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Abstract: Nitrate Transporter 1/Peptide Transporter Family (NPF) genes encode membrane transporters
involved in the transport of diverse substrates. However, little is known about the diversity and
functions of NPFs in Brassica rapa. In this study, 85 NPFs were identified in B. rapa (BrNPFs) which
comprised eight subfamilies. Gene structure and conserved motif analysis suggested that BrNFPs
were conserved throughout the genus. Stress and hormone-responsive cis-acting elements and
transcription factor binding sites were identified in BrNPF promoters. Syntenic analysis suggested
that tandem duplication contributed to the expansion of BrNPFs in B. rapa. Transcriptomic profiling
analysis indicated that BrNPF2.6, BrNPF2.15, BrNPF7.6, and BrNPF8.9 were expressed in fertile floral
buds, suggesting important roles in pollen development. Thirty-nine BrNPFs were responsive to
low nitrate availability in shoots or roots. BrNPF2.10, BrNPF2.19, BrNPF2.3, BrNPF5.12, BrNPF5.16,
BrNPF5.8, and BrNPF6.3 were only up-regulated in roots under low nitrate conditions, indicating that
they play positive roles in nitrate absorption. Furthermore, many genes were identified in contrasting
genotypes that responded to vernalization and clubroot disease. Our results increase understanding
of BrNPFs as candidate genes for genetic improvement studies of B. rapa to promote low nitrate
availability tolerance and for generating sterile male lines based on gene editing methods.

Keywords: Brassica rapa; NPF gene family; low nitrate stress; pollen development

1. Introduction

Nitrate Transporter 1/Peptide Transporter (NRT1/PTR) family proteins are trans-
porters of the Major Facilitator Superfamily (MFS) and are referred to as NPF (NRT1/PTR
family) proteins that are present in all major domains of life [1]. The first identified NPF
gene in plants was AtNPF6.3/AtNRT1.1/CHL1 (CHLORINA 1), and the protein was func-
tionally characterized as a nitrate transporter [2]. Subsequently, nitrate has been considered
the primary substrate of NPFs. However, further identification of NPFs from various plants
has demonstrated that NPFs can transport a wider range of substrates, including nitrate,
chloride, oligopeptide, IAA (Auxin), JA (Jasmonate), GA (Gibberllin), abscisic acid (ABA),
glucosinolates, potassium, and sugar [3-9]. Further, some NPFs can transport multiple
substrates, such as AtNPF6.3/AtNRT1.1, that has reported dual-affinity nitrate transport
activity (i.e., response to both low- and high-nitrate concentrations) and is also involved in
auxin transport [3,8].

During plant development and responses to environmental stresses, nutrients and
other substrates are transported according to altered metabolic pathways involved in the
synthesis, storage, mobilization, and conversion, thereby requiring transporters with capac-
ities to transport a wide diversity of chemical substrates [10,11]. NPFs are one of the largest
transporter groups in plants and can transport a wide range of substrates. For example,
AtNPF2.10/GTR1 (glucosinolate transporters 1) and AtNPF2.11/GTR?2 are essential for the
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translocation of glucosinolate defense compounds to seeds during maturation [5]. Further-
more, AtNPF2.3 functions as a root stele transporter that contributes to nitrate translocation
to shoots during salt stress [12]. In addition, AtNPF2.8/FST1 (Flavonol-Sophoroside-
Transporter 1) is expressed in the tapetum and is required for the accumulation of flavonol
glycosides on pollen surfaces [13]. ZmNPF7.9 in maize promotes lipid and amino acid
homeostasis activity during seed development, while ZmSUGCARI1 (Zea mays Sucrose
and Glucose Carrier 1) is a paralog of AtNPF7.3 and is expressed in the basal endosperm
transfer layer (BETL) of maize kernels, where it acts as a sugar transporter that imports
glucose and sucrose into the endosperm [9,14]. Whenaken together, these observations
suggest that NPFs play key roles in plant development and are responsive to environmental
stresses, owing to their broad substrate specificity.

Given the important roles of NPFs in plants and the increasing availability of plant
genomes, the systematic identification, and analysis of NPF genes have been conducted in
many plants, leading to the identification of 53 NPFs in Arabidopsis [15], 80 in rice [16], 73 in
apple [17], 178 in sugarcane [18], 169-199 in Brassica napus [19-21], 331 in hexaploid wheat
(Triticum aestivum L.) [22], 57 in Spinach (Spinacia oleracea L.) [23], and 109 in Tea Plants
(Camellia sinensis) [24]. Phylogenetic analysis has consistently divided NPFs into eight
subfamilies, termed NPF1 to NPF8 [1]. Using Arabidopsis as a model, AtNPF1 and AtNPF2
from the NPF1 subfamily (comprising three members) are involved in the redistribution
of nitrate into developing leaves [25]. The NPF2 family comprises 14 members that can
transport numerous substrates, including nitrate, glucosinolates, and phytochromes [26].
Only one NPF gene, AtNPF3.1, is in the Arabidopsis NPE3 subfamily and functions in nitrite
and GA transport [27,28]. Seven members comprise the NPF4 subfamily, and some can
transport ABA and GA in addition to other substrates [4,28]. The NFP5 subfamily comprises
16 members that participate in the transport of nitrate, dipeptides, GA, JA, and ABA [29,30].
Four members comprise the NPF6 subfamily, including the first characterized NPF gene,
AtNPF6.3, which primarily transports nitrate [31,32]. Three members comprise the NPF7
subfamily, all of which can transport nitrate [33-35], although cadmium and sodium could
also be substrates of AtNPF7.2 and AtNPF7.3 [33,34]. Lastly, the NPF8 subfamily comprises
five members, with some of them able to transport JA and dipeptides [36,37]. Notably, half
of the AtNPFs with characterized functions are capable of transporting nitrate [35,38].

Brassica rapa is one of the most important crops in China, Korea, and other Asian
countries, including several oil seed crops such as sarson and turnip rape, in addition
to numerous vegetable crops such as turnip, Pak-choi, and Chinese cabbage [39]. The
NPFs of B. rapa were previously isolated to investigate the functions of BnaNPFs in B.
napus [19-21], although detailed characterizations of BrNPFs remain limited. In this study,
BrNPFs were systematically identified and characterized from three Brassica genomes, with
analysis of their gene composition, chromosomal locations, phylogenetic relationships, and
the presence of cis-elements in their promoters. In silico and Semi-quantitative RT-PCR
analyses indicated that BrNPF2.6, BrNPF2.15, BrNPF7.6, and BrNPF8.9 could be related to
pollen development, as reflected by the co-expression of genes related to these functions.
The responses of BrNPFs due to vernalization and clubroot were also investigated, while
the expression of BrNPFs under low nitrate stress was evaluated using transcriptomic data.
The results from this study provide a framework for better understanding the functions of
BrNPFs during pollen development and B. rapa responses to vernalization, clubroot disease,
and low nitrate stress.

2. Results
2.1. Bioinformatics Analysis of NPFs
2.1.1. Identification of NPF Proteins in Three Prototypical Diploid Species of Brassica

A total of 85, 110, and 97 NFP proteins were identified in the genomes of B. rapa, B.
oleracea, and B. nigra, respectively (Table S1). The numbers of Br/Bol/BniNPF proteins
were 1.6, 2.0, and 1.8 times that in Arabidopsis, respectively, owing to the gene expansion of
Brassica during their evolution. The gene IDs, genome locations, coding sequence lengths,
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protein lengths, and other characteristics of the identified Br/Bol/BniNPF genes are listed
in Table S1. The subcellular localization of these 292 proteins were predicted using the
WOoLF PSORT program, revealing that most of the NPF proteins were located on the plasma
membrane (269), chloroplast (11), or in vacuoles (8) (Table S1). The lengths of BrNPFs
ranged from 98 to 1070 amino acids, with an average length of 534 amino acids, and MWs
ranging from 8.77 to 383.66 kDa, with an average weight of 62.08 kDa. Likewise, a wide
range of PIs was also observed (4.73-9.74) which may be due to the considerable range in
protein lengths (Table S1).

2.1.2. Phylogenetic, Conserved Motif, and Gene Structure Analysis of BrNFPs

In order to explore the evolutionary characteristics and classification of BrINPF proteins,
phylogenetic analysis with neighbor-joining methods was conducted with 292 Br/Bol/BniNPF
protein sequences and 53 AtNPFs. All NFP proteins were classified into eight subfamilies,
based on the scheme presented in [1], and belonged to the families NPF1-8 (Figure 1). The
NPE5 subfamily comprised the most NFP genes (109 members), followed by the subfamilies
NPF2 (85 members), NPF4 (39 members), NPES8 (35 members), NPF6 (27 members), NPF7
(23 members), NPF1 (17 members), and NPE3 (10 members). An ortholog in the Brassica
genomes was not found in the subfamily NFP2 for AtNPF2.1, AtNPF2.2, and AtNPF2.5,
indicating gene loss during evolution (Figure 1). Six homologs of AtNPF5.2 were identified
in B. rapa (BrNPF5.4, BrNPF5.5, BrNPF5.6, BrNPF5.16, BrNPF5.17, and BrNPF5.18), six in
B. oleracea (BoINPF5.6, BoINPF5.7, BoINPF5.8, BoINPF5.39, BoINPF5.40, and BoINPF5.41) and
four in B. nigra (BniNPF5.11, BniNPF5.12, BniNPF5.13, and BniNPF5.14) (Figure 1), indicating
the expansion of AtNPF5.2 in three prototypical Brassica diploid species over evolution-
ary time.

The conserved motifs of the BrNPFs were analyzed with the MEME program, yielding
the identification of 10 conserved motifs among 85 BrNPFs from B. rapa (Figure 2 and
Table S2). The 10 motifs of typical BrNPF proteins followed the order of Motif9-Motif4-
Motif2-Motif10-Motif6-Motif5-Motif3-Motif7-Motif1-Motif8. Apart from motifs 7, 8, and
9, the other motifs contained the core PTR2 domain conserved sequence (Table S3). No
significantly conserved motifs were identified for the 7, 8, and 9 domains based on BLAST
searches with NCBI and Pfam.

In order to investigate the structural diversity of BrNPFs, exon-intron organizations
were analyzed. The number of BrNPF introns ranged from 0 to 14. The most common exon-
intron organization comprised four exons separated by three introns, which were present
in 41 BrNPFs (Figure 2 and Table S2). Except for BrNPF2.8, BrNPF2.18, and BrNPF7.4, most
BrNPFs contained more than one intron, indicating the possible existence of alternative
splicing during expression. Eight types of gene structures were identified in the NPF5
subfamily, implying they exhibited diverse functions. BrNPF members from the same sub-
groups exhibited similar gene structures for the other subfamilies, indicating the potential
for conserved functions (Figure 2).

2.1.3. BrNPF Chromosomal Location and Gene Duplication Analysis

Eighty-five BrNPF genes were present on the ten chromosomes of Brassica rapa and
were non-uniformly distributed (Figure Al). Chromosome AQ09 harbored the largest num-
ber of BrNPFs (18 members), followed by chromosomes A07, A02, and A06, which con-
tained 14, 13, and 11 BrNPFs, respectively. Chromosome A04 carried the smallest number of
BrNPFs (two). BLAST and MCScanX analysis indicated that BrNPF gene duplication events
were present in the B. rapa genome. Briefly, 22 tandem duplicated genes (25.9%) were
identified that belonged to ten clusters (Figures 3 and Al). Among the tandem duplicated
genes, two, two, and three clusters were located on chromosomes A02, A07, and A09,
respectively. The other three clusters were located on chromosomes A03, A05, and A06,
respectively (Figures 3 and Al). These results suggest that tandem duplication is related to
NPF expansion in Brassica genomes.
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Figure 1. Phylogenetic reconstruction of 345 NPF proteins identified in the genomes of Brassica rapa
(n = 85), B. oleracea (110), B. nigra (97), and Arabidopsis (53). The neighbor-joining phylogenetic tree
was generated in MEGAG6 with full-length NPF protein sequences, and branch support was evaluated
with 1000 bootstrap replicates.
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Figure 2. Phylogenetic tree (A), gene structures (B), and MEME motifs (C) for 85 NPFs identified in
B. rapa. (B) Yellow boxes represent exons, and black lines indicate introns. (C) The colored boxes
indicate motifs, as shown by the legend on the right.
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Figure 3. Syntenic relationships among NPF genes of Brassica rapa, B. nigra, B. oleracea, and Arabidopsis.
The chromosomes of B. rapa (chromosomes A01 to A10), B. nigra (B1 to B8), B. oleracea (C01 to C09),
and Arabidopsis (Chrl to Chr5) are shown in red, orange, green, and brown, respectively. Collinear
gene pairs were mapped onto chromosomes and are connected to each other. The collinear gene pairs
from B. rapa and B. oleracea, B. rapa and B. nigra, B. rapa and Arabidopsis, B. nigra and B. oleracea, B.
nigra and Arabidopsis, B. oleracea and Arabidopsis are connected by light blue, green, pink, red, purple,
and orange lines, respectively. Segmental duplication genes in B. oleracea are connected by dark blue
lines. The locations of tandem duplicated genes are indicated with black lines. Only the names of
collinear gene pairs are shown.

To evaluate the collinear relationships of all NFP genes in Arabidopsis, B. rapa, B. nigra,
and B. oleracea, collinear gene pairs were identified using the MCScanX software package.
A total of 26, 18, and 13 gene pairs were identified between B. rapa and B. oleracea, B. rapa
and B. nigra, and B. rapa and Arabidopsis, respectively (Figure 3 and Table S3). All syntenic
NPF genes in B. rapa were located on chromosomes A01, A02, A07, and AQ09 (Figure 3). Six
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segmental duplication events were also identified within the B. oleracea genome (Figure 3),
indicating that the greater numbers of NPFs in the B. oleracea genome could be due to
segmental gene duplication events in its genome.

2.1.4. Cis-Elements in Promoters of BrNPFs

In order to identify the cis-regulatory elements in BrNPF promoters, cis-elements were
analyzed using the PlantCARE platform (https:/ /bioinformatics.psb.ugent.be/webtools/
plantcare/html/ accessed on 16 August 2022). A total of 904 phytohormone-responsive
elements, 1605 environmental-responsive elements, 205 plant growth, and development-
related elements, and 979 transcriptional factor binding sites were predicted within the
promoters of the 85 BrNPFs (Table S4). Among these, light-responsive, MYB transcription-
binding, MYC transcription-binding, and ABA-responsive cis elements were the four most
prevalent (Table S4). Thus, most BrNPFs respond to diverse environmental stresses and are
regulated by various transcriptional factors (TFs).

2.2. Tissue Expression of BrNPFs Reveals Their Potential Functions during Pollen Development

In order to investigate the expression of BrNPFs, their expression patterns were com-
pared using RNA-sequencing data from 59 different organ or tissues samples, including
callus, roots, stems, stem leaves, flowers, siliques, head leaves (24 samples), developmental
stages of floral buds (10 samples), pistils (four samples), unfertilized ovules, embryos
(seven samples), and seed coats (seven samples) (Table S5). BrNPFs were differentially
expressed among groups of the 59 tissue samples (Figure 4). The BrNPF1.1, BrNPF1.2,
BrNPF1.3, and BrNPF6.5 genes were generally predominantly expressed in all tissues except
embryos and seed coats. BrNPF2.5 and BrNPF2.21 were mostly expressed in stem leaves
and opened flowers. BrNPF7.3 and BrNPF7.5 were predominantly expressed in roots,
while BrNFP7.1 was predominantly expressed in callus tissues. BrNPF2.5 and BrNPF2.21
were mostly expressed in all developmental floral buds and late development seed coats.
Further, BrNPF2.6, BrNPF2.15, BrNPF7.6, and BrNPF8.9 were predominantly expressed
in fertile buds from the uninucleate to binucleate pollen stages. The primary difference
between fertile and sterile floral buds is the presence of pollen grains [40]. Accordingly,
BrNPF2.6, BrNPF2.15, BrNPF7.6, and BrNPF8.9 were predominantly expressed per normal
pollen development in B. rapa. Semi-quantitative RT-PCR was conducted to confirm the
expression patterns of these four genes based on the different developmental stages of
floral buds from male genetic sterility (GMS) lines (Figure 5A,B). The expression patterns
of these four genes were similar between RNA-Seq and RT-PCR datasets. Briefly, BrNPF2.6,
BrNFP7.6, and BrNPF8.9 were specifically expressed in the floral buds from F2 (floral buds
containing tread stage pollen) to F3 (floral buds after the tetrad stage, but before containing
mature pollen) stages (Figure 5B). In addition, BrNPF2.15 was only specifically expressed
in F3 floral buds (Figure 5B).

In order to identify the functions of BrNPF2.6, BrNPF2.15, BrNPF7.6, and BrNPF8.9
during pollen development, co-expression analysis was conducted with the RNA-seq data
from five different types of sterile male lines [41-44]. Using a Pearson correlation coefficient
(PCC) value criterion between -0.6 and 0.6, a total of 1627, 1796, 1829, and 2309 genes were
co-expressed with BrNPF2.6, BrNPF2.15, BrNPF7.6, and BrNPF8.9, respectively (Table S6).
GO enrichment analysis was subsequently conducted to assess biological processes related
to these co-expressed genes (Figure 5C). Pollen development, gametophyte development,
and sexual reproduction were represented by the genes co-expressed with BrNPF2.6 and
BrNPF8.9 (Figure 5C). In addition, pollen tube development, pollination, and pollen tube
growth processes were represented by genes co-expressed with BrNPF7.6 and BrNPF8.9
(Figure 5C). Co-expression analysis and reference to Arabidopsis revealed that several
pollen coats or tapetum development-related genes were co-expressed with BrNPF2.6
and BrNPF8.9, including BrSHT (homolog of Arabidopsis Spermidine Hydroxycinnamoyl
Transferase), BrA7 (homolog of Arabidopsis Thaliana Anther 7), and BrPTEN1 (homolog of
Arabidopsis Phosphatase And Tensin Homolog Deleted On Chromosome Ten 1) (Figure 5D) [45-47].
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In addition, BrPRK2 (homolog of Arabidopsis Pollen Receptor such as Kinase 2), BrARO1
(homolog of Arabidopsis Armadillo Repeat Only 1), BrRABA4D (homolog of Arabidopsis Rab
Gtpase Homolog A4d, Atraba4D), and other important genes for pollen tube growth were
represented in the genes co-expressed with BrNPF7.6 and BrNPF8.9 (Figure 5E) [48-50].
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Figure 4. Expression of BrNPFs in different tissues and organs of Brassica rapa. Expression data were
subjected to logy(TPM+1) normalization. Comparisons of stem leaf, stem, and root tissues were
conducted by comparison against seven-week-old Chiifu (B. rapa cv. Chiifu) plants. Flower tissue was
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also generated from blooming plants without floral shoots, while silique tissues were obtained
15 days after pollination. Further, 24 samples from the heading leaves of eleven-week-old plants
were collected. All leaves from the heading leaf samples were divided into eleven whorls extending
from the inside to the outside. Leaves with a length <2 cm and shoot apical meristem (SAM) are
identified as SAMs. Leaves from whorls one, two, three, five, seven, and nine were identified as L1,
L2,L13,L5, L7, and L9, respectively. L2 samples were divided into leaf petiole (L2R2) and leaf blade
(L2R1) samples, while L3, L5, L7, and L9 were divided into regions including the top region (R1),
outer margin region (R2), the middle region of the blade (R3), top region of the petiole (R4), and
middle region of the petiole (R5). FS1-5 and SS1-5 indicate the floral buds from the ‘Bcajh97-01A /B’
GMS A/B line of B. rapa, representing the pollen mother cells, tetrad, uninucleate pollen, binucleate
pollen, and mature pollen stages, respectively. 1 HAP, 3 HAP, and 10 HAP indicate pistils at 1, 3, and
10 h after pollination in the fertile line, respectively.
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Figure 5. Confirmation and analysis of BrNPFs related to pollen development. (A), The phenotype
of male Brassica rapa sterile lines. (B), Semi-quantitative RT-PCR analysis of BrNPFs related to
pollen development within various tissues. (C), GO enrichment analysis of co-expression of BrNPFs.
(D), Network of pollen development-related genes based on co-expression analysis of BrNPF8.9 and
BrNPF2.6. (E), Network of pollen tube development-related genes based on co-expression analysis of
BrNPF8.9 and BrNPF?7.6.
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2.3. Expression of BrNPFs during B. rapa Growth during Vernalization and P. brassicae

NPFs have been previously suggested to be involved in plant responses during ver-
nalization [21]. In order to identify BrNPFs that might be responsive to vernalization in
B. rapa, RNA-Seq data for BrNPFs during vernalization were re-calculated, as previously
described [51]. Briefly, BrNPF2.5, BrNPF2.21, BrNPF3.3, BrNPF6.1, BrNPF6.3, BrNPF7.1,
and BrNPF7.2 were up-regulated during vernalization in both genotypes, while BrNPF7.3
and BrNPF7.5 were only up-regulated in the late bolting type (Table S7 and Figure 6A).
BrNPF2.5 and BrNFP2.21 are homologs of AtNPF2.13 that are responsible for source-to-sink
remobilization of nitrate [15], indicating that they might play important roles during nitrate
remobilization during vernalization. BrNPF3.3 is a homolog of AtNPF3.1 that enables the
transport of GA [28], indicating that BrNPF3.3 might play important role in GA transport
during the developmental phase transition.

The development of clubroot disease can be influenced by nitrogen fertilization [52],
and NPFs are one of the main transporters of nitrogen, indicating that NPFs might be
involved in a response mechanism to P. brassicae infection. RNA-seq data suggested
that many NPF members were expressed after inoculation with P. brassicae (Table S7
and Figure 6B). Briefly, BrNPF2.23 was only responsive to P. brassicae in the susceptible
line, while BrNPF5.3 was induced in the susceptible line after infection by P. brassicae
(Figure 6B). BrNPF2.21 and BrNPF7.4 expressions were both up-regulated in the resistant
line compared to the susceptible line (Figure 6B). BrNPF2.24 exhibited down regulation
in both the susceptible and resistant lines. Thus, NPF genes may participate in clubroot
disease responses via the transport of their specific substrates.

2.4. Expression of BrNPF Responses to Low Nitrate Conditions

Most NPF genes in Arabidopsis are related to nitrate transport, indicating that nitrate
is the primary substrate of NPF proteins [53]. To assess the potential functions of BrNPFs
in nitrate uptake and use, B. rapa seedlings (accession Chiifu-401-42) were hydroponically
cultured in Hoagland’s nutrient solution [21] and treated with low nitrate conditions. After
treatment, plant heights, leaf areas, fresh weights, and nitrogen contents were significantly
lower, while root lengths increased compared to normal growth conditions (Figure 7A-F).
The root and shoot components of seedlings were then separately sampled for RNA-seq
analysis. Considering the criteria of TPM > 1 and fold change values > 2.0, a total of 39
BrNPFs were identified as responsive to low nitrate conditions either in the shoots or roots
(Table S8 and Figure 7G). Among these, ten BrNPFs (BrNPF2.12, BrNPF2.14, BrNPF2.21,
BrNPF2.22, BrNPF2.25, BrNPF2.7, BrNPF3.2, BrNPF5.17, BrNPF7.1, and BrNPF7.2) were
up-regulated in both shoots and roots under low nitrate conditions, while BrNPF1.3 and
BrNPF6.5 were down-regulated in both shoots and roots. Twelve BrNFPs were specifi-
cally responsive to low nitrate conditions in shoots, of which eleven genes (BrNPF2.13,
BrNPF2.23, BrNPF2.24, BrNPF2.5, BrNPF3.3, BrNPF4.8, BrNPF5.19, BrNPF5.22, BrNPF5.3,
BrNPF7.5, and BrNPF8.2) were up-regulated, indicating their potential positive function
in nitrate homeostasis (Table S8 and Figure 7G). Seven genes (BrNPF2.10, BrNPF2.19,
BrNPF2.3, BrNPF5.12, BrNPF5.16, BrNPF5.8, and BrNPF6.3) were only up-regulated in roots
indicating that they may play positive roles in nitrate absorption. In addition, five BrNFPs
(BrNPF1.4, BrNPF2.9, BrNPF3.1, BrNPF5.1, and BrNPF8.4) were down-regulated in roots,
suggesting they may play negative roles in nitrate absorption (Table S8 and Figure 7G).
Three BrNPFs (BrNPF6.6, BrNPF6.7, and BrNPF7.3) were up-regulated in shoots, but down-
regulated in roots, indicating that they may exhibit contrasting roles in roots and shoots
during low nitrate conditions.
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Figure 6. Expression patterns of BrNPFs responsive to vernalization (A) and P. brassicae infection
stress (B). DAT, day after treatment. DAI, the day after inoculation.
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Figure 7. Phenotypic characterization and transcriptome profiling of BrNPFs under low nitrate avail-
ability stress. (A), Brassica rapa phenotype after low nitrate availability treatment. (B—F), Comparisons
of plant height, leaf area, root length, fresh weight, and total nitrate concentrations between normal
treatment and low nitrate-treated B. rapa seedlings. (G), Heatmap visualization of BrNFPs differential
expression due to low nitrate stress.

3. Discussion
3.1. Identification and Analysis of BrNPFs

NEFPs are one of the largest groups of transporter family genes in plants. Genome-wide
identification of NFP family genes has been conducted in many plants based on sequence
and motif conservation, including in Arabidopsis [15], rice [54], apple [17], sugarcane [18],
Brassica napus [19-21], hexaploid wheat (Triticum aestivum L.) [22], spinach (Spinacia oleracea
L.) [23] and tea plants (Camellia sinensis) [24]. In this study, 85 NFPs were identified in B.
rapa, in addition to 110 members in B. oleracea and 97 in B. nigra (Table S1). Ninety-five
NPFs were previously identified in B. rapa (“Chiifu-401”, version 1.5) [1]. The differences in
identification could be explained by the use of a higher quality genome version (“Chiifu-
401", version 3.0) [55], leading to greater accuracy in BrNPF identification. Similar results
were also observed for B. napus, in which 169, 193, and 199 NPFs were identified based
on different versions of B. napus genomic data [19-21]. Brassica species have undergone
an extra genomic duplication event compared to Arabidopsis [56]. Thus, one Arabidopsis
gene should theoretically have one to three orthologs in Brassica genomes. However, the
expansion of NPFs in B. rapa, B. oleracea, and B. nigra represent 1.6-, 2.0, and 1.8-fold
increases relative to the Arabidopsis genome, respectively. Thus, duplicated genes may have
been lost during Brassica evolution. Consistently, AtNPF2.1, AtNPF2.2, and AtNPF2.5 did
not have any orthologs in the three species of Brassica analyzed here, while six, six, and
four orthologs of AfNPF5.2 were identified in the B. rapa, B. oleracea, and B. nigra genomes,
respectively (Figure 1 and Table S1).

Segmental duplication and tandem duplication are two major mechanisms of gene
family duplication in plants [57]. In this study, 22 tandem duplicated genes (25.9%) were
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identified in the B. rapa genome, while no segmental duplication events were identified
(Figure S1). Thus, tandem duplication may be a primary driving force in the expansion of
BrNPFs. In contrast, six segmental duplication events were observed within the genome
of B. oleracea, which may explain the greater number of NPFs in the B. oleracea genome
compared to the B. rapa and B. nigra genomes (Figure 3).

3.2. BrNPF Functions

NPF genes represent one of the largest transporter gene families in plants and par-
ticipate in the transport of diverse substrates across membranes over short or long dis-
tances [11,19]. Cis-elements play key roles in controlling gene expression during plant
development and are responsive to stress [58]. Numerous cis-elements have been previously
observed in the promoter regions of NPFs from B. napus, tea plant, apple, and spinach plants,
in addition to others [14,19,20,23,52]. In the present study, many phytohormone-responsive,
environmental-responsive, plant growth and development-related, and transcriptional
factor binding cis-elements were identified in the promoters of the BrNPFs (Table S4). The
existence of abundant and diverse cis-elements in NPF gene promoters could be related to
their multiple functions during plant development and responses to environmental stresses.

Gene expression patterns can provide clues for predicting gene functions. Conse-
quently, expression profiles for BrNPFs from 59 diverse tissues were analyzed, in addition
to expressional profiles responsive to vernalization and P. brassicae infection between con-
trasting genotypes and under low nitrate availability stress (Figures 4, 6 and 7). Some
BrNPFs exhibited tissue-specific expression, while others exhibited differential expression
due to vernalization, P. brassicae infection, and low nitrate availability. For example, the
homolog of AtNPF3.1, BrNPF3.3, exhibited induction by vernalization (Figure 6A). Ni-
trate was previously reported to delay flowering time via the GA signaling pathway [59].
Further, AtNPF3.1 in Arabidopsis has been reported to be involved in GA transport [60],
with GA increasing during B. rapa vernalization [61]. The up-regulation of BrNPF3.3 due
to vernalization suggests that it might contribute to GA presence during vernalization.
Further, nitrogen fertilization has been shown to affect the susceptibility of B. napus [52].
Homologs of AtNPF2.13 and BrNPF2.21 exhibited up-regulation in the resistant genotype
(Figure 6B). AtNPF2.13 is involved in the remobilization of nitrate from sources to sinks [62],
indicating that BrNPF2.21 might respond to clubroot disease through the redistribution of
nitrate. These results collectively provide new insights for the future functional prediction
and characterizations of BrNPFs.

3.3. BrNPFs and Pollen Development

AtNPF2.8 was previously suggested by co-expression analysis to be involved in the
transport of flavonol-3-O-sophoroside from tapetum cells to pollen walls in Arabidopsis [13].
Two orthologs of AtNPF2.8 were identified in B. rapa, including BrNFP2.6 and BrNPF2.15
(Figure 1 and Table S1). Both orthologs exhibited expression only in fertile floral buds of
MS lines (Figure 5B). Further, BrNPF2.6 was highly expressed in floral buds containing
pollen grains from tetrads prior to the mature stage (from the F2 to F3 stages). In addition,
BrNPF2.15 only exhibited expression in F3-stage floral buds that contain pollen grains
after the tetrad to before the mature stages (Figure 5B). Additionally, gene co-expression
profiles and associated GO enrichment biological processes differed between BrNFP2.6
and BrNPF2.15. For example, pollen development was represented by genes co-expressed
with BrNFP2.6, while pollen tube development was suggested by genes co-expressed
with BrNPF2.15 (Figure 5C,D). Thus, the function of AtNPF2.8 might have expanded or
diversified over Brassica evolution. Flavonol diglucosides are essential for maintaining
pollen fertility and increasing pollen tolerance to environmental stresses [63]. Thus, ex-
panded AtNPF2.8 genes suggest that the regulatory network related to flavonol diglucoside
metabolism during pollen development might be more complex in B. rapa compared
to Arabidopsis.
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BrNFP7.6 and BrNFP8.9 were also specifically expressed in fertile floral buds
(Figures 4 and 5B) and were the only identified orthologs of AtNPF7.1 and AtNPF8.2,
respectively (Figure 1). AtNPF8.2 is also referred to as AtPRT5 and facilitates peptide
transport into germinating pollen and possibly into maturing pollen, ovules, and seeds [36].
Pollen development and pollen tube development were suggested by genes co-expressed
with BrNFP8.9 (Figure 5C-E). Based on the phylogenetic and Semi-quantitative RT-PCR
analysis results, the functions of AtNPF8.2 and BrNFP8.9 may be highly conserved during
pollen development and pollen tube growth. The processes of pollination, pollen tube
growth, lipid oxidation, transport, and response to nutrient levels were also represented by
genes co-expressed with BrNPF7.6, indicating that they might also play important roles
in pollen development. Taken together, the fertile floral buds exhibited genes that were
specifically expressed in these tissues, and these may provide new breeding targets for
creating sterile male lines in B. rapa.

3.4. Responses of BrNPFs during Low Nitrate Stress

Nitrate was previously identified as the main substrate of NPF genes [22,53]. Here
45.9% of BrNPFs (39 of 85) exhibited differential expression due to low nitrate availability
stress (Figure 7G). Among these, ten were induced in both shoots and roots, eleven were
specifically induced in shoots, and seven were only up-regulated in roots, indicating that
they might play positive roles in nitrate absorption, uptake, homeostasis, and redistribution
under low nitrate availability conditions (Table S8 and Figure 7G). AtNPF2.3 in Arabidopsis
functions as a root stele transporter and contributes to nitrate translocation to shoots during
salt stress [12]. In this study, a homolog of AtNPF2.3, BrNPF2.3, exhibited specific induction
in roots, indicating that it might serve a similar function (Figures 1 and 7G). AtNPF6.2
plays key role in regulating leaf nitrate homeostasis [32]. The expression of its homolog,
BrNPF6.5, was repressed in both shoots and roots, indicating that low nitrate availability
may lead to decreased NPF transporter activity (Figures 1 and 7G). AtNPF2.13 is reportedly
involved in the transport of nitrate and GA [15]. A homolog of AtNPF2.13, BrNPF2.21,
was up-regulated in both shoots and roots, indicating that BrNPF2.21 might function in
response to low nitrate availability by coupling to hormone signaling. AtNPF6.3 can repress
lateral root growth under low nitrate availability by promoting basipetal auxin transport
out of roots [3]. In this study, a homolog of AtNPF6.3, BrNPF6.6, was down-regulated
in roots but up-regulated in shoots (Figures 1 and 7G). Taken together, the expression of
BrNPFs under low nitrate availability conditions suggests that there is a crosstalk between
low nitrate stress responses and phytohormone signaling pathways, consistent with results
from previous studies [59].

4. Materials and Methods
4.1. Plant Growth and Low Nitrate Treatments

Uniform B. rapa seeds (accession Chiifu-401-42) were germinated in Petri dishes at
23 £ 1 °C in the dark for two days, followed by hydroponic cultivation of germinated seeds
in Hoagland’s nutrient solution for one week [64]. To establish low nitrate treatments, KNO3
and Ca(NO3), in Hoagland’s solutions were replaced with KCI and CaCl,, respectively.
The final concentration of NO3; ™ in the treatments was 0.1 mM. During cultivation, growth
conditions within growth chambers were set as previously described [65]. After treatments,
the shoots and roots in the low nitrogen and control treatments were individually harvested
and immediately frozen in liquid nitrogen, followed by storage at —80 °C.

In order to collect materials from male sterile (MS) lines, seeds of MS lines from our
previous study were germinated in Petri dishes at 23 £ 1 °C in the dark [40]. Vernalization
was then induced with germinated seeds at 4 °C in the dark for 30 days. After vernalization,
seeds were sown into pots (15 x 15 x 18 cm) containing potting soil and transferred to
a greenhouse, followed by growth at 23 4+ 1 °C with a light intensity of 6000-7000 Lux
under a long day photoperiod (light/dark, 16 h/8 h). After flowering, floral buds were
collected from MS line plants using three biological replicates and with previously reported
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criteria [40]. Root and shoot tissues were collected from three-week-old seedlings without
vernalization. Stem and leaf tissues were sampled from plants one week after bolting.
The siliques were collected two weeks after pollination. After sampling, tissues were
immediately frozen in liquid nitrogen and stored at —80 °C until further analysis.

4.2. Identification of BrNPFs in Three Prototypical Diploid Species of Brassica

To identify NPF proteins from three prototypical diploid species of Brassica, all putative
protein sequences encoded by the B. rapa (“Chiifu-401", version 3.0) [55], B. oleracea (“JZS,”
version 2.0) [66] and B. nigra (“Nil00”, version 2.0) [67] genomes were downloaded from
the Brassicaceae Database (BRAD; www.brassicadb.cn accessed on 20 April 2022). The
previously identified 53 AtNPFs were used as queries to search against Brassica protein
sequences (using an E-value < 10~° and identity > 20%). Search hits without a proton-
dependent transport 2 (PTR2) domain (PF00854) were excluded based on HMM analysis
with an E-value cut-off of 1075, In order to identify all potential NPFs among the three
Brassica, the search baits were used as BLAST queries for searching against the Phytozome
13 and NCBI databases with an E-value < 10~° and identity > 20%. No additional predicted
NPFs were identified at this stage. All NPFs were identified according to previously
reported rules [1].

4.3. Phylogenetic and Bioinformatic Analysis of BrNPFs

Phylogenetic analysis was conducted with the NPF protein sequences from Arabidopsis,
B. oleracea, B. nigra, and B. rapa after alignment with the MUSCLE program, implemented in
MEGAG®6 with default parameters [68]. An unrooted phylogenetic reconstruction was then
constructed using MEGA6 with neighbor-joining methods and analysis parameters, includ-
ing pairwise taxa deletion, 1000 bootstrap replicates, and the use of the Jones Taylor Thorn-
ton (JTT) amino acid substitution model [69]. The chromosomal positions of each NPF from
the three genomes were identified among those from the BRAD (www.brassicadb.cn ac-
cessed on 16 August 2022) and visualized with a custom Python script. The isoelectric point
(PI) and molecular weights (MWs) of the NPFs were analyzed using the ProtParam tool
(Expasy, the Swiss Bioinformatics Resource Portal, https://web.expasy.org/protparam/
accessed on 16 August 2022) [70]. Subcellular localization predictions of NPFs were con-
ducted using the WoLF PSORT software package (https://wolfpsort.hgc.jp/ accessed on
16 August 2022) with default settings. Conserved motifs in the BrNPFs were identified
using the MEME software program (Suite 5.1.1, http:/ /meme-suite.org/ accessed on 16
August 2022) [71]. BrINPFs gene structures were drawn using the Gene Structure Display
Server (GSDS; version 2.0, http:/ /gsds.cbi.pku.edu.cn/ accessed on 16 August 2022) [72].

4.4. RNA Extraction, Leaf Area, and Nitrate Content

Total RNA was isolated from 100 mg of homogenized leaves using the RNAiso Plus
Reagent (Takara Biomedical Technology Co., Ltd., Beijing, China) according to the manufac-
turer’s instructions. The outermost leaves of Chiifu seedlings were dissected for leaf area
determination using a Yaxin-1241 leaf meter (Beijing Yaxinliyi, Beijing, China), following
the manufacturer’s instructions. The nitrogen concentrations of oven-dried shoots were
measured using the Kjeldahl method with a JK9830 Kjeldahl Auto Analyzer (ELITE-Lab
Instrument Co., Ltd., Jinan, China) [73] and are expressed as concentrations of per hundred
dry matter (g/100 g).

4.5. RNA-Sequencing and Assembly

RNA samples from low nitrate treatments were sent to Gene Denovo Biotechnology
Co., Ltd. (Guangzhou, China) for RNA-Seq analysis. The RNA libraries were constructed
and sequenced on the Illumina platform. Sequencing and analyses were conducted fol-
lowing standard protocols at Gene Denovo Biotechnology Co., Ltd. (Guangzhou, China).
Filtered clean reads were then mapped to the reference genome (“Chiifu-401”, version 3.0)
using the HISAT2 software program [74], and transcripts per million (TPM) values were
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calculated using DESeq [75]. Raw sequencing data were deposited in the China National
Center for Bioinformation (CNCB) under the project ID PRJCA012597.

4.6. Expression of BrNPFs within RNA-Seq Data

To analyze the expression of BrNPFs among various tissues, publicly available RNA-
seq data from 59 different organs or tissues of B. rapa were retrieved from the NCBI
database via the Bioproject accessions PRINA185152, PRINA778186, PRINA641876, and
PRJNA473318 [76-79]. Data were included from tissues comprising callus, stems, stem
leaves, opened flowers, siliques, different developmental stages of heading leaves, floral
buds, pistils, embryos, and seed coats. Gene expression levels were re-calculated using the
transcripts per million (TPM) metric. Heatmaps for expression profiles of BrNPFs were
generated using the TBtools software program (version 1.0987663) [80].

The expression of BrNPFs after vernalization was recalculated for a previous study
(BioProject PRINA615255) using the TPM metric [51]. To achieve vernalization, two inbred
B. rapa accessions, including a late bolting type (JWW) and an early bolting type (XB]),
were investigated. Prior to vernalization, both inbred lines were grown at 25 + 2 °C for
32 days under natural light conditions. Both inbred lines were then transferred to a growth
chamber at 4 °C with 150 pmol m~2s~! light intensity under long daylight conditions
(16/8 h, day/night) for vernalization, followed by a collection of the third fully expanded
leaves from the center for subsequent analyses. JWW leaves were collected after 0, 25, 30,
35, 45, and 50 days following treatment. XB]J leaves were collected 0, 10, 15, 25, 40, and
50 days after treatment.

The TPM values of BrNPF genes were recalculated after infection with Plasmodiophora
brassicae, as described in previous studies (Bio-Project PRINA743585) [81]. In order to
initiate P. brassicae infection, 20-day-old healthy plants of resistant (BrT24) and susceptible
(Y510-9) B. rapa genotypes were inoculated with 20 mL of a P. brassicae (race 4) solution.
For the control group, 20 mL of sterile water was used for inoculation. The root samples
for each genotype were then collected at 0, 3, 9, and 20 d after inoculation, based on the
four-time points of disease development [81].

4.7. Semi-Quantitative RT-PCR

First-strand cDNA was synthesized using the PrimeScript™ RT reagent Kit (Takara
Biomedical Technology Co., Ltd., Beijing, China) using 1 ug of total RNA. Synthesized
cDNA was then diluted to 10 ng/uL for PCR amplification. Semi-quantitative RT-PCR
assay reactions (20 pL) contained: 2 pL (20 ng) template cDNA, 1.0 puL (10 pmol) of
forward primer, 1.0 pL (10 pmol) of the reverse primer, 10 uL 2 x Tag PCR StarMix
(GenStar Biosolutions Co., Ltd., Beijing, China) and 6 uL distilled water. The thermocycling
conditions were: denaturation at 94 °C for 5 min, followed by 94 °C for 30 s with 28 cycles,
then 55 °C for 30 s, and 72 °C for 60 s. PCR primer sequences used for semi-quantitative
RT-PCR are shown in Table S9. Semi-quantitative RT-PCR products were separated on 1.5%
agarose gels and stained with ethidium bromide to evaluate amplification success.

5. Conclusions

Here, a total of 85, 110, and 97 NFP proteins were identified in the genomes of B. rapa,
B. oleracea, and B. nigra, respectively. The gene structures, chromosomal locations, con-
served motifs, cis-elements, evolutionary relationships, gene duplications, and expression
patterns of the BrNFPs were systematically analyzed. These results provide new targets
for future studies to elucidate the molecular mechanisms underlying BrNPF functions in
pollen development, nitrate utilization, responses to vernalization, and P. brassicae infection
response in B. rapa, especially for BrNPF2.6, BrNPF2.15, BrNPF7.6, and BrNPF8.9 showing
potential for generating sterile male lines based on gene editing methods in B. rapa and,
possibly, other crops.
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Figure A1. Chromosomal locations of BrNPFs identified in this study. The chromosomal number is
indicated above each chromosome. Black ovals on each chromosome indicate centromeric regions.
Tandem duplicated genes are indicated by purple rectangles.
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