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Abstract: 3‑hydroxybutyrate (3OHB) has been proved to act as a neuroprotective molecule in multi‑
ple neurodegenerative diseases. Here, we employed a quantitative proteomics approach to assess the
changes of the global protein expression pattern of neural cells upon 3OHB administration. In com‑
bination with a disease‑related, protein‑protein interaction network we pinpointed a hub marker,
histone lysine 27 trimethylation, which is one of the key epigenetic markers in multiple neurode‑
generative diseases. Integrative analysis of transcriptomic and epigenomic datasets highlighted the
involvement of bivalent transcription factors in 3OHB‑mediated disease protection and its alteration
of neuronal development processes. Transcriptomic profiling revealed that 3OHB impaired the fate
decision process of neural precursor cells by repressing differentiation and promoting proliferation.
Our study provides a new mechanism of 3OHB’s neuroprotective effect, in which chromatin biva‑
lency is sensitive to 3OHB alteration and drives its neuroprotective function both in neurodegenera‑
tive diseases and in neural development processes.

Keywords: 3‑hydroxybutyrate; proteomics; transcriptomics; chromatin bivalency; neuroprotection

1. Introduction
The ketone body 3‑hydroxybutyrate (3OHB) can be metabolized to fulfill the major

portion of the brain’s alternative energy source under certain conditions [1]. It has been
demonstrated that 3OHB can exert significant beneficial effects against extracellular stress
and enhance the synaptic plasticity of neurons [2]. The normal adult brain depends on
the continuous supply of glucose from blood flow rather than exogenous fatty or amino
acids to carry out appropriate functions, especially for neurons [3]. The largest part of the
3OHB utilized by the brain is supplied by the liver via the blood stream, mostly during
physiological fasting and vigorous exercise [4]. It has also been observed that the external
administration of 3OHB or a ketogenic diet can be beneficial for the treatment of certain
neurodegenerative diseases, suggesting that ketone bodies might have clinical therapeutic
potential for control the progression of Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) [5–7]. In particular, ke‑
tone bodies have been indicated to reduce amyloid neurotoxicity and related pathologies,
improving synaptic plasticity and cognitive performance in an AD model [8]. Preclinical
research has also discovered that the incorporation of 3OHBwas able to increase longevity,
reduce motor debility, and inhibit striatal histone deacetylation in transgenic HD model
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R6/2 mice [9]. Additionally, ketogenic diets were able to alter the development of the clin‑
ical and biological character of the G93A SOD1 transgenic ALS mouse model [10].

We first applied a single‑variant proteomics study on normal mouse neurons. We
then conducted a study of widespread changes in several molecular layers in a progressive
manner and revealed the dynamic regulation processes of information flow by assessing
proteomic changes integrated with changes of the epigenome and transcriptome. Com‑
mon dysregulation of neurological disorders with a connection to 3OHB was elucidated
by leveraging networks of differentially co‑expressed gene pairs and physical protein inter‑
actions, which revealed several interesting hub markers: H3K27me3, DNMT1, DNMT3A,
H2AK118bhb1, and H2AK119ub1. Lastly, we analyzed the truncated sub‑networks of
epigenetic regulators and attempted to pinpoint and validate the correlations of this sub‑
network with recent evidence on changes of gene expression patterns upon 3OHB admin‑
istration (Figure 1A).
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Figure 1. Proteomics Workflow and GSEA Analysis. (A) HT22 cells were treated with 0.2 mM of
β‑hydroxybutyrate (3OHB) and a mock solution, respectively. Cells were then processed for MS‑
based dimethyl‑labeling quantitative proteomics analysis. (B) GSEA was applied to extract an en‑
riched gene ontology map from the proteomics data. As indicated by the pink tag, pathways related
to protein acetylation, neurodegenerative disease, ALS and cognition were especially highlighted,
which was in good agreement with previous studies. At the same time, biological processes related
to protein methylation also showed sensitive responses to 3OHB administration in normal neurons.
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Red dot represents up‑regulated processes and pathways, blue dot represents down‑regulated pro‑
cesses and pathways, the green line indicates shared proteins between connected processes and path‑
ways, where thickness is proportional to the number of shared proteins.

Our findings provide compelling evidence that the histone‑methylation epigenomic
network may indeed play an important role in 3OHB administration and further mediate
its neuroprotective effects.

2. Results
2.1. Proteomics Assessment of the Effects of 3OHB Treatment in Neuronal Cells

Considering the fact that there are varying amounts of endogenous 3OHB and other
fatty acids in different animal tissues, or even different regions of the tissues, it iswarranted
to study normal neurons rather than the entire brain or separate tissues in order to evalu‑
ate the proteomic response to 3OHB. The 3OHB source was limited at a basal level from
serum in the culture medium during HT22 cell culturing for proteomics sample prepara‑
tion. Considering that the peak concentration after prolonged fasting or during a ketogenic
diet may only reach 3 to 4 mM, and the fact that 3OHB barely directly penetrates the BBB
(brain‑blood‑barrier), we assumed a 3OHB concentration in the hippocampal extracellular
fluid of 0.2 mM for the proteomic study [11,12]. This way, wewere able to assess the physi‑
ologically relevant response of neurons to 3OHB treatment rather than responses that only
occur at high concentrations that are unrealistic in vivo.

We then used tandem mass spectrometry LC‑MS/MS to systematically quantitate the
protein expression profiles which ultimately determine the cellular phenotypes [13]. To
facilitate the comparison of proteome‑wide 3OHB effects without interference from other
metabolites, all experiments were conducted using the same HT22 cell line, grown un‑
der the same culture conditions, with each set of MS sample preparation being performed
in biological quadruplicate. In total, 40,358 peptides were identified, corresponding to
5454 proteins identified with two or more peptides per protein (submitted to ProteomeX‑
change via PRIDE; accession code: PXD008053). The data were further filtered to include
only those proteins detected and quantified in at least three out of four replicates. This
produced a high‑quality dataset comprising 3748 proteins, which were further used to
evaluate changes of their abundance for downstream analysis (Supplementary Table S1).

2.2. Unbiased Gene Set Enrichment Analysis Identified Pathways That Were Highly Enriched
amongst Proteins Altered in Abundance after 3OHB Treatment

To elucidate the entire pattern of proteome alteration in HT22 cells upon 3OHB treat‑
ment, we used an alternative approach, named unbiased gene set enrichment analysis [14].
All of the identified and quantified proteins were considered as contributors to specific bi‑
ological processes and pathways without setting a specific cutoff for significant changes.
As shown in Figure 1B, several key biological processes and pathways were relatively en‑
riched among all proteome perturbation patterns. The upregulation of protein acetylation
was in agreementwith previous research on theHDAC inhibitory function of 3OHB [15,16].
The proteins in this pathway,which includesmostly histone acetylation enzymes and those
connected to cellularmetabolism and cell growth, were also upregulated upon 3OHB treat‑
ment, which was expected and has been reported before [2,17]. Interestingly, pathways
related to ALS were also highlighted in this analysis, which directly correlated with pre‑
vious research [10]. Particularly, processes related to protein methylation formed a spe‑
cial cluster in this analysis. Interestingly, it has recently been reported that the lysine 4
trimethylation level of histone 3 was altered by a ketogenic diet in a transgenic model of
Kabuki syndrome [18]. However, there are few other studies on the direct correlation of
3OHB and histone methylation.
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2.3. An Analysis of the Disease‑Related Protein‑Protein Interaction Network Indicated That
H3K27me3 Is a Hub Marker of the Neuronal Response to 3OHB

Considering the fact that 3OHB has the potential to protect neurons from neurode‑
generative diseases, we included data from reference transcriptomes to identify genes that
respond to 3OHB at both the RNA and protein levels (Figure 2A, left). The protein inter‑
action and gene annotation information was obtained by loading these seed genes into the
STRING database. As shown in Figure 2A, right, 3 typical pre‑disease processes were also
indicated in the network by yellow nodes. Using the data combination as described above,
we examined our data for disease‑related proteins whose expression was altered during
3OHB administration. After searching the available disease databases, we compiled a list
of overlapping targets between our proteomics dataset and the epilepsy, AD, PD,HD,ASD
and ALS databases (see Methods, Supplementary Table S2).
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Figure 2. Integrative analysis of the proteomics dataset pinpointed H3K27me3 and H3K4me3 as
hubs. (A) Proteomics data from our study and transcriptomic data from references overlapped. Left,
genes that showed a consistent increase or decrease in both RNA and protein levels are highlighted
by red and blue columns, respectively; right, the network that was generated using the STRING
database by loading consistently changed genes as seeds which constitute nodes of a protein inter‑
action network. Among them, yellow nodes represent genes related to neurodegenerative disease
like AD, PD and HD. (B) Up, the protein‑protein interaction model used to identify hub proteins.
Down, the protein‑protein interaction network, was seeded with AD, PD, HD, Epilepsy, ASD, and
ALS candidate proteins identified in our dataset (Supplementary Table S2); highlighted by red nodes.
Blue nodes indicate intermediate protein‑protein interactions between seed genes. Green nodes
represent proteins connected to the top hub protein of high degree and/or betweenness centrality.
(C) Western blot analysis (n = 3), left, revealed that 3OHB induced a significant reduction of
H3K27me3 levels in the HT22 cells upon long‑term treatment (at 12 h (p < 0.01) and 24 h (p < 0.001));
right, the levels of H3K4me3 in the HT22 cells were increased after 12 h of treatment (p < 0.01).
(D) Western blot analysis (n = 6), left, revealed that fasting induced a similar pattern of H3K27me3
level reduction in the brains of C67 mice at 24 h (p < 0.001) comparable to that of HT22 cells; right,
H3K4me3 levels showed an earlier response at 6 h of fasting (p < 0.01) than what was observed upon
3OHB treatment in HT22 cells. Data are mean± SEM n = 3 (C); Data are mean± SEM n = 6 mice per
group (D), one‑way ANOVA, Tukey’s test, ** means p < 0.01 while *** means p < 0.001 (C,D).

To explore this further, we examined the protein interaction networks and signaling
pathways. We hypothesized that if disease‑related alterations of protein abundance were
able to cause vulnerability of neurons, 3OHB administration might be able to induce alter‑
ations of several key hubs which are correlated with disease‑associated proteins. It was
also expected that these hub proteins play critical roles in the pathogenesis of neurodegen‑
erative diseases, and, thus, might mediate the multiple protective functions of 3OHB.

Based on these hypotheses and previous knowledge, we generated a custom database
encompassing all six neuronal disorders as the background dataset, and the network of po‑
tential protein‑protein interactions (PPIs) among proteins related to the six disorders, as
quantified based on our MS dataset. To do this, we first generated a PPI subnetwork for
each disorder bymapping its related proteins (78 inAD, 118 in PD, 46 inHD, 39 inALS, 124
in ASD and 60 in Epilepsy) with reference PPI networks as described in the methods part.
Sub‑networks were then built by increasing the number of neighbors to the seed proteins
up to two nodes to ascertain intimate protein interactions. Additional statistical analysis
was performed to search for the top‑ranked nodes which connected the largest number of
other nodes. In this way, we were able to identify the intermediate hub proteins relevant
to specific disorders. In our case, we reconstructed the PPI network by combining all six
sub‑networks and mapping to the reference network to identify candidates for common
hubs (Figure 2B). After applying statistical degree analysis, we were able to identify sev‑
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eral candidate hubs including EED, UBC, and KDM5A, which showed the highest degree
statistics in the combined network. To verify that these common hubswere indeed specific
for their respective neuronal disorders, we randomly chose 80 neuronal protein IDs from
the Uniprot protein database forMus musculus and created a PPI network using the same
parameters and reference network. It was confirmed that EEDwas not indicated as the top‑
ranking hub protein in this random network. Thus, we concluded that changes in the hub
proteins we identified here were indeed highly correlated with the six neurodegenerative
diseases, as well as with 3OHB administration.

Our collective observations highlighted EED, one of the components of the Polycomb
repressive complex 2 (PRC2) responsible for recognizing repressive trimethyllysine marks.
We next tested the trimethylated lysine 27 of histone H3 using western blot analysis. As
expected, the level of H3K27 trimethylation decreased along with the 3OHB treatment
time, especially after 12 and 24 h of incubation, where it showed a dramatic drop upon
treatment with 0.2 mM 3OHB (Figure 2C, left).

At the same time, recent studies have shown that H3K4me3 also responds to 3OHB
fluctuations and can rescue hippocampal memory defects in a mouse model of Kabuki
syndrome [18]. In order to verify whether H3K4me3 could be altered in normal neurons,
we next applied western blot analysis to detect the global alteration state of H3K4me3 in
the cultured HT22 cells. Cell culture and treatment with 0.2 mM 3OHBwas performed the
same as described above. As shown in Figure 2C, H3K4me3 levels were clearly elevated
in the HT22 cells upon 12 h of incubation with 0.2 mM 3OHB. In order to confirm this phe‑
nomenon in an animal model, we further analyzed both histone marks in fasted C57 mice.
H3K27me3 was dramatically reduced in C57 mice after 24 h and H3K4me3 was elevated
after 6 h of fasting (Figure 2D). This remarkable change in the entire brain tissue after fast‑
ing inspired us to further investigate the bivalent chromatin status of the central nervous
system. Accordingly, the results demonstrated that both H3K27me3 and H3K4me3 are
sensitive to 3OHB elevation both in cultured cells and in the brains of fasted mice.

2.4. The Correlation between Chromatin Bivalency and the Influence of 3OHB on Gene
Expression Highlighted the 3OHB‑Responsive Transcriptional Regulatory Network as an
Intermediary between Disease‑Related Genes and 3OHB

According to the western blot results, H3K4me3 and H3K27me3 were both sensitive
to 3OHB, andmay have altered the gene expression pattern in normal neurons upon 3OHB
incubation. Thus, weusedChip‑Seq andRNA‑Seqdata fromprevious research to decipher
the correlation between chromatin bivalency and the 3OHB‑perturbed gene expression pat‑
tern. The Chip‑Seq (FPKM> 1.2) and RNA‑Seq (p < 0.05) datawere obtained from the study
by [19] andGEO:GSE7323, respectively. Theywere first loaded intoDAVID to collect anno‑
tation clustering information. Biological processes associated with H3K27me3‑H3K4me3
bivalent chromatin and processes influenced by ketone bodies (1mM 3OHB and 1mMace‑
toacetate, 1 h) in neuronswere overplayed to extract possible correlations in functional clus‑
tering. As shown in Figure 3A, the biological process groups shared between two different
datasets were indicated with different colors after enrichment analysis. Obviously, gene
transcription regulation processes were especially highlighted, and neuronal projection
and differentiation processes were also relatively enriched. Additionally, according to the
correlation analysis between our proteomics data and RNA‑seq data from the references,
metabolic genes related to neurodegenerative diseases were highlighted as exhibiting con‑
stant up‑ or downregulation both at the RNA and protein levels. Among them, the DNA
methyltranferase DNMT3a and the H2B monoubiquitination regulator RNF20 were re‑
ported to directly participate in themaintenance of chromatin bivalency [20,21]. To further
investigate the relevance of chromatin bivalency and the neuroprotective function of 3OHB,
we constructed a network containing protein‑protein and protein‑DNA interactions using
the Bisogenet plugin in Cytoscape. Seed proteins are indicated by red nodes and the inter‑
acting proteins or genes are labeled with blue nodes (Figure 3B). The truncated network is
regulated by several key transcription factors (TFs), includingNotch1, Gata4, Kit, Wt1, and
Fox family proteins. We proposed that those transcription factors may be involved in the
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regulationmechanisms of genes related to neurodegenerative diseases thatwere altered by
3OHB. Thus, information on protein interactions between those two groups of genes was
further extracted from the STRING database. As shown in Figure 3C, the disease‑related
genes formed a circular network that was connected with several key TFs. Particularly,
seven TFs among them have been reported to form auto‑ or co‑regulatory networks when
the H3K27me3 state is changed [19]. This autoregulatory network co‑occurred with net‑
works of disease‑related genes in a loop‑like topology.
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Figure 3. The correlation between chromatin bivalency and 3OHB‑perturbed gene expression
patterns highlighted that the 3OHB‑sensitive transcriptional regulatory network is a promoter
of the interaction between disease‑related genes and 3OHB. (A) Biological processes associated
with H3K27me3‑H3K4me3 chromatin bivalency and processes perturbed by ketone bodies (1 mM
3OHB and 1 mM acetoacetate, 1 h) in neurons were extracted and overplayed to reveal possible
correlations between chromatin bivalency and 3OHB. (B) Up, the overlapping genes were further
subjected to gene ontology analysis; down, the protein‑protein interaction network was seeded with
the overlapping genes. Red nodes indicate seed genes and blue nodes represent intermediate protein
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‑protein interactions between seed genes. (C) A network was generated using the STRING database
by loading the overlapping genes as seeds which constitute nodes of a protein interaction network.
Among them, yellow nodes represent genes related to neurodegenerative disease like AD, PD and
HD. Autoregulatory transcription factors were highlighted with purple circles.

2.5. OHB Perturbed Chromatin Bivalency and Resulted in the Alteration of Neural
Differentiation Processes

Another part of the genes exhibiting bivalent chromatin that were perturbed by 3OHB
are involved in neuronal development. This phenomenon opens up the possibility of a
novel and attractive application of 3OHB, in which it may be used to manipulate neu‑
ral development processes. We consequently used transcriptomic profiling to evaluate
whether the addition of low concentrations of 3OHB during NSC differentiation would be
sufficient to affect neurodevelopmental processes. As described in the methods section,
0.02 mM 3OHB was added into the differentiation medium, and neuronal differentiation
was induced for five days. Immunocytochemistry staining was used to detect and validate
the alteration of theNSCs differentiation status. After five days of culture in differentiation
medium, a part of the NSCs had differentiated intoMAP2+ neurons. As expected, an alter‑
ation of the MAP2+ neuron population was observed upon 3OHB addition (Figure 4B up).
The transcriptomes of differentiated cells fromdifferent groupswere analyzed byRNA‑seq
(Figure 4A,B down). After global analysis of all differentially expressed genes and gene‑
set enrichment analysis, cellular metabolic processes were found to be increased by 3OHB,
as expected. However, biological processes related to neural differentiation were signifi‑
cantly inhibited (p < 0.001), while cell‑cycle‑related processes were significantly promoted
by 3OHB (p< 0.001) (Figure 4C). This result was in good agreement with the predictions
from integrative analysis of the perturbation of chromatin bivalency. More importantly,
3OHB‑mediated perturbation of NSC fate has to our best knowledge never been reported
before, and this finding may be of great importance for investigations on how neuronal
fate is manipulated by endogenous metabolites. This analysis thus demonstrates that the
transcriptomic profile of differentiating neural stem cells was significantly altered by low
concentrations of 3OHB.
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Figure 4. BHB perturbed chromatin bivalency and resulted in the alteration of neural differen‑
tiation processes. (A) Workflow of neural precursor cell isolation and 3OHB treatment for tran‑
scriptome analysis. (B) Up, immunocytochemical staining used to validate the alteration of the
differentiation status of NSCs in the presence of 0.02, 0.2 and 2 mM 3OHB; down, volcano plot of
the transcriptomic dataset showing changes of gene expression upon BHB administration (5 days;
n = 3 biological replicates) (p < 0.05; log2(fold change) > 0.25 or <−0.25. (C) GSEAextraction‑enriched
gene ontology map derived from the transcriptomic data. Red nodes indicate signaling pathways
upregulated by 3OHB while blue nodes represent signaling pathways downregulated by it in NSCs.
The cellular metabolic processes indicated by circles were increased by 3OHB treatment; biological
processes related to neural differentiation were significantly inhibited (p < 0.001) while processes
related to the cell cycle were significantly promoted by 3OHB (p < 0.001).

2.6. Identification and Validation of Abundant Histone Lysine Hydroxybutyrylation (Kbhb) Sites
To extend this finding further and determine how 3OHB affects neuronal functions

through epigenetic regulation, we re‑evaluated theMS dataset using theMascot search en‑
gine and identified several abundant epigenetic marks including H2AK118bhb and
H3BK34bhb. Thus far, two of the most abundant histone lysine β‑hydroxybutyrylation
(Kbhb) sites have been confirmed to be tightly correlated with the administration of 3OHB
and may be involved in the pathogenesis of neurodegenerative diseases. Interestingly,
the two Kbhb sites H2AK118bhb and H3BK34bhb are also the most well‑defined histone
modifications and are required for other modifications including H3K4 andH3K79methy‑
lation (requires H2BK34ub1) and H3K27 trimethylation (requires H2AK119ub1). Accord‑
ingly, we reasoned that these twomonoubiquitination sites, which also may potentially be
occupied by hydroxybutyrylation signals, may dramatically affect the H3K4, H3K27 and
H3K79 methylation levels. This theory perfectly matched our previous proteomic assess‑
ment of the critical role ofH3K27me3 andH3K4me3 in the cellular response to 3OHB.More
importantly, the fluctuations of the H3K4me3 level due to 3OHB administration were also
indicated in a mouse model of Kabuki syndrome [18]. To gain insights into whether his‑
tone lysine hydroxybutyrylation responds to the addition of 3OHB or prolonged fasting,
and how it can further cause alterations in the levels of histone lysine monoubiquitination,
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we performed immunoblot analysis to determine the global levels of H2AK118bhb and
H2AK119ub1 both inHT22 cells and in brain samples. As shown in Figure 5, H2AK118bhb
was dramatically elevated upon 3OHB treatment in normal neurons, while H2AK119ub1
was dramatically decreased under the same conditions, and a similar patternwas observed
in brain samples from fasted C57mice. H2AK118 andH2AK119 are vicinal lysine residues
and have been considered as one of the most important monoubiquitination sites associ‑
ated with transcriptionally silent facultative heterochromatin [22,23]. We reasoned that
H2AK118bhb was able to directly occupy the monoubiquitination sites or sterically hinder
the monoubiquitination reaction on H2AK119. Although histone lysine hydroxybutyryla‑
tion has been identified on multiple sites, and our proteomics data were not able to cover
all of those sites, H2AK118bhb1 andH2BK34bhb1 can nevertheless be considered as highly
abundant lysine hydroxybutyrylation sites on histones, and consequentlymay be involved
in critical biological functions related to the histone methylation profile.
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Figure 5. Identification and validation of abundant histone lysine hydroxybutyrylation (Kbhb)
sites. (A) Western blot analysis (n = 3), left, revealed that 3OHB induced a significant increase
of H2AK118bhb levels in the HT22 cells (at 6 h (p < 0.001), 12 h (p < 0.01) and 24 h (p < 0.01);
right, H2AK119ub levels in the HT22 cells were significantly reduced after 3OHB treatment
(p < 0.001). (B)Western blot analysis (n = 6), left, showing that fasting induced a significant increase of
H2AK118bhb levels in C67mice at 6 h of fasting (p < 0.01); right, H2AK119ub levels showed a similar
pattern of significant reduction as observed in the HT22 cells (p < 0.001). Data are mean ± SEM n = 3
(A), Data are mean ± SEM n = 6 mice per group (B), one‑way ANOVA, Tukey’s test, * means p < 0.05,
** means p < 0.01 while *** means p < 0.001 (A,B).
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3. Discussion
Ketogenic diets have been applied control the progression of several neuronal disease

conditions, including epilepsy, autism, and neurodegenerative diseases [24,25]. Along
with successful clinical trials, ketogenic diets have been demonstrated to have neuropro‑
tective effects and possible applications in other neuronal diseases including AD, PD, ALS,
and their detailed mechanism of action has also been investigated for decades [15].

Asmentioned above, biological processes related to neurodegenerative diseases were
enriched and highlighted in our proteomics study, which was also in agreement with pre‑
vious research performed on neuronal cells and experimental animals [2,5]. Reactive oxy‑
gen species and oxidative damage have been considered to be major contributors to the
pathogenesis of neurodegenerative diseases [26]. However, the specific relationships be‑
tween 3OHB, HDACi and neuroprotection have not been fully elucidated or understood
at the systems level. Therefore, we used known protein networks related to neurodegen‑
erative diseases as a matrix integrated with our proteomics dataset to further investigate
the protein‑protein interaction networks perturbed by 3OHB in normal neurons. PPIs per‑
turbed by 3OHBwere generated to search for the perturbed hub proteins that were shared
by all six neurodegenerative diseases. H3K27me3, which is a substrate of the EED protein,
was uncovered as a putative perturbed translational hub in 3OHB‑related neuroprotective
functions.

H3K27me3 has been extensively studied in neurons, and those studies indicated that
its levels dramatically correlatedwith neurodegenerative diseases [19,27,28]. Based on our
biochemical analysis, the global level of H3K27me3 in HT22 cells was dramatically altered
by 0.2 mM 3OHB treatment. Considering the importance of H3K27me3 for critical func‑
tions in neural stem cell differentiation and adult neuron specification maintenance, this
phenomenon strongly suggests that 3OHBmay interfere with coordinated transcriptional
processes that trigger regulatory pathways involved in neurodegeneration, and further
involve the functional dysregulation of vulnerable or unhealthy neuronal networks.

Polycomb group (PcG) proteins, which include the PRC1 and PRC2 complexes, are
critical epigenetic repressors responsible for transcriptional regulation of cell differentia‑
tion and development [29]. PRC1 and PRC2 catalyze specific histone modifications includ‑
ingH2A lysine 119 ubiquitylation (H2AK119u1) andH3 lysine 27methylation (H3K27me3),
respectively [30]. PRC1‑dependent H2AK119ub1 can lead to the recruitment of PRC2 com‑
plexes to H3K27me3, which initiates polycomb domain formation [22,31–33]. In this sce‑
nario, H2AK118/119ub formation is critical for H3K27me3 accumulation. Accordingly, we
reasoned that 3OHB‑induced H3K27me3 fluctuations at the global level may be caused
by H2AK118/119bhb alteration, since we found that H2AK118/119 and H2BK34 are the
most abundant hydroxybutyrylation sites in the histones of normal neurons. It is pos‑
sible that endogenous H2AK118/119bhb may be involved in H2AK118/119ub‑dependent
H3K27me3 formation or even the catalysis of H2AK118/119ub itself. Thus, our findings
indicate the possibility of an additional role of H2AK118/119bhb in polycomb domain for‑
mation and transcriptional regulatory circuitry.

At the same time, H2BK34 monoubiquitination has also been proved to be the major
regulator of H3K4 and H3K79 methylation [34–36]. After measuring the global H3K4me3
level by western blot analysis, a time‑dependent fluctuation pattern appeared that was
comparable with that of H3K27me3. H3K4me3 is another critical histone marker for neu‑
ronal health and function [37–39], and it is sharply enriched at gene‑proximal promoters
and transcription start sites (TSS) [40,41]. Recent findings demonstrated that H3K4me3
in the human prefrontal cortex is highly regulated in a cell type and subject specific man‑
ner, which highlights age‑correlated neuronal chromatin remodeling, with important im‑
plications for neurodevelopmental disorders [41], or neurodegenerative diseases [42,43].
The simultaneous presence of H3K4me3 and H3K27me3 at a single locus was defined as
a bivalent chromatin state, i.e., the occurrence of histone modifications corresponding to
gene activation (trimethylated H3K4) and PRC2‑mediated gene repression (trimethylated
H3K27). Chromatin bivalency has been recognized in ESCs during epigenetic regulation of
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development, and this epigenetic feature has been interpreted as conferring pluripotency
on ESCs [44,45]. Our results not only confirm the sensitivity of H3K4me3 and H3K27me3
in normal neurons to 3OHB fluctuations, but also support a new theory in which chro‑
matin bivalency can be perturbed by 3OHB in the normal nervous system. In particular,
the selective changes of gene expression reflect a particular group of 3OHB‑perturbed bi‑
valent genes enriched for transcriptional regulation that are related to neuronal functions
and especially neurodegenerative diseases, or critical signaling components involved in
those conditions (Figure 3C).However, when comparing three datasets, only three bivalent
genes were found to overlap, and their mRNA and protein alterations were inconsistent.
It is possible that the neuronal responses to 3OHB and other ketone bodies are mediated
by the temporary perturbation of chromatin bivalency rather than by a permanent promo‑
tion of bivalent gene fluctuation. In support of this idea, several transcription factors sen‑
sitive to ketone bodies have been shown to have potential auto‑regulatory functions [19].
We therefore propose that those transcription factors form auto‑regulatory feedback loops
that stabilize fundamental processes and mediate the sensitivity to various environmental
factors including metabolic fluctuations.

Based on this hypothesis, we performed NSC differentiation experiments to confirm
that 3OHB is actually able to perturb the NSCs differentiation process. As we expected,
both immunocytochemical staining and transcriptomic analysis have clearly indicated that
3OHB was able to inhibit neural differentiation and promote the cell cycle. In addition
to the data from “omics” analysis, both H3K27me3 and H3K4me3 were sensitive to low
concentrations of 3OHB, which makes them possible mediators of neuroprotection, and
likely promoters of neural differentiation. Thus, one can envision a scenario in which
the presence of 3OHB may trigger an enzymatic reaction and further occupy histone tail
monoubiquitination sites such as H2AK118/119 and H2BK34. Such a scenario may also
entail the perturbation of the monoubiquitination pattern, which would further lead to
alterations of monoubiquitination‑dependent histone methyltransferase recruitment effi‑
ciency [22,23,31,33,34,46,47]. Although the alteration of hydroxybutyrylation and
monoubiquitination of H2AK119 has also been observed upon 3OHB administration, it
is not sufficient to confirm that the response of H3K27me3 and H3K4me3 to 3OHB admin‑
istration is dependent on H2AK118/119 and H2BK34 hydroxybutyrylation. Nevertheless,
the induction of chromatin bivalency by 3OHBandother ketone bodies, and the fluctuation
of the related transcription factors implies a scenario inwhich ketone‑body‑dependent neu‑
roprotectionmay bemediated by histone modifications and alterations of chromatin struc‑
ture. To this end, our results build a connection between ketone bodies, a bivalent chro‑
matin state, DNA methylation, neurodegenerative diseases, and neural differentiation.

4. Materials and Methods
4.1. HT22 Cell Culture and 3OHB Treatment

Murine hippocampal HT22 cells were purchased from Hongshun Biologicals (Shang‑
hai, China). The details of HT22 cell culture and 3OHB treatment were included in Sup‑
plemental Experimental Procedures.

4.2. Culture of NSCs and Transcriptome Sequencing
NSCs were isolated from the cerebral cortex of rat embryos on embryonic day 14.5

(E14.5) and cultured in serum‑free growth medium as described previously [48]. The pri‑
mary isolated cells were subcultured every five days and P3 cells were used for transcrip‑
tome sequencing. See Supplemental Experimental Procedures for details.

4.3. Animal Maintenance and Treatment
All procedures followed theGuide for theCare andUse of LaboratoryAnimals: Eighth

Edition (ISBN‑10: 0‑309‑15396‑4), and the animal experiment protocolwas approved by the
animal ethics committee of Xi’an Jiaotong University’s School of Life Science and Technol‑
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ogy (approval No. SCXK (陕) 2017‑003). The details of animal maintenance and treatment
were included in Supplemental Experimental Procedures.

4.4. Mass Spectrometry of Proteins
Protein extraction was performed using approximately 1 × 107 cells per group. Pro‑

teins were digested into peptides and labeled via Isobaric Dimethylation as before [48].
The peptides were then subjected to LC‑MS/MS. See also Supplemental Experimental Pro‑
cedures for details.

4.5. Statistical Analysis
Statistical significance was determined using single‑factor analysis of variance (one‑

way ANOVA) and Tukey’s range test via the GraphPad Prism V7.0 (GraphPad Software,
USA). The results were considered significant when the p‑value was less than 0.05.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms24010868/s1, Supplemental Information includes supple‑
mental experimental procedures, Supplemental Table S1 and Supplemental Table S2. Refs. [14,48–58]
are cited in Supplementary Materials.
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