxic effect due to binding to DNA [51,52]
5 Ag/Ag2O hν Photocatalysis [53,54]

Based on the foregoing, one of the promising materials in this case is a composite
based on fluoroplasts and Ag/Ag2O NPs. In particular, such a composite was developed
for medical applications [55]. However, we believe that this composite can be used in the
protection of work surfaces in the food industry, in particular, the processing of cutting
boards in the processing of meat. Unfortunately, new data on the development of bacterial
resistance against NPs of metals and metal oxides have recently appeared. Bacterial
defense mechanisms include the increased expression of extracellular matrix molecules
(flagellin) to inactivate NPs, the release of pigments to inactivate metal ions, and the
activation of antioxidant defense to combat oxidative stress [56,57]. It should be noted that
these mechanisms are most likely implemented after a certain amount of time after the
introduction of single NPs [58]. We assume that the constant dosed release of new portions
of NPs from a material during their using can be a way to reduce bacterial resistance against
NPs. Composite materials based on polymers and NPs are capable of the controlled release
of NPs.

Previously, we showed that Ag2O NPs, when added to our previously created com-
posite materials based on PLGA and borosiloxane, showed a good bacteriostatic effect
and low cytotoxicity against eukaryotic cells [59,60]. In this work, we, for the first time,
attempted to create a nanocomposite coating based on fluoroplasts and Ag2O NPs, to
study its physicochemical properties, the effect on the generation of ROS and markers of
DCH and protein oxidation, bacteriostatic and bactericidal actions, and cytotoxicity against
eukaryotic cells.

2. Results and Discussion
2.1. Physicochemical Properties

At the initial stage of the study, we characterized the main parameters of the obtained
NPs: size, ζ-potential, absorption spectrum, and shape (Figure 1). The resulting NPs
have a monomodal size distribution with an average hydrodynamic diameter of ~45 nm
and a half-width of no more than 35–55 nm (Figure 1a). The resulting size distribution
coincides with the literature data [50,75–77]. The average value of the ζ-potential of the
obtained NPs was ~32 mV, and the half-width was from −42 to 28 mV (Figure 1b). The
data obtained agree with the literature data and indicate the stability of the aqueous colloid
of the synthesized NPs [78,79]. In the absorption spectrum of colloidal NPs, a clear peak
was observed in the region of ~420 nm, which is characteristic of Ag2O NPs [80]. According
to TEM data, the obtained NPs have a round shape (Figure 1d), which is consistent with
the literature data [50]. Thus, by laser ablation in water, we obtained rounded Ag2O NPs
with a unimodal size distribution that are stable in aqueous colloids.
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Figure 1. Main characteristics of Ag2O NPs: (a) Size distribution of NPs obtained by DLS (blue
line) and CPS (black line). (b) NP distribution over the ζ-potential obtained by the ELS method.
(c) Absorption spectrum from the UV–vis region of the NP colloid. (d) TEM photograph of the
obtained NPs. Scale bar: 100 nm.

The resulting Ag2O NPs were mixed with a fluoroplast-based varnish (see Section 3).

2.2. Composite Material Preparation and Characterization

At the next stage of the study, we tested the ability of the developed coating based on
fluoroplastic varnish and Ag2O NPs to fill visible damage on a fragment of a used Teflon
cutting board (Figure 2a). After drying, the composite coating remained evenly distributed
over the treated surface, and no visible damage was observed (Figure 2b). When trying
to mechanically damage the surface of the coating, no scratches, chips, or other traces of
mechanical impact were observed.
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Figure 2. Photographs of a section of a Teflon (PTFE) cutting board with damage before coating (a) 
and after the application and drying of the PTFE/Ag2O-NPs 0.1% composite coating (b). 

To assess the microrelief of the treated surface, the samples were analyzed using the 
AFM method. Fluoroplastic without the addition of NPs after drying forms a smooth 
surface without cracks, protrusions, or other inhomogeneities (Figure 3a). The difference 
in the height of the sample section with an area of ~1 μm2 did not exceed 2–3 nm (Figure 
3c). 
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Figure 3. Investigation of the microrelief of a composite material using the AFM method: 3D re-
construction of the surface of a PTFE coating without NPs (a) and with the addition of 0.1% Ag2O 
NPs (c); examples of the results of a quantitative assessment of the surface inhomogeneity of a 
PTFE coating without NPs (b) and with the addition of 0.1% Ag2O NPs (d). 

Figure 2. Photographs of a section of a Teflon (PTFE) cutting board with damage before coating (a)
and after the application and drying of the PTFE/Ag2O-NPs 0.1% composite coating (b).

To assess the microrelief of the treated surface, the samples were analyzed using the
AFM method. Fluoroplastic without the addition of NPs after drying forms a smooth
surface without cracks, protrusions, or other inhomogeneities (Figure 3a). The difference in
the height of the sample section with an area of ~1 µm2 did not exceed 2–3 nm (Figure 3c).
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Figure 3. Investigation of the microrelief of a composite material using the AFM method: 3D
reconstruction of the surface of a PTFE coating without NPs (a) and with the addition of 0.1% Ag2O
NPs (c); examples of the results of a quantitative assessment of the surface inhomogeneity of a PTFE
coating without NPs (b) and with the addition of 0.1% Ag2O NPs (d).
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The addition of Ag2O NPs at a concentration of 0.1% did not affect the coating
morphology (Figure 3b). The difference in the height of the sample area with an area of
~1 µm2 also did not exceed 2–3 nm (Figure 3d). Using the AFM method, we did not detect
NPs on the surface of the samples; therefore, most of the Ag2O NPs are contained in the
bulk of the polymer matrix. The obtained data on the high degree of homogeneity of the
microrelief of the fluoroplastic coating are consistent with the literature data obtained for
the fluoroplastic [81,82]. To estimate the distribution of Ag2O NPs inside the polymer
coating, we used the MIM method based on the difference between the refractive indices of
the NPs and the polymer matrix [83]. In the PTFE without the addition of NPs, we did not
find large inhomogeneities (Figure 4a).
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2 µm and a width of 0.5–1 µm. The phase difference between the NP aggregates and the 
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Figure 4. The results of the analysis of the fluoroplast/Ag2O NPs composite coating by MIM
method: (a) PTFE without the addition of nanoparticles; (b) PTFE with the addition of 0.001% Fe2O3

nanoparticles; (c) PTFE with the addition of 0.01% Fe2O3 nanoparticles; (d) PTFE with the addition of
0.1% Fe2O3 nanoparticles. The images are presented as 3D reconstructions, where the abscissa and
ordinate axes correspond to the real distance in µm. The Oz axis displays the phase difference in
nm (the larger the phase difference, the higher the value on the Oz axis). Coloring is a pseudo color.
The initial data on the spatial distribution of the phase difference in the analyzed sample, used to
construct 3D reconstructions, are shown in the lower left corners of each panel.

After the addition of 0.001% Ag2O NPs, structures were observed in the polymer
matrix, presumably being aggregates of NPs. The aggregates had an average length of
1–2 µm and a width of 0.5–1 µm. The phase difference between the NP aggregates and the
polymer matrix was no more than 80 nm (Figure 4b). With an increase in the mass fraction of
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Ag2O NPs to 0.01%, an increase in the length of aggregates up to 3–5 µm was observed. The
phase difference values remained comparable (Figure 4c). At an Ag2O NP concentration
of 0.1%, the aggregate width increased to 2–3 µm. The aggregate lenght exceeded 8 µm.
The phase difference increased to 100 nm and above (Figure 4d). Thus, we can assume that
the size of NP aggregates depends on the concentration in the polymer matrix. Our data
agree with the literature data on the ability of metal oxide nanoparticles to aggregate in
a polymer matrix [84]. Similar data were obtained by us for other nanocomposites using
polymer matrices of PLGA and borosiloxane [85–87].

2.3. Effect of Nanocomposite on ROS Generation

At the next stage, the ability of composite coatings based on PTFE and NPs Ag2O to in-
fluence the formation of ROS in aqueous solutions was studied (Figure 5). It was found that
fluoroplasts without the addition of NPs (“Fluoroplast” group) did not affect the formation
of hydroxyl radicals or hydrogen peroxide ([H2O2] = 3.5 ± 0.4 nM, [•OH] = 23 ± 5 nM).
At the same time, the addition of NPs Ag2O to the fluoroplast matrix increased the con-
centration of the formed hydroxyl radicals, even at the minimum concentration of NPs
(0.001%). The concentration of H2O2 in solutions aged with fluoroplast/NPs Ag2O compos-
ite materials was 5.8 ± 0.8, 11.8 ± 1.9, and 23.5 ± 2.2 nM for composite coatings containing
0.001, 0.01, and 0.1% NPs Ag2O, respectively. The concentration of hydroxyl radicals in the
fluoroplast functionalized with NPs Ag2O was 35 ± 6, 45 ± 7, and 60 ± 8 nM for composite
coatings containing 0.001, 0.01, and 0.1% NPs Ag2O, respectively.
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Figure 5. ROS generation in the presence of fluoroplast/Ag2O NPs composite coating: (a) generation
of hydrogen peroxide (2 h, 40 ◦C); (b) generation of hydroxyl radicals (2 h, 80 ◦C). Data are presented
as Mean ± SE. * p < 0.05, Mann–Whitney test (n = 3).

ROS generation (intracellular and extracellular) is one of the most important and key
mechanisms of the antibacterial action of metal NPs and metal oxides, including NPs Ag2O.
An increase in the formation of ROS, such as superoxide (O2

−), hydroxyl radicals (•OH),
and hydrogen peroxide (H2O2) outside cells under the influence of Ag NPs, including those
mediated by Ag+, has been reported [88–90]. Hydrogen peroxide is one of the most stable
ROS that can be transported across the membrane. Hydroxyl radicals are highly reactive
but unable to pass through cell membranes. However, they can be sources of secondary
radicals [91–93]. The generation of moderate amounts of ROS is an important part of the
functioning of normal eukaryotic cells: ROS are involved in the regulation of cell division,
differentiation, and migration [94]. In the case of the excessive production of ROS and/or
the disruption of the functioning of antioxidant systems, the development of “oxidative
stress” is possible, leading to DNA modification, protein inactivation, lipid peroxidation,
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etc. [95–97]. “Oxidative stress” of cells may be associated with carcinogenesis, mutagenesis,
and accelerated aging processes [98]. The amounts of ROS, both hydrogen peroxide and
hydroxyl radical, generated in the presence of composite coatings, do not exceed 25 and
60 nM, respectively (Figure 5). It is known that ROS concentrations below 1 µM are
characteristic of normal cell functioning [99]; therefore, ROS generation in the presence of a
nanocomposite coating cannot be considered a major mechanism of antimicrobial action.

2.4. 8-Oxoguanine and LRPS Generation Study

We have studied the effect of the developed composite coating on the generation
of markers of “oxidative stress” and damage to DNA and proteins: 8-oxoguanine and
LRPS. The first is formed during the oxidative modification of DNA guanine. LRPS are
formed during protein modification, while LRPS can be sources of new secondary free
radicals [62,97,100,101]. The PTFE coating without the addition of NPs did not affect
the generation of either 8-oxoguanine (Figure 6a) or LRPS (Figure 6b). The addition of
Ag2O NPs to the fluoroplastic matrix increased the generation of 8-oxoguanine in a dose-
dependent manner (Figure 6a).
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Figure 6. Generation of DNA and protein oxidative damage markers in the presence of
fluoroplast/Ag2O NPs composite coating: (a) generation of 8-oxoguanine in DNA in vitro (2 h,
45 ◦C); (b) LRPS generation (2 h, 40 ◦C). Data are presented as mean ± SE. * p < 0.05, Mann–Whitney
test (n = 3). 8-OG-8-oxoguanine.

The addition of 0.001% Ag2O NPs increased the generation of 8-oxoguanine by ~50%
compared to the control. The addition of 0.01 and 0.1% Ag2O NPs increased the generation
of 8-oxoguanine by ~100 and ~180% compared to the control. The enhancement of 8-
oxoguanine generation in the presence of Ag2O NPs agrees with the literature data [51,52].
The addition of Ag2O NPs at concentrations of 0.001, 0.01, and 0.1% increased LRPS
generation by 20, 90, and 200% compared to control (Figure 6b). It is noteworthy that the
half-life rate of LRPS did not depend on the presence of Ag2O NPs and their concentration
and was 5 h in all variants of the experiment. We have found the potential ability of
a composite coating of fluoroplast/Ag2O NPs to enhance the oxidative modification of
biopolymers using DNA and proteins as an example. The effect is due solely to the
properties of NPs Ag2O.

2.5. Evaluation of Antibacterial Activity and Antibiofilm Activity

We have evaluated the bacteriostatic effect of the developed composite material
PTFE/Ag2O NPs, as well as the fluoroplastic coating without the addition of Ag2O NPs
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(Figure 7). Fluoroplast without the addition of NPs had no effect on the growth of all
studied bacteria.

Int. J. Mol. Sci. 2023, 23, x FOR PEER REVIEW 9 of 23 
 

 

Gram-positive Gram-negative 

  
(a) (b) 

  
(c) (d) 

Figure 7. Evaluation of the bacteriostatic effect of a composite material based on fluoroplasts and 
Ag2O NPs against Gram-positive bacteria Listeria monocytogenes (a) and Staphylococcus aureus (c) 
and Gram-negative Pseudomonas aeruginosa (b) and Salmonella typhimurium (d) after 6 and 18 h of 
cultivation. Results are presented as mean ± SE (n = 3). 

The addition of 0.01 or 0.1% Ag2O NPs significantly inhibited the growth of all 
studied bacteria after 6 and 18 h of cultivation. In the case of L. monocytogenes on the 
fluoroplastic/NP Ag2O 0.01% composite, the growth rate was reduced by an order of 

Figure 7. Evaluation of the bacteriostatic effect of a composite material based on fluoroplasts and
Ag2O NPs against Gram-positive bacteria Listeria monocytogenes (a) and Staphylococcus aureus (c)
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cultivation. Results are presented as mean ± SE (n = 3).
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The addition of 0.01 or 0.1% Ag2O NPs significantly inhibited the growth of all
studied bacteria after 6 and 18 h of cultivation. In the case of L. monocytogenes on the
fluoroplastic/NP Ag2O 0.01% composite, the growth rate was reduced by an order of
magnitude compared with the control after 6 h and by three orders of magnitude compared
with the control after 18 h of cultivation (Figure 7a). The fluoroplast/NP Ag2O 0.1%
composite had a comparable bacteriostatic effect against L. monocytogenes. In the case of
S. aureus, the addition of 0.01% Ag2O NPs showed a more pronounced growth inhibition
after 6 h (by 1.5 orders of magnitude compared to the control) and a less pronounced
inhibitory effect after 18 h (by 2.5 orders of magnitude compared to the control). Increasing
the dopant concentration to 0.1% increased the bacteriostatic effect of the composite. The
number of S. aureus was reduced by three orders of magnitude compared to the control
(Figure 7c). In the case of P. aeruginosa, the addition of Ag2O at concentrations of 0.01 and
0.1% caused a comparable bacteriostatic effect. There was a decrease in the number of
bacteria by 1.5–2 orders of magnitude compared with the control after 6 h and a decrease
by 3–3.5 orders of magnitude compared with the control after 18 h (Figure 7b). Composite
coating with the addition of Ag2O at concentrations of 0.01 and 0.1% also inhibited the
growth of S. typhimurium by 2.5 orders of magnitude after 6 h and 3.6–4 orders of magnitude
(Figure 7d). In this case, the effect was practically independent of the concentration of
Ag2O NPs.

The data obtained indicate a significant bactericidal effect of the developed composite
coating, which inhibited the growth of biofilms of all considered microorganisms. Com-
posite coatings based on fluoroplast containing 0.01 and 0.1 wt % of Ag2O NPs reduced
the number of CFU by ~three orders of magnitude for all considered bacterial species. It
is noteworthy that the bacteriostatic effect depended to a greater extent on the species of
bacteria and not on Gram staining. However, similar data were also obtained by other
authors [102,103]. The results of the assessment of bacterial viability are shown in Figure 8.
We found that there are practically no dead bacterial cells on the surface of the control
sample and that the PTFE coating without NPs, the morphology is without disturbances
(Figure 8a,b). On a sample of the composite coating with the addition of 0.1% Ag2O NPs,
the bacterial cell morphology was preserved, but, at the same time, a significant increase in
the number of dead cells was observed (Figure 8c). A small number of living cells were
found in this sample, but their number relative to the dead is extremely small. In addition,
a significant violation of bacterial cell morphology and destruction of the biofilm were
found (Figure 8c).
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We have shown a significant bacteriostatic and bactericidal effect of the composite
coating against both Gram-negative and Gram-positive bacteria. To date, a large number of
studies have been accumulated, demonstrating not only the antibacterial (bacteriostatic
and bactericidal) but also the antimycotic effect of silver oxide nanoparticles, as well as
composite materials containing Ag2O NPs. At least five key mechanisms for the realization
of the antibacterial effect of silver nanooxide have been reported [104]: (1) the formation
of silver cations that have a destructive effect on the bacterial cell wall [105]; (2) bind-
ing to SH-groups of proteins, leading to the disruption of their functional activity [106];
(3) ROS-mediated toxicity [107]; (4) binding to the N7 atom of guanine in DNA, leading
to the disruption of the replication process and the suppression of cell division [52]; and
(5) photocatalytic activity of Ag2O-NPs, which enhances the photocatalytic properties of
the NPs of other metals and metal oxides [108]. Of particular interest is the use of Ag2O
NPs in combination with polymer matrices in the form of composite materials, which
makes it possible to improve both the antibacterial properties and the biocompatibility of
the material. Table 1 lists studies demonstrating the antibacterial activity of both Ag2O NPs
in pure form and as part of polymer–NP composite materials.

Notably, 0.1% by weight can be roughly considered as 10 µg/mL. In this case, the
antibacterial properties of the fluoroplast/NPs Ag2O 0.1% nanocomposite significantly
exceed the results of most studies (Table 2) [109–112].

Table 2. Literature data on the antibacterial activity of Ag2O NPs and nanocomposites based on
them.

№ Material Composition Size (nm); Shape of
ZnO-NPs Microorganism Concentration Effect Ref.

1 Ag2O-NPs ~170, nanospheres S. aureus 20–5000 µg/mL Bactericidal [109]

2 Ag2O-NPs 110–120, nanospheres

A. flavus,
A. niger,

B. subtilis,
C. albicans,

E. coli,
F. solani,

K. pneumonia,
M. racemosus,
P. aeruginosa,

S. aureus

28.125–112.5
µg/mL

Bacteriostatic
Fungistatic [110]

3 Ag2O-NPs 17.45

B. aerius,
B. circulans,

E. coli,
P. aeruginosa

5–7.5 µg/mL Bacteriostatic
Bactericidal [113]

4 Chitosan/Ag2O NPs
suspension 10–20, nanospheres E. coli,

S. aureus 2 µg/mL Bacteriostatic [114]

5
Polyethylene terephthalate

(PET)/Ag2O NPs
composite

50–500, rods,
nanospheres E. coli Bacteriostatic [115]

6
Ag2O NPs conjugated
with starch in different

proportions

30–110,
spherical, faceted

B. cereus,
E. coli,

L. onocytogenes,
P. vulgaris,
P. putida,

S. typhymurium,
S. aureus,

S. saprophyticus

100 µg/mL Bacteriostatic [111]
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Table 2. Cont.

№ Material Composition Size (nm); Shape of
ZnO-NPs Microorganism Concentration Effect Ref.

7 Ag2O NPs conjugated
with silk fibroin

15
Nanospheres

E. coli,
M. tuberculosis,

S. aureus
115.9 µg/mL Bacteriostatic [112]

8 Ag2O NPs mixed with
chitosan solution ~5

E. coli,
S. aureus,
B. subtilis,

P. aeruginosa

~5.8 mg/mL Bacteriostatic [116]

9

Polyethersulfone
(PES)/cellulose acetate

(CA)/Ag2O NPs
nanocomposite and

Cu·PES/CA/Ag2O NP
membranes

20–100 E. coli 8 mg/mL Bacteriostatic [117]

10 PLGA/Ag2O NPs
nanocomposite

35
Nanospheres E. coli 10 µg/mL Bacteriostatic [60]

11 Fluoroplast/Ag2O NPs
nanocomposite

45
nanospheres

L. monocytogenes,
S. aureus,

P. aeruginosa,
S. typhimurium

10 µg/mL Bacteriostatic
Bactericidal

Present
study

2.6. In Vitro Cytotoxic Study

We evaluated the acute cytotoxicity of the developed composite coating (Figure 9).
When cultivating mouse fibroblasts on a fluoroplast/Ag2O NP coating, they showed normal
morphology, high density, and, in some areas, almost complete confluence (Figure 9a).
Neither the PTFE coating nor the PTFE/NP Ag2O 0.1% composite had any effect on cell
viability (Figure 9b). The number of non-viable cells in all variants of the experiment did
not exceed 5%. Cultivation of fibroblasts on a PTFE substrate without Ag2O NPs did not
affect the culture density (Figure 9c). An almost twofold increase in cell culture density
from ~380 cells/mm2 to ~700 cells/mm2 was observed on the fluoroplastic/NP Ag2O
0.1% composite coating. Neither the PTFE nor the PTFE composite with cell/mm2 NPs
affected the nuclear area of cultured cells (Figure 9d). Consequently, the composite coating
based on fluoroplasts and Ag2O NPs had almost no effect on cell survival and nucleus size
and therefore did not exhibit cytotoxicity against mouse fibroblasts. We have discovered
an interesting fact in the increase in the density of a cell culture on a composite material
with Ag2O NPs. The ability of Ag NPs to accelerate cell proliferation is described in the
literature [118]. Probably, the increase in cell culture density on the fluoroplast/NP Ag2O
composite is due to the presence of NP Ag2O at a concentration higher than 2 µg/mL [118].

It should be noted that the data on the cytotoxicity of NPs Ag2O and their compos-
ites with polymers are rather contradictory. In a number of works, it was noted that the
introduction of nanoparticles into the culture medium reduced the viability of HepG2 [110]
and A549 [76] cells. One of the ways to reduce the cytotoxicity of Ag2O NPs is the use
of Ag2O-NPs in the composition of polymer matrices and conjugated with polymers (for
example, silk fibroin), which significantly reduced cytotoxicity against the 3T3 fibroblast
line [112] and the SH-SY5Y cell line [60]. Examples of the successful functionalization
of synthetic [115] and natural [112] fibers with NPs Ag2O, which have pronounced an-
tibacterial properties, are described, which can be useful in creating tissues and other
materials resistant to bacterial growth. Furthermore, the efficient construction of polyether-
sulfone/cellulose acetate/Ag2O-Cu NPs membranes, nanocomposite membranes with an-
tibiofilm activity and capable of removing nitrophenol from aqueous media was noted [115].
Thus, the use of composite materials based on polymers with the addition of NPs Ag2O is
of interest for the creation of new biosafe antibacterial materials.
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Figure 9. Influence of composite coating fluoroplast/Ag2O NPs on the growth of mouse fibroblasts 
in vitro after 72 h of cultivation. (a) An example of a photomicrograph of cells growing on the sur-
face of a composite coating of fluoroplast/NP Ag2O 0.1% (merge: blue-Hoechst, red-PI, transmitted 
light-gray). (b) proportion of non-viable cells. (c) Density of cell cultures. (d) Mean nuclear area. *: 
statistically significant difference compared to the “Control” group (p < 0.05). Data are presented as 
mean ± standard error of the mean. 
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For the synthesis of silver oxide nanoparticles, the method of laser ablation in de-
ionized water was used. A setup based on a P-Mark TT 100 ytterbium-doped pulsed fiber 
laser (Pokkels, Moscow Russia) was used. Laser radiation parameters: λ = 1064 nm, τ = 4–
200 ns; v = 20 kHz; average power up to 20 W; E = 1 mJ. The layer of liquid (0.05 M NaNO3 
aqueous solution) above the target (silver plate of high chemical purity) was about 1 mm. 
Irradiation time varied within 5–20 min. Using the Zetasizer Ultra Red Label (Malvern 
Panalytical Ltd., Malvern, UK), the hydrodynamic diameter (DLS) and zeta potential 
(ELS) of the obtained NPs were determined. The woofer diameter was confirmed using a 
CPS 24,000 (CPS Instruments, Prairieville, LA, USA). Morphological features (shape, to-
pology) of nanoparticles were assessed using a Libra 200 FE HR transmission electron 

Figure 9. Influence of composite coating fluoroplast/Ag2O NPs on the growth of mouse fibroblasts
in vitro after 72 h of cultivation. (a) An example of a photomicrograph of cells growing on the surface
of a composite coating of fluoroplast/NP Ag2O 0.1% (merge: blue-Hoechst, red-PI, transmitted
light-gray). (b) proportion of non-viable cells. (c) Density of cell cultures. (d) Mean nuclear area.
*: statistically significant difference compared to the “Control” group (p < 0.05). Data are presented as
mean ± standard error of the mean.

3. Materials and Methods
3.1. Synthesis and Characterization of Ag2O-NPs

For the synthesis of silver oxide nanoparticles, the method of laser ablation in deion-
ized water was used. A setup based on a P-Mark TT 100 ytterbium-doped pulsed fiber laser
(Pokkels, Moscow Russia) was used. Laser radiation parameters: λ = 1064 nm, τ = 4–200 ns;
v = 20 kHz; average power up to 20 W; E = 1 mJ. The layer of liquid (0.05 M NaNO3
aqueous solution) above the target (silver plate of high chemical purity) was about 1 mm.
Irradiation time varied within 5–20 min. Using the Zetasizer Ultra Red Label (Malvern
Panalytical Ltd., Malvern, UK), the hydrodynamic diameter (DLS) and zeta potential (ELS)
of the obtained NPs were determined. The woofer diameter was confirmed using a CPS
24,000 (CPS Instruments, Prairieville, LA, USA). Morphological features (shape, topology)
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of nanoparticles were assessed using a Libra 200 FE HR transmission electron microscope
(TEM) (Carl Zeiss, Jena, Germany), and the elemental composition of NPs was determined
using energy-dispersive X-ray spectrometry (EDS) using a JED-2300 system. (Carl Zeiss,
Jena, Germany). The composition of the obtained colloidal solutions of NPs was confirmed
using Cintra 4040 (GBC Scientific Equipment, Braeside, Australia). Samples were prepared
for TEM according to the protocol, according to which droplets of colloidal solutions of
Ag2O NPs were deposited on the surface of a gold mesh (Ø4), dried at room temperature,
and evacuated. The sample grid was placed in a titanium holder. More detailed details of
the methods are described in previous works [61–63].

3.2. Composite Material Preparation and Characterization

After the synthesis of nanoparticles, water was replaced with acetone by centrifugation.
The colloidal solution of nanoparticles was centrifuged in a Sigma 3-16KL centrifuge (Sigma
Laborzentrifugen GmbH, Osterode am Harz, Germany) with a 12,158 rotor for 40 min
at 7000× g.; the supernatant (water) was replaced with acetone. These manipulations
were carried out at least three times. The resulting colloidal solution was mixed with
fluoroplastic varnish (Plast Polymer-Prom, Saint-Petersburg, Russia) to a final concentration
of nanoparticles of 0.1, 0.01, and 0.001%. The varnish is a fluoroplastic dissolved in a mixture
of acetone, butyl acetate, cyclohexanone, and toluene in a ratio of 25:40:10:25 mass parts.
To assess the ability of the obtained composite coating to cover visible damage, the section
of the Teflon cutting board with damage as a result of the operation was treated with
a composite coating and dried for 24 h at room temperature. For experiments on the
evaluation of the generation of ROS, 8-oxoguanine, and long-lived active forms of proteins,
drops of a solution of nanoparticles in lacquer with a volume of 500 µL were applied
to round degreased glasses 25 mm in diameter. Before the start of the experiments, the
coatings were dried for 48 h in a fume hood. For cytotoxic and microbiological studies,
samples with a composite coating were preliminarily disinfected by soaking in 70% ethanol
for 2–3 h. For microbiological studies, varnish was applied to bulk samples of fluoroplasts
(4 × 4 × 6 mm). The surface of the composite coatings was evaluated by atomic force
microscopy (AFM) using NPX200 (Seiko Instruments, Tokyo, Japan). The distribution
of nanoparticles in the composite polymer–polymer NP coating was assessed using a
modulation interference microscope (MIM) using a MIM-321 (Amphora Lab, Moscow,
Russia) [64].

3.3. Quantification of ROS Concentration

The concentration of hydrogen peroxide formed in aqueous solutions was estimated
from the intensity of chemiluminescence of the luminol-p-iodophenol-horseradish perox-
idase system. Chemiluminescence was measured on a highly sensitive Biotoks-7A-UZE
chemiluminometer (Engineering Center-Ecology, Moscow, Russia). Samples of the studied
composite material were placed in polypropylene vials (Beckman, Brea, CA, USA) with
the addition of 1 mL of “counting solution” prepared immediately before measurement,
containing 1 mM Tris-HCl buffer pH 8.5, 50 µM p-iodophenol, 50 µM luminol, and nM
horseradish peroxidase 10. The sensitivity of this method is <1 nM. Samples of composite
materials containing various concentrations of NPs in the composition (0.001–0.1 wt %)
in the form of films 10 mm × 10 mm in size and 200 µm thick were placed in polypropy-
lene vials (Beckman, CA, USA). After incubation in 20 mL of water, 1 mL of a previously
prepared “counting solution” was added to the sample.

To quantify the content of hydroxyl radicals in aqueous solutions, the reaction with
coumarin-3-carboxylic acid (CCA) was used. A total of 0.2 M PBS (pH 7.4) was added
to a solution of CCA in water (0.5 mM, pH 3.6). Coating samples containing various
concentrations of NPs in the composition (0.001–0.1 wt %) were added to vials in the form
of films 10 × 10 mm in size and 200 µm thick. In the “Control” group, the experiment was
carried out without a sample. Next, polypropylene vials with samples and reagents were
heated in a thermostat at a temperature of 80.0 ± 0.1 ◦C for 2 h. As a result of the hydroxy-
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lation reaction, a fluorescent product, 7-hydroxycoumarin-3-carboxylic acid (7-OH-CCA),
is formed. 7-OH-CCA fluorescence was detected using a JASCO 8300 spectrofluorimeter
(JASCO, Tokyo, Japan) at λex = 400 nm, λem = 450 nm [63,65].

3.4. Measurement of the Concentration of the Formed Active Long-Lived Forms of Proteins

The number of long-lived reactive proteins (LRPS) was estimated from the chemilumi-
nescence of protein solutions after heating to 40 ◦C for 2 h. All samples were stored in the
dark at room temperature for 30 min after exposure. The measurements were carried out in
20 mL polypropylene vials (Beckman, Brea, CA, USA) in the dark at room temperature on
a highly sensitive Biotox-7A chemiluminometer (Engineering Center—Ecology, Moscow,
Russia). Protein solutions (BSA) not subjected to heating were used as controls [66].

3.5. Quantitative Determination of 8-Oxoguanine in DNA In Vitro by ELISA Method

To quantify 8-oxoguanine in DNA, a non-competitive enzyme-linked immunosorbent
assay (ELISA) was used, using monoclonal antibodies specific for 8-oxoguanine (anti-8-
OG antibodies). DNA samples (350 µg/mL) were denatured by boiling in a water bath
for 5 min and cooled on ice for 3–4 min. Aliquots (42 µL) were applied to the bottom
of the wells of the ELISA plates. The DNA was immobilized using a simple adsorption
procedure with incubation for 3 h at 80 ◦C until the solution became completely dry. Non-
specific adsorption sites were blocked with 300 µL of a solution containing 1% skimmed
milk powder in 0.15 M Tris-HCl buffer, pH 8.7 and 0.15 M NaCl. Next, the plates were
incubated at room temperature overnight (14–18 h). The formation of an antigen–antibody
complex with antibodies against anti-8-OG (at a dilution of 1:2000) was carried out in a
blocking solution (100 µL/well) by incubation for 3 h at 37 ◦C. Then, it was washed twice
(300 µL/well) with 50 mM Tris-HCl buffer (pH 8.7) and 0.15 M NaCl with 0.1% Triton X-100
after 20 min incubation. Next, a complex with a conjugate (anti-mouse immunoglobulin
labeled with horseradish peroxidase (1:1000) was formed by incubation for 1.5 h at 37 ◦C in
a blocking solution (80 µL/well). Then the wells were washed 3 times as described above.
Next, a chromogenic substrate containing 18.2 mM ABTS and hydrogen peroxide (2.6 mM)
in 75 mM citrate buffer, pH 4.2 (100 µL/well), was added to each well. Reactions were
stopped by adding an equal volume of 1.5 mM NaN3 in 0.1 M citrate buffer (pH 4.3) upon
reaching the color. The optical density of the samples was measured on a plate photometer
Titertek Multiscan, (Titretek, Helsinki, Finland) at λ = 405 nm [67].

3.6. Evaluation of Antibacterial Activity and Antibiofilm Activity of Samples

The antibacterial properties of PTFE/Ag2O-NPs coatings containing various concentra-
tions of Ag2O-NPs were tested against two Gram-positive L. monocytogenes (azithromycin-,
erythromycin-, and sulfamethoxazole-resistant), S. aureus and two Gram-negative bacterial
species, P. aeruginosa, S. enterica serotype Typhimurium (azithromycin-resistant). Bacterial
cultures were obtained from the working collection of the Laboratory of Microbiology
of the Research Institute of Food Systems named after V.I. Gorbatov. These strains have
previously been isolated from samples of meat products and from work surfaces at meat
processing plants. There strains have high epidemiological significance [68–71]. Luria–
Bertani (LB) medium (BD Difco, Franklin Lakes, NJ, USA) and tryptone soy broth (TSB)
(Panreac AppliChem, Barcelona, Spain) were used as culture media. As test surfaces for
cultivating bacterial cells, we used Teflon cubes with sides of 4 mm × 4 mm × 6 mm, coated
with a composite material with different concentrations of Ag2O NPs (0.001–0.1%) in the
composition, as well as uncoated and with a fluoroplastic coating not containing Ag2O NPs.
For the study, daily broth cultures of the studied microorganisms with initial concentration
109 CFU/mL were diluted 100 times to a final concentration of 107 CFU/mL in sterile
LB broth and poured into sterile test tubes (V = 2 mL). Next, pre-sterilized Teflon cubes
(one sample each) were added to each tube and incubated for 6 and 18 h in a thermostat
at 37 ◦C. After incubation, the cubes were washed once with distilled water (to remove
planktonic cells), transferred into test tubes with sterile saline (0.9% NaCl solution), and
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vigorously shaken for 15 min at least 3 times. Further, the obtained washings were titrated
(ten-fold dilutions were carried out), transferred to Petri dishes with a = LB agar, and evenly
distributed over the surface with a sterile spatula. The results were recorded by counting
the number of colony-forming units (CFU) 24 h after incubation at 37 ◦C.

To study the antibiofilm activity of fluoroplast/Ag2O-NP coatings, a broth culture
of bacterial cells (V = 30 µL) was applied to the surface of Teflon cubes and left to dry at
room temperature for 30 min. Next, to visualize live and dead cells, the samples were
stained with a set of fluorescent dyes Filmtracer Live/Dead Biofilm Viability Kit (Invitrogen,
Waltham, MA, USA) and analyzed under a microscope with appropriate filters. The kit
used contains SYTO®9 fluorescent dyes and propidium iodide (PI). Both of them stain
the DNA of microorganisms; however, SYTO®9 can quickly penetrate the membrane of
living bacteria, while propidium iodide (PI) has more difficulty penetrating the walls of
living bacteria. After 20 min of staining, living cells are stained green, and dead cells
are stained red. Microscopy was performed using the Eclipse Ni (Nikon, Tokyo, Japan)
imaging system.

3.7. Isolation and Cultivation of Fibroblasts from Mouse Lungs

All manipulations with animal tissues and cells were performed in clean rooms using
a Laminar-S class II biological safety cabinet (Lamsystems, Miass, Russia). Primary cell
cultures of isolated mouse lung fibroblasts were obtained according to the standard protocol
with minor modifications. Male BALC/b 2–3-month-old mice were used in a cytotoxicity
assay. Euthanasia of mice was performed by displacing the cervical vertebrae. Using
surgical scissors, the lungs were removed from the animal’s thorax. The lungs were placed
in a sterile Ø60 Petri dish (TPP, Trasadingen, Switzerland) containing a small volume of
PBS solution. The organs were chopped with sterile scissors into pieces with a volume
of ~1 mm3. Pieces of lung tissue were incubated for 1 h in 25 mL of DMEM medium
containing 0.2% type II collagenase at 37 ◦C on an MR-1 rocking shaker (Biosan, Riga,
Latvia). Collagenase was inhibited by 20% FBS. Tissue pieces incubated in collagenase
solution were resuspended by pipetting and then passed through a 70 µm EASTstrainer™
sieve (Greiner bio-one, Kremsmunster, Austria). Cells were washed by centrifugation twice
at 350× g for 5 min in DMEM. The isolated cells were further cultivated in TC T-25 culture
mats (TPP, Trasadingen, Switzerland) in DMEM/F12 medium supplemented with 10% FBS,
2 mM L-glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin obtained from PanEco
(PanEco, Moscow, Russia). Upon reaching 80–90% confluence, the cells were attached with
0.05% trypsin-EDTA solution (PanEco, Moscow, Russia) for 5 min at 37 ◦C. Trypsin was
inactivated with 10% FBS. Cells were passaged at least 3 times before starting cytotoxic
studies [72].

3.8. In Vitro Cytotoxic Studies Using Mouse Lung Fibroblast Cultures

Round glasses for microscopy Ø25 Menzel Glaser (Thermo Fisher Scientific, Waltham,
MA, USA) coated with PTFE/Ag2O-NPs and without (control group) composite coating
(V = 500 µL) were sterilized in 70% ethanol for 2–3 h and then placed in the wells of a
6-well plate (TPP, Trasadingen, Switzerland). A cell suspension (50 µL) was applied to each
coating sample, then incubated for 45 min for cell adhesion, after which it was brought to a
final volume of 1 mL with warm nutrient medium. The total time from the moment the cells
were planted on the surface to microscopic measurements was at least 72 h. Cultivation
was carried out in an S-Bt Smart Biotherm CO2 incubator (Biosan, Riga, Latvia) at 37 ◦C
and 5% CO2. The medium for cell culture was DMEM/F12 medium with additives, the
preparation of which was described in detail earlier. The initial number of cells in the
suspension placed on the surface of the material was ~50,000 cells per sample. Cytotoxicity
was assessed using Hoechst 33342 dyes and propidium iodide (PI) (Thermo Fisher Scientific,
Waltham, MA, USA). Immediately after incubation, a sample of the composite coating
with cultured cells was placed in a quick-change imaging chamber (RC-40LP, Warner
Instruments, Holliston, MA, USA), washed thoroughly with PBS, stained with Hoechst
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33342 at a concentration of 5 µg/mL, and incubated for 30 min at 37 ◦C. The sample was then
washed with PBS and stained with 2 µM PI (Thermo Fisher, Waltham, MA, USA) for 1 min.
Samples were analyzed using a DMI4000 B fluorescence microscope (Leica Microsystems,
Wetzlar, Germany) equipped with an SDU-285 digital camera (SpetsTeleTekhnika, Moscow,
Russia). Fluorescence spectra were recorded at excitation/emission wavelengths: 350/470
for Hoechst 33342 (D-filter, Leica Microsystems, Wetzlar, Germany) and 540/590 for PI
(TRITC filter cube, Leica Microsystems, Wetzlar, Germany). Light-emitting diodes (LED)
M375D2m, M490D3 (Thorlabs, Newton, NJ, USA) and white LED (Cree Inc., Durham, NC,
USA) were used as light sources for the excitation of Hoechst 33342 and fluorescence of
PI. All images were taken at the following LED currents: 100 mA for the M375D2m LED
(Hoechst 33342) and 250 mA for the white LED (PI). The exposure time in all experiments
was the same: 500 ms for Hoechst 33342 and 700 ms for PI. The detector gain was ×423
and was the same for all fluorophores and experimental conditions [73,74].

Data acquisition and microscope adjustment control were performed using the Win-
FluorXE software version 3.8.7. 8-12-16 (J. Dempster, Strathclyde Electrophysiology Soft-
ware, University of Strathclyde, Glasgow, UK). The data was collected as 12-bit grayscale
images. Subsequent analysis was performed using ImageJ2 (Fiji) software version 2.3.1
(NIH, Bethesda, MD, USA). For each variant of the experiment, at least five samples were
analyzed. At least 200 cells were analyzed in each sample. ROIs were determined us-
ing ImageJ’s “Threshold” and “Particle Analysis” automated procedures. For an image
of 1392 × 1024 pixels obtained at a value of ×20, the following parameters were used:
“size” = 100–750 and “circularity” = 0.10–1.00. The nuclei had different fluorescence inten-
sities from Hoechst 33342 and PI. To ensure that all nuclei are included in the analysis, we
performed a series of thresholding and particle analysis procedures for each image. The
images were converted to 8-bit prior to determining the ROI. Threshold levels ranged from
5 to 255 a.u. with a step of 5 c.u. ROIs were saved as binary masks, and then all were
combined, with the removal of duplicates. All procedures were combined in automated
macros.

4. Conclusions

We have successfully developed a new composite coating based on fluoroplasts and
silver oxide NPs. The developed coating effectively covers visible damage on the sur-
face of Teflon, which was in operation. At the micro- and nanolevels, the surface of the
composite is smooth, without cracks and defects. The resulting material enhances the
generation of ROS (hydrogen peroxide and hydroxyl radical), as well as 8-oxoguanine
and LRPS. The intensity of the effect depends on the concentration of added Ag2O NPs.
The resulting fluoroplast/Ag2O NP composite demonstrates a strong bacteriostatic and
bactericidal effect. Fluoroplast/NP Ag2O 0.01–0.1% inhibits the growth of both Gram-
positive and Gram-negative bacteria. At the same time, the developed composite did not
show cytotoxicity against the primary culture of mouse fibroblasts. The nanocomposite
material fluoroplast/NP Ag2O can be used to create protective coatings with antimicrobial
properties for cutting boards at meat processing plants.
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