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Abstract: Amyloids and antimicrobial peptides (AMPs) have many similarities, e.g., both kill mi-
croorganisms by destroying their membranes, form aggregates, and modulate the innate immune
system. Given these similarities and the fact that the antimicrobial properties of short amyloids have
not yet been investigated, we chose a group of potentially antimicrobial short amyloids to verify their
impact on bacterial and eukaryotic cells. We used AmpGram, a best-performing AMP classification
model, and selected ten amyloids with the highest AMP probability for our experimental research.
Our results indicate that four tested amyloids: VQIVCK, VCIVYK, KCWCFT, and GGYLLG, formed
aggregates under the conditions routinely used to evaluate peptide antimicrobial properties, but
none of the tested amyloids exhibited antimicrobial or cytotoxic properties. Accordingly, they should
be included in the negative datasets to train the next-generation AMP prediction models, based
on experimentally confirmed AMP and non-AMP sequences. In the article, we also emphasize
the importance of reporting non-AMPs, given that only a handful of such sequences have been
officially confirmed.

Keywords: antimicrobial peptides; amyloids; bacteria; machine learning; non-antimicrobial pep-
tides; prediction

1. Introduction

Amyloid proteins (amyloids) are a diverse group of molecules that share little sim-
ilarity in their amino acid compositions, but have the unique ability to assemble into
filamentous aggregates characterized by the presence of cross β-structures [1]. These aggre-
gates are typical of disorders called amyloidoses, including neurodegenerative diseases,
such as Alzheimer’s (amyloid β, tau protein), Parkinson’s (α-synuclein), and Creutzfeldt–
Jakob’s (prion protein—PrPSc) [2,3]. In addition to being linked to human pathological
conditions, amyloids have also been reported to fulfill important biological roles, rang-
ing from protection and storage to signaling and memory [4]. For example, they are the
structural components of biofilms in bacteria, the reservoirs of proteins and peptides, e.g.,
hormones, in mammals, the elements of the primitive immune system in fungi, and most
probably innate immune effectors against bacterial and virial infections in humans [4,5].
The propensity of a peptide/protein to form amyloid aggregates depends on the charge,
hydrophobicity, and the β-conformation of aggregation-prone motifs. Amyloids can spon-
taneously self-assemble into fibrils; however, they may also trigger the aggregation of
unrelated amyloidogenic proteins in the process known as cross-seeding [6,7]. Such inter-
actions have already been observed in α-synuclein, amyloid β, PrPSc, and tau amyloid
deposits in humans [6,8,9]. Research studies have not only shown that cross-seeding is pos-
sible between unrelated amyloidogenic proteins, but also between unrelated amyloidogenic
proteins from different species [10–15].
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Interestingly, amyloids share many similarities with antimicrobial peptides (AMPs),
a diverse group of common molecules involved in the first line of host defence against
microorganisms, as well as in microbial competition [16–19]. AMPs are short—generally up
to 50 amino acids long—and do not display any consensus sequences, but share a positive
charge, hydrophobicity, and amphipathicity [20–22]. Taking into account their secondary
structures, AMPs can be grouped into α-helical peptides, β-sheet peptides, peptides with
cross α—β structures, and extended linear peptides enriched in specific amino acids such
as tryptophan, proline, and glycine [23]. AMPs exhibit many different mechanisms of
action to trigger bacterial cell death, and consequently, it is much more difficult to develop
resistance against them compared to traditional antibiotics [24–26]. Firstly, by interacting
non-specifically with the anionic components of bacterial cell membranes, they damage
the lipid bilayer by solubilization and/or pore formation [20,21,27]. Secondly, by acting
intracellularly on specific molecules, they may inhibit proteases, cell division, and the
biosynthesis of proteins, DNA, and RNA [28].

Similarly to AMPs, some amyloids have been shown to directly kill microorganisms
by damaging their membranes. These characteristics have been reported for amyloid
β [29], α-synuclein [30], and several other amyloids or their fragments, including tau [31],
islet amyloid polypeptide [32], PrPSc [33], and endostatin [34]. As in the case of AMPs,
monomers of amyloids self-assemble into oligomers and disrupt bacterial membranes by
forming channels and/or acting like detergents, dissolving them. Interestingly, apart from
destroying cell membranes by poration and solubilization, both amyloids and AMPs can
kill bacteria by cell agglutination. This mechanism depends on their binding to bacterial
wall carbohydrates, but it is still poorly understood [35,36].

The antimicrobial properties of amyloids have been especially well investigated in
the case of amyloid β, which exhibits sequence and structural similarities with some
validated AMPs [37]. Numerous studies indicate that amyloid β, in addition to its cytotoxic
properties, may normally function as an AMP that is cleared after the inflammation subsides.
However, when it becomes dysregulated, it forms toxic amyloid oligomers leading to
neuronal cell death and eventually, to fibrillar deposits; the latter in turn trigger chronic
inflammation [29,38]. Such a pattern of operation is exactly characteristic of AMPs, and
it implies the existence of a delicate balance regulating antimicrobial versus cytotoxic
properties for both amyloids and AMPs.

The next similarity between amyloids and AMPs lies in their propensity to form
filamentous aggregates. This is not only restricted to amyloids, but is also characteristic
of some AMPs. Protofibrils and fibrils have been proposed to entrap or agglutinate some
pathogens, but their antimicrobial effectiveness is still debated [35]. Interestingly, certain
AMPs are deposited as amyloids in common human amyloidopathies, including isolated
atrial and senile seminal vesicle amyloidosis [5], but some AMPs have also been revealed
to bind and inhibit amyloid aggregation [39,40]. The amyloidogenic properties have been
ascribed to quite a few AMPs in vitro or in vivo, including lysozyme [41], protegrin-1 [42],
plant defensins [43], HAL-2 [44], uperin 3.5 [45], Cn-AMP2, [46] or longipin [47].

The last discussed similarity between AMPs and amyloids is the fact that both can
modulate the innate immune system. Their protofibrils and fibrils may directly bind to
Toll-like receptors or self-assemble into ordered nanocrystalline complexes with immune
ligands, such as DNA and dsRNA. These complexes mediate the amplification of inflamma-
tion via Toll-like receptors. Both AMPs and amyloids can engage a broad range of immune
receptors, including TLR2, TLR3, TLR4, TLR9, FPR2, FPRL1, and NLRP3 (see [5] and the
references therein).

Considering the substantial similarities between amyloid proteins and AMPs, we
decided to verify the antimicrobial properties of short experimentally verified amyloids
deposited in the WALTZ-DB 2.0 database [48]. We chose this particular group of amyloids
because (i) their antimicrobial properties have not yet been investigated, and (ii) due
to their length and resemblance to AMPs, they might potentially constitute a challenge
for AMP prediction. The latter is of great importance for the development of the next-
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generation AMP classifiers, i.e., based on both experimentally validated AMP and non-AMP
sequences [49]. To select the best candidates for experimental studies from the WALTZ-DB
2.0 database [48], we used AmpGram [50], a best-performing AMP prediction tool [49],
and various other programs for comparative studies. The antimicrobial properties of the
short amyloids were verified on ten bacterial strains representing both Gram-positive and
Gram-negative species.

2. Results
2.1. Predicition of Antimicrobial Properties in Short Amyloids

The first stage of our research involved the selection of short amyloids with potential
antimicrobial properties from the WALTZ-DB 2.0 database [48]. We approached this task
with AmpGram, a bioinformatics tool based on n-grams (short amino-acid motifs) and
random forests (a classification method in machine learning) [50]. We decided on this
software because the first unbiased benchmark of AMP predictors clearly indicated it as
the most accurate AMP classifier; it outperformed other models, independent of the dataset
used for training and testing [49]. AmpGram’s superb performance might also suggest that
short amino acid motifs are better at discriminating between AMP and non-AMP sequences
than the global amino acid composition or physicochemical and structural properties
commonly used by other AMP prediction models [49].

AmpGram [49,50] predicted ~6% amyloids deposited in WALTZ-DB 2.0 [48] as antimi-
crobial peptides, 32 sequences in total (Table S1), and from this pool, we selected the ten
top predictions for our experimental research (Table 1). The ten short amyloids represented
fragments of amyloid β, tau, PrPSc, α-crystallin B chain, or rationally designed sequences.
The ~6% value seems rather low, considering the similarities between amyloids and AMPs.
This indicates that (i) short amyloids are problematic for AMP predictors, e.g., they might
be underpredicted, or (ii) these peptides do not have antimicrobial properties in general.

In order to cast some light on the prediction issue, we used an additional 15 AMP
classification models to verify the AMP signal for the 10 amyloids selected for experimental
research. Interestingly, only nine models (60%) predicted more than six amyloids (60%)
as potential AMPs, and only one sequence VKIVYK (Amyloid 6) was predicted by all
15 methods. The inconsistent prediction pattern presented in Table 1 suggests that AMP
predictors do exhibit some problems with the classification of short amyloids. Consequently,
there are very interesting candidates for experimental research that are important from the
point of view of developing AMP prediction tools.

Table 1. Classification of 10 amyloids, indicated by AmpGram with the highest AMP probability,
using 15 alternative AMP prediction models. Values greater than 0.5 were colored in green and
indicate potential AMP properties. Models marked with asterisks (*) produced zero-one outputs,
without giving the probability. Citations for the models are provided in the Materials and Methods
section. Amy = Amyloid.

AMP Prediction
Model

Peptide Name and Its Sequence

Amy 1 Amy 2 Amy 3 Amy 4 Amy 5 Amy 6 Amy 7 Amy 8 Amy 9 Amy 10

VQIVCK VCIVYK LIVAGK GAIIGL KCWCFT VKIVYK LKVKVL AIIGLM GGYLLG VGIVYK
AmpGram 0.685 0.720 0.769 0.809 0.849 0.684 0.632 0.633 0.652 0.665

ADAM-SVM * 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
AI4AMP 0.686 0.174 0.292 0.280 0.292 0.564 0.254 0.534 0.181 0.553
AmPEP * 0.000 0.000 0.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000

Ampir 0.350 0.452 0.658 0.636 0.185 0.767 0.611 0.744 0.578 0.322
AMP Scanner Vr2 0.774 0.869 0.331 0.747 0.890 0.753 0.357 0.760 0.579 0.737
CAMP3-ANN * 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000

CAMP3-DA 0.086 0.449 0.593 0.081 0.781 0.880 0.811 0.001 0.264 0.405
CAMP3-RF 0.452 0.507 0.492 0.383 0.378 0.569 0.556 0.421 0.296 0.477

CAMP3-SVM 0.000 0.000 0.001 0.000 0.000 0.876 0.024 0.000 0.000 0.000
Deep-AmPEP30 * 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000

IAMPE * 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MACREL 0.505 0.386 0.535 0.455 0.257 0.574 0.743 0.426 0.069 0.446

RF-AmPEP30 * 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
RF-AMPDiscover 0.780 0.920 0.960 0.800 0.970 0.850 0.960 0.660 0.870 0.780

RNN-AMPDiscover * 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000
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2.2. Experimental Verification of Investigated Peptides in Terms of Amyloidogenic Properties

In the second stage of our research, we decided to determine the propensity of the
ten short amyloids (Table 1) to form fibrils under the conditions routinely used to evaluate
AMP properties, i.e., upon their incubation in Mueller–Hinton Broth (MHB; for details, see
Materials and Methods). These experiments could also allow us to speculate whether the
amyloid properties of peptides go along with their antimicrobial activities. To detect the
presence of protein fibrils, we used a benzothiazole dye (thioflavin T) [51]. Thioflavin T
binds to β sheet-rich structures in amyloid aggregates and triggers a characteristic red shift,
i.e., an increase in the wavelength in both excitation and emission maximum of the dye [52].
Although all the investigated peptides were experimentally confirmed to be amyloids [48],
only four formed aggregates in the MHB medium, namely: VQIVCK (Amyloid 1), VCIVYK
(Amyloid 2), KCWCFT (Amyloid 5), and GGYLLG (Amyloid 8). The fluorescence spectra of
the remaining peptides were indistinguishable from those of the medium itself (Figure S1).

2.3. Experimental Verification of Cytotoxic Properties of Short Amyloids

We also evaluated the antiproliferative influence of the ten short amyloids on the HEK-
293 cell line (healthy human kidney cells) by measuring the activity of the oxidoreductase
enzymes (MTT assay, see Materials and Methods) [53]. After 24 h exposure to human cells,
none of the ten amyloids revealed cytotoxic effects on these cells. The IC50 values, i.e., the
concentration that causes 50% growth inhibition of the cell line, were quite high, from 96 to
271 µg/mL (Table 2, Table S2). The slope and the coefficient of determination (R2) for all
models used to calculate IC50 were statistically significant, with p-values < 0.003.

Table 2. Parameters of regression analyses for viability of the HEK-293 cells subjected to ten amy-
loids and IC50 values calculated on the basis of the obtained models. R2 states for coefficient of
determination.

Amyloid Sequence R2 p-Value Slope IC50 [µg/mL]

Amyloid 1 VQIVCK 0.563 3.93 × 10−6 −0.299 167
Amyloid 2 VCIVYK 0.500 2.04 × 10−5 −0.426 117
Amyloid 3 LIVAGK 0.350 0.00054 −0.423 118
Amyloid 4 GAIIGL 0.711 2.62 × 10−8 −0.433 116
Amyloid 5 KCWCFT 0.494 2.04 × 10−5 −0.523 96
Amyloid 6 VKIVYK 0.372 0.00039 −0.447 112
Amyloid 7 LKVKVL 0.271 0.00263 −0.184 271
Amyloid 8 AIIGLM 0.347 8.43 × 10−5 −0.337 148
Amyloid 9 GGYLLG 0.464 3.93 × 10−6 −0.292 171

Amyloid 10 VGIVYK 0.270 0.00054 −0.409 122

2.4. Experimental Verification of Antimicrobial Properties of Short Amyloids

In the final stage of our research, we verified the antimicrobial properties of ten short
amyloids. We used ten bacterial strains, five Gram-positive and five Gram-negative, includ-
ing eight clinical strains and two reference strains—100 combinations of peptides and bacte-
ria in total (Figure 1, Table S3). As controls, we used colistin [54,55] and teicoplanin [56,57].
They have been used to treat multidrug-resistant infections, Gram-negative and Gram-
positive, respectively. Both controls were proven to be very effective in destroying the
tested bacteria; their MIC values, i.e., the minimum inhibitory concentration that inhibits
visible growth (kills more than 90% of the inoculum within 18–24 h), ranged from 0.25 to 8
µg/mL, depending on the strain and antibiotic used (Figure 1).
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Figure 1. Experimental verification of the antimicrobial properties of short amyloids. Each of the 12
heat maps shows results for one amyloid or an antibiotic control. The columns represent the dilutions
of the tested amyloids from 128 to 0.25 µg/mL, and the rows bacteria used, including Gram-negative
(Gram-), Gram-positive (Gram+), and the reference species (Ref.). The effect of amyloids on the
bacterial viability is indicated as a color gradient from red (less than 10% bacteria survived), through
yellow (~50% bacteria survived), to green (more than 90% bacteria survived). The detailed results are
presented in the Supplementary Materials.

The results presented in Figure 1 and Tables S4–S27 indicate that the ten short amyloids
do not exhibit antimicrobial properties against Gram-positive or Gram-negative bacteria.
We were not able to determine the MIC values within the 18 h incubation period for our
peptide dilutions (MIC > 128 µg/mL), and accordingly, we were not able to determine
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their minimum bactericidal concentration (MBC), which is the lowest concentration of an
antibacterial agent that kills 99.9% of the inoculum within 18–24 h.

The lowest viability (32% and 17%) was observed for samples containing Enterococcus
faecalis 37VRE with GGYLLG (Amyloid 9) or VKIVYK (Amyloid 10), respectively, but in
the case of the largest applied concentration of these peptides, i.e., 128 µg/mL. Importantly,
this bacterial strain was characterized by fluctuating absorbance along the peptide concen-
tration, which might result from the fact that it is very difficult to grow this strain in MHB,
as it requires more enriched media (Table S12–S13 and Table S24–S25). Accordingly, the
coefficient of variation (CV) for absorbance, defined as the ratio of the standard deviation
to the mean, is often higher for E. faecalis than for the other tested bacteria. In the case
of the samples with Amyloid 9 or Amyloid 10, CV is particularly high, as it ranges from
43% to 174% and from 55% to 300%, respectively. These values are much higher than the
mean coefficient of variation calculated from the absorbance of all investigated bacteria for
samples with Amyloid 9 (CV = 27%) and Amyloid 10 (CV = 32%).

Although the ten investigated amyloids do not have antimicrobial properties, our
results for the regression analysis indicate that there is a significant negative correlation
of bacterial viability with peptide concentration for 46 out of 100 bacteria–peptide com-
binations (Table S28). Accordingly, in some cases, there was some negative impact of the
amyloids on the bacterial growth, even though the estimated MIC values were very high.
The MIC lower than 512 µg/mL was found for only 22 cases of various combinations of
amyloids, except for GAIIGL (Amyloid 4), with four bacterial strains: Enterococcus faecalis
37VRE, Enterococcus faecium 2VRE, Klebsiella pneumoniae N111, and Escherichia coli 1471
(Table 3). The most affected bacterium was E. faecium, with the lowest MIC of 177 µg/mL
for VCIVYK (Amyloid 2).

Table 3. Parameters of regression analyses for viability of the bacterial strains subjected to ten
amyloids and the MIC values calculated on the basis of the obtained models lower than 512 µg/mL.
R2 states for coefficient of determination.

Amyloid Species R2 p-Value Slope MIC

Amyloid 2 E. faecium 2VRE 0.516 1.4 × 10−6 −0.509 177
Amyloid 6 E. faecium 2VRE 0.465 4.9 × 10−11 −0.504 179

Amyloid 10 E. faecalis 37VRE 0.598 4.0 × 10−5 −0.465 193
Amyloid 1 E. faecium 2VRE 0.381 1.0 × 10−4 −0.460 196
Amyloid 9 E. faecium 2VRE 0.457 6.3 × 10−8 −0.440 204
Amyloid 1 E. faecalis 37VRE 0.645 3.8 × 10−17 −0.395 228
Amyloid 5 E. faecium 2VRE 0.425 1.0 × 10−14 −0.391 230
Amyloid 8 E. faecium 2VRE 0.446 1.2 × 10−4 −0.322 280

Amyloid 10 E. faecium 2 VRE 0.288 1.5 × 10−4 −0.305 295
Amyloid 3 E. faecium 2VRE 0.419 9.3 × 10−8 −0.299 301
Amyloid 6 E. coli 1471 0.500 2.9 × 10−17 −0.282 319
Amyloid 7 E. faecium 2VRE 0.316 7.0 × 10−4 −0.276 326
Amyloid 7 E. coli 1471 0.389 2.5 × 10−11 −0.261 345
Amyloid 2 E. faecalis 37VRE 0.554 4.1 × 10−7 −0.247 364
Amyloid 8 E. coli 1471 0.362 2.0 × 10−14 −0.242 372
Amyloid 9 E. faecalis 37VRE 0.641 4.9 × 10−3 −0.232 389
Amyloid 5 E. coli 1471 0.432 1.8 × 10−17 −0.222 405
Amyloid 9 K. pneumoniae N111 0.436 4.5 × 10−12 −0.221 406
Amyloid 7 E. faecalis 37VRE 0.308 8.7 × 10−3 −0.215 418
Amyloid 8 K. pneumoniae N111 0.355 1.8 × 10−12 −0.189 475
Amyloid 6 K. pneumoniae N111 0.375 3.0 × 10−12 −0.187 482
Amyloid 8 E. faecalis 37VRE 0.384 5.6 × 10−5 −0.182 496

3. Discussion and Conclusions

Given the substantial similarities between amyloids and AMPs, e.g., the propensity to
kill microorganisms, form aggregates, and modulate the innate immune system, we decided
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to test the antimicrobial properties of short amyloids, as they have not yet been investigated.
We used AmpGram, a best-performing AMP prediction model, and found 32 amyloids out
of 509 to be potentially antimicrobial. In light of their substantial similarities, we thought
at first that the number of amyloids predicted as AMPs might have been underestimated.
Accordingly, we noticed that short amyloids are generally inconsistently predicted as AMPs
or non-AMPs in comparative studies using 15 additional AMP classifiers (Table 1). This
result indicates that short amyloids constitute a problematic group of peptides for AMP
prediction.

From the pool of 32 potentially antimicrobial amyloids, we selected 10 with the highest
AMP probability and determined whether they aggregate and negatively impact bacterial
and eukaryotic cell growth. Four peptides: VQIVCK (Amyloid 1), VCIVYK (Amyloid
2), KCWCFT (Amyloid 5), and GGYLLG (Amyloid 8), formed aggregates in the MHB
medium (Figure S1); however, none of the ten peptides were determined to be cytotoxic for
eukaryotic cells (Table 2), nor did they exhibit antimicrobial properties against the tested
bacteria (Figure 1, Table 3).

Our results indicate that the ten short amyloids should not be considered AMPs, due
to their very weak impact on bacterial growth. Accordingly, they represent an immensely
important group for AMP classification. In order to produce a reliable AMP prediction
model, the developer must provide labeled data for its training and testing, i.e., a positive
(AMP) and a negative (non-AMP) dataset. Shockingly, only 24 non-AMPs have been
reported thus far, and all are deposited in the UniProt database (Table S29) [58,59]. Without
having access to a good set of non-AMPs, the vast majority of developers working on AMP
prediction have resorted to building the negative set from sequences deposited in public
databases, including UniProt [59]. The procedure is based on sequence filtering options and
clearly defined criteria, e.g., excluding sequences with antimicrobial properties and those
possessing signal peptides (AMPs are mostly secretory proteins) from the dataset. However,
the exclusion of peptides with assigned antimicrobial properties is not a good solution
because the set could still include AMPs that have not yet been investigated. Consequently,
the method is far from perfect, and it influences model performance [49].

Here, we present sequences for the negative dataset that are not only non-antimicrobial,
but also very similar to AMPs. Consequently, they can be considered as adversarial
examples that might substantially improve future AMP predictive models [60]. It is easy
to develop a good machine learning tool to classify distinct sets, but this becomes more
challenging when the sets contain more alike examples.

Given the growing interest in machine learning as the most cost-effective and the
fastest method for discovering novel AMPs, addressing the issue of the flawed negative
dataset is of paramount importance. We are absolutely positive that such data do exist,
but are unpublished, being considered a side effect of many projects not worthy of any
attention. At this point, we would like to strongly emphasize the significance of informing
the scientific community about negative results—in our case, experimentally verified
peptides that do not have antimicrobial properties. The systematic reporting of non-AMPs
can help to construct a reliable negative dataset for AMP prediction.

4. Materials and Methods
4.1. In Silico Selection of Amyloids with Antimicrobial Properties

To choose the best candidates for our research, we downloaded experimentally vali-
dated short amyloids from the WALTZ-DB 2.0 database [48], with a total of 509 sequences.
These amyloids were next analyzed for antimicrobial properties, with a modified implemen-
tation of AmpGram that worked on 5-mers instead of 10-mers to handle sequences shorter
than ten amino acids [49,50]. The modified AmpGram has already been used with success
in our previous studies of benchmarking AMP prediction tools [49]. For comparative stud-
ies, we chose 15 alternative AMP prediction models included in: ADAM [61], AI4AMP [62],
AmPEP [63], Ampir [64], AMP Scanner Vr2 [65], CAMPR3 [66], Deep-AmPEP30 [67],
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IAMPE [68], MACREL [69], and AMPDiscover [70]; all were available as web servers. The
computationally selected peptides were synthetized by CASLO ApS, with purities of >96%.

4.2. Strains and Culture Conditions

Eight hospital-isolated pathogens, four Gram-positive—Staphylococcus aureus S16,
Enterococcus faecalis 37VRE, Staphylococcus epidermidis S22, Enterococcus faecium 2VRE—and
four Gram-negative—Klebsiella pneumoniae N111, Acinetobacter baumannii 2800, Escherichia
coli 1471, Enterobacter cloacae 1476—were used in the study (Table S2). Moreover, two
reference strains, Staphylococcus aureus ATCC25923 and Escherichia coli K12, were used as
representatives of non-pathogenic strains. The hospital-acquired strains were obtained
from the collection of the Department of Microbiology at the Wroclaw Medical University.

All bacterial strains were stored at −80 ◦C. The strains were revived using overnight
cultures prepared in Tryptic Soy Broth (TSB, OXOID, Basingstoke, UK) and incubated under
shaking conditions (MaxQTM6000 incubator shaker, Thermo Scientific, Waltham, MA, USA)
at 125 rpm and 37 ◦C. Next, the purity of the strains was evaluated using enriched media
(appropriate for the tested strains). For each experiment, a fresh 18–20 h culture was
prepared on Tryptic Soy Agar (TSA, OXOID, Basingstoke, UK) for Gram-positive bacteria
and MacConkey Agar (MC, OXOID, Basingstoke) for Gram-negative bacteria, and the
samples were then transferred to fresh Mueller–Hinton Broth (MHB, OXOID, Basingstoke,
UK), where the density was determined. Each culture was established at 108 CFU/mL and
then diluted to a starting inoculum of 106 CFU/mL.

4.3. Determination of the Antimicrobial Properties of Short Amyloids

The microdilution method was used to measure the antimicrobial activity of amyloids.
The test was performed according to the recommendations of EUCAST (ISO 20776–1:2019).

In 96-well microtiter plates, geometric dilutions of the tested amyloids were prepared
from 128 to 0.25 µg/mL in 50 µL MHB. The stock solution (20 mg/mL) of the synthesized
amyloids was prepared in MHB. The bacterial suspension prepared in MHB with a density
of 106 CFU/mL was added to 50 µL of MHB containing the appropriate concentrations
of amyloids, thus yielding a final bacterial concentration of 105 CFU/mL. Pure MHB was
used as a negative control, while the control for bacterial growth was MHB medium in the
presence of the strain used in the experiment. Antibiotic solutions were used as positive
controls: colistin for Gram-negative bacteria and teicoplanin for Gram-positive bacteria.

Microtiter plates were incubated at 37 ◦C for 18 h for S. aureus, S. epidermidis, K.
pneumoniae, E. coli, A. baumannii, and E. cloacae and 24 h for E. faecalis and E. faecium.
Optimal density (OD600 nm) was measured in a plate reader (ASYS UVM340, BIOCHROM
Ltd., Cambridge, UK). The absorbance results were converted to percentages (with respect
to growth control) in the normalization process. The MIC (minimal inhibitory concentration)
for each peptide was defined as the concentration at which the destruction of at least 90%
of the initial inoculum was observed.

Each experiment was performed in three independent studies for each of the two
isolates, and each replicate was performed in three separate wells. In order to establish the
MBC (minimal bactericidal concentration), 5 µL of the bacterial suspension from each well
of the microtiter plate was inoculated onto a TSA plate and incubated for 24 h at 37 ◦C. The
MBC value was defined as the lowest concentration at which no growth of the tested strain
was observed.

4.4. Kinetics of Polymerization Process

The amyogenic abilities of the tested amyloids were determined in a kinetic reaction
using the fluorescent dye thioflavin T (ThT), according to the modified method of Salinas
et al. [71]. The peptide samples were dissolved in culture medium MHB (Ck = 20 mg/mL)
immediately before the first measurement and mixed with an aqueous ThT solution
(Ck = 20 µM). ThT fluorescence intensity readings were performed in 96-well opaque
microplates using a SpectraMax GeminiXPS spectrofluorometer at an excitation of λex 450
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nm, an emission of λem 490 nm, and a cut-off point of λcut off 475 nm. Measurements were
monitored for 24 h every 30 s. at 37 ◦C. The results were analysed in the SoftMax program.
Fresh MHB culture medium was used as a negative control for all measurements.

4.5. Cell Culture

HEK-293 human embryonic kidney cells (ATCC, CRL-1573) were cultured in DMEM
medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin
solution. The cells were cultured at 37 ◦C, 5% CO2, until the concentration was about 106

per mL. A total of 2 × 105 cells/mL were seeded in 96-well tissue microplates (2 × 104

cells per well) and were allowed to adhere overnight under the conditions described above.
Cytotoxicity tests were carried out on the cells prepared in this way.

4.6. Cell Proliferation Assays

Cells were incubated with varying concentrations from 128 to 0.25 µg/mL of the
tested amyloid for 24 h exposure. The MTT assay has been previously described [72]. After
incubating the cells with the tested amyloids, the MTT reagent (Ck = 0.5 mg/mL) was
added to a well of a microtiter plate. After 2 h incubation (37 ◦C, 5% CO2), the MTT medium
was removed and replaced with DMSO, to which was then added Sorensen’s buffer (0.1 M
glycine, 0.1 M NaCl; pH 10.5). In the MTT test, the cell viability is directly proportional to
the absorbance (570 nm). The control cells for background absorbance contained the growth
medium, with MTT only. For MTT analysis, at least three experiments were performed
using cells from consecutive passages.

4.7. Statistical Analyses

Linear regression analyses for viability of the HEK-293 cells subjected to ten amyloids,
as well as the estimation of IC50 values, were determined in R Statistical Software using the
model y = ax + 100% in the function lm from the stats package [73]. The regression analyses
for the viability of the bacterial cells and the estimation of MIC were conducted based on a
linear mixed-effects model y = ax + 100% + (1|isolate/replicate) in lmer function from R
package lme4 [73]. Isolates and replicates were assumed as random effects. The p-values of
the determination coefficient and the slope were corrected using the Benjamini–Hochberg
procedure for the obtained models.
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