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Abstract: The research on new treatments for dry eye diseases (DED) has exponentially grown
over the past decades. The increased prevalence of dry eye conditions, particularly in the younger
population, has received much attention. Therefore, it is of utmost importance to identify novel
therapeutical targets. Regulated cell death (RCD) is an essential process to control the biological
homeostasis of tissues and organisms. The identification of different mechanisms of RCD stimulated
the research on their involvement in different human pathologies. Whereas apoptosis has been widely
studied in DED and included in the DED vicious cycle, the role of RCD still needs to be completely
elucidated. In this review, we will explore the potential roles of different types of RCD in DED and
ocular surface dysfunction. Starting from the evidence of oxidative stress and inflammation in dry
eye pathology, we will analyse the potential therapeutic applications of the following principal RCD
mechanisms: ferroptosis, necroptosis, and pyroptosis.
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1. Introduction

Considered one of the most prevalent eye syndromes, keratoconjunctivitis sicca, com-
monly known as dry eye disease (DED), affects millions of people worldwide, with a
percentage ranging between 5 to 50% [1]. The Tear Film & Ocular Surface Society (TFOS)
Dry Eye Workshop II (TFOS DEWS II) in 2017 defined dry eye as “a multifactorial disease of
the ocular surface characterized by a loss of homeostasis of the tear film and accompanied
by ocular symptoms, in which tear film instability and hyperosmolarity, ocular surface
inflammation and damage, and neurosensory abnormalities play etiological roles” [2]. In
the past years, the impact of this disorder has increased worldwide, particularly among
the younger population [3]. The major risk factors are frequent use of video screens, envi-
ronmental causes such as pollution and low humidity, and wearing of contact lenses [4].
The symptoms can be mild or more severe, generally leading to discomfort and visual
disturbance [5]. Epidemiological studies underline that age and sex have an impact on the
symptoms and signs of DED [6]. Indeed, hormones seem to influence the incidence of eye
disorders in the population, particularly DED [7]. The female sex is considered a risk factor
with a prevalence between 10–20% of DED, especially in the post-menopause stage [8].
During menopause, reduced estrogen levels promote evaporative DED [9]. However,
recent studies hypothesised that menopause evaporative DED was actually due to the
reduction of androgens levels rather than estrogens [7,10–12]. Therefore, additional studies
are needed to further elucidate the role of estrogens in DED [13]. In addition, iatrogenic
intervention is one of the most studied causes of DED [14]. In iatrogenic DED, the common
risk factors are the use of topical drugs (mainly linked to the presence of preservatives) [15],
systemic medications (DED can be a consequence of adverse effects) [16], contact lenses
wear, and ophthalmological surgical procedures (related to the procedure itself or as a
transitory/permanent side-effect) [14].

Based on an etiological classification, DED can be subdivided into Aqueous Deficient
Dry Eye (ADDE) and Evaporative Dry Eye (EDE) [17]. In ADDE, lacrimal tear secretion and
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volume are reduced, leading to hyperosmolarity and tear film instability [18]. Consequently,
the inflammatory mediators are released and detected in the tears of patients suffering
from ADDE, particularly in patients affected by Sjögren syndrome dry eye (SSDE) [19].
The Sjögren syndrome is a multifactorial autoimmune endocrinopathy associated with
immunologic abnormalities, and is characterised by a severe form of dry eye and/or dry
mouth [20]. In EDE, normal lacrimal secretion is followed by excessive evaporation of the
tear film, leading to tear hyperosmolarity. The most important aspect of EDE is the meibo-
mian gland dysfunction (MGD), which alters lipid secretion perturbating the corresponding
lipid layer of the ocular surface [21]. Consequently, the tear components are modified and
the aqueous layers evaporate rapidly [22]. The alteration in the electrolytes equilibrium
can cause damage to the ocular surface and tear film, promoting hyperosmolarity and
oxidative stress [23]. As a consequence, the concentration of reactive oxygen species (ROS)
on the ocular surface increases, propagating dry eyes into a vicious circle [24–26]. The tear
hyperosmolarity is the main factor responsible for the activation of different pathways
leading to the release of inflammatory mediators and proteases [24,27].

Dry eye disease concerns ocular surface composed of cornea, conjunctiva, tear film,
lacrimal glands, meibomian glands, eyelids, muscles, and nerves (Figure 1). A healthy hu-
man tear film is composed of lipids, water, mucin, proteins, electrolytes, and vitamins [28].
The tear-secreting glands, the lacrimal and meibomian glands, along with the goblet cells in
the eye and eyelid, produce the tears and work with the ocular surface to maintain optimum
ocular health by lubricating the eye, removing debris, and protecting from infection [29].
The transparent, dome-shaped cornea presents superficial microvilli which aid the tear film
anchorage and regulates the secretion of growth factors and cytokines as a shield [30]. The
conjunctiva, situated between the corneal rim and the lid margin, is composed of goblet
cells responsible for mucin secretion [31]. Externally, the eye is coated with the tear film,
formed by three different regions: an external lipid layer, a mild aqueous layer, and an inner
mucin layer [32]. The lipid layer is regulated by the meibomian glands lipids and proteins
secretion and the main role is to prevent evaporation of the aqueous layer [33]. The lacrimal
glands regulate the water, electrolytes, proteins, and mucus content in the aqueous phase,
which is extremely important for eye irritation [34]. The electrolytes play a significant role
to prevent hyperosmolarity and alter physiological conditions [35]. Additionally, the eyelid
contributes to prevent the desiccation of the ocular surface [36]. Internally there is a mucin
layer which acts as a surfactant spreading homogeneously through the tear film of the
ocular surface [37]. Secreted by the conjunctival goblet cells, the mucus is mainly based
on enzymes, mucins, and leukocytes. They also minimise friction and protect the cornea
during blinking [36].

The diagnostic methods currently used in DED diagnosis are based on a questionnaire
called Dry Eye Questionnaire-5 (DEQ-5) or Ocular Surface Diseases Index (OSDI), collecting
all the information to indicate the positivity of DED [38]. Patients normally report burning,
photophobia, itching, and foreign body sensation [39,40]. However, the quantification of
the symptoms is based on the tear film instability measurement (break up time (BUT)), the
tear osmolarity assessment, and the tear volume measurement (Schirmer’s test) [41]. The
next step is the discrimination between the two subtypes, ADDE and EDE, followed by
medical prescription of the treatment according to the severity of the symptoms [42].

One of the therapeutic strategies is the application of artificial tear substitutes to
improve lubrication and decrease evaporation to provide temporary relief. Different for-
mulations, such as eye drops, topical lubricants, gels, and ointments, are available on the
market [43]. The first medication used to treat DED is Cyclosporine A ophthalmic emulsion
0.05% (Restasis®, Allergan, Irvine, CA, United States) [44]. To ameliorate the drug delivery
into the eye, the novel nanomicellar formulation was used for Cyclosporine A ophthalmic
solution 0.09% (Cequa®, Sun Pharmaceutical Industries, Cranbury, NJ, United States) [45].
Cyclosporine acts as an immunomodulator for severe DED, reducing inflammation mark-
ers and cell death on the ocular surface [46]. Recently, Lifitegrast ophthalmic solution 5%
(Xiidra®, Novartis Pharmaceuticals Corporation, Basel, Switzerland) was the first medi-
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cation approved in the United States for the treatment of DED signs and symptoms [47].
Lifitegrast A inhibits the release of cytokines, interferon δ, TNF-α, and other interleukins
preventing the activation of the ocular inflammatory cycle [48]. An additional corticosteroid
drug is Loteprednol etabonate ophthalmic suspension (Eysuvis®, Kala Pharmaceuticals,
Wtaertown, MA, United States) approved for the treatment of inflammatory flares [48].
Additionally, in 2021, the Food and Drug Administration (FDA) approved Varenicline
(Tyrvaya®, Oyster Point Pharma, Princeton, NJ, United States), a nasal spray which stimu-
lates tears, mucins, and oil production and treat both, signs and symptoms [49]. A novel
treatment in phase III of clinical trials, NOV03 is a preservative-free eye drop formulation
that alleviates the dryness of the ocular surface [50]. The necessity for novel preservative-
free formulations has grown in the last years due to the DED increased risk linked with
benzalkonium chloride (BAK), a well-known quaternary ammonium compound commonly
used in the formulations of numerous ophthalmic preparations [26,51,52]. However, the
current, research is focused on the development of novel devices, processes, and medicines
to promote tear secretion rather than substitute them with medications or eye drops [53].
Therefore, the identification of additional biochemical pathways involved in the patho-
physiology of DED is fundamental to specifically address the research of novel treatments.
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Figure 1. Representation of the ocular surface and tear film composition. The tear film is constituted
by the external lipid layer which prevents evaporation in physiological conditions, the aqueous layer,
responsible for lubrication, and the nutrients content to maintain osmolarity, and the mucin layer
which protects the internal corneal epithelium.

2. Oxidative Stress and Inflammation in DED

Oxidative stress is considered one of the main hallmarks of dry eye, leading to in-
flammation and general discomfort [26,54–56]. An imbalance between ROS production
and the antioxidant capacity of the organism results in oxidative stress. Consequently,
ROS accumulation can be responsible for damage at different levels and particularly on
the membrane and ocular surface [57–59]. The reactive hydroxyl radical can initiate the
lipid peroxidation of cell membranes and induce the accumulation of lipid hydroperox-
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ides leading to membrane disruption and ultimately cell death [60]. Increased levels of
lipid hydroperoxide are detected by two major biomarkers, malondialdehyde (MDA) and
4-hydroxynonenal (4-HNE) [20]. The presence of both MDA and 4-HNE have been detected
in the tear film and ocular surface in DED patients [61,62]. The increased concentration of
lipid hydroperoxides seems to correlate positively with other parameters detected in DED
diagnosis, such as tear film break-up time and Schirmer tear volume [25].

Following ROS -induced lipid peroxidation and in response to cellular stresses,
mitogen-activated protein (MAP) kinases and nuclear factor kappa- B (NF-kB) are ac-
tivated and mediate the release of inflammatory cytokines IL-1α, IL-1β, tumour necrosis
factor-alpha (TNFα) and metalloproteinase 9 (MMP-9) [63–65]. Moreover, the inflam-
matory response in cornea and conjunctival cells is enhanced by T-cell upregulation of
CD3+, CD4+, and CD8+, and the release of additional pro-inflammatory cytokines such
as IL-6 and IL-8 [66,67]. Although the implication of inflammation in DED has been
known for more than 40 years, its role as cause and effect of DED was established only
recently [68]. Moreover, inflammation is also included in the new concept of the “vicious
cycle of inflammation” (Figure 2) proposed by Baudouin et al., where tear film instability,
tear hyperosmolarity, apoptosis of corneal/conjunctival cells, and inflammation in the
ocular surface are the key features [24]. Breaking the cycle by targeting one of the main
factors is considered a valid therapeutic strategy [24]. Starting with tear film instability and
hyperosmolarity, the quality of tears can be affected by a decrease of the water content or
an increase of evaporation [69]. As a consequence, inflammatory mediators are released
in the tear fluid resulting in the release of inflammatory cytokines, leading to damage
to the corneal and conjunctival cells and consequent cell death through apoptosis [70].
All these features aggravate the inflammation and maintain the vicious cycle promoting
hyperosmolarity and tear film instability.
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Figure 2. Representation of the vicious cycle of inflammation. Figure adapted from Baudouin C. et al. [24].

Based on the implication of oxidative stress and inflammation in dry eye etiopathology
and considering the role played by apoptosis in the dry eye vicious cycle, the possible
involvement of different types of regulated cell death (RCD) in DED and other ocular
surface diseases was investigated [71,72]. In the first part of this review, we introduce the
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concept of RCD starting from apoptosis. In the second part, the possible role of the most
investigated types of RCD, ferroptosis, necroptosis, and pyroptosis, is examined, as well as
their potential as a therapeutic target for the treatment of DED. The specific biochemical
mechanisms and the hallmarks for ferroptosis, necroptosis, and pyroptosis are described
together with DED ocular surface biomarkers (Table 1).

Table 1. Overview of the different DED biomarkers of the ocular surface and their possible connection
with the different RCD.

DED Biomarkers on the Ocular Surface Biomarkers [73] Possible Correlation with RCD

Inflammatory biomarkers [74]

TNF-α XNecroptosis
MMP-9 5 (Apoptosis)
IL-1β XPyroptosis
IL-6 XNecroptosis
IL-17A 5 (Apoptosis)
IL-18 XPyroptosis

Tear film biomarkers [75–77]

ROS XFerroptosis, necroptosis
Hyperosmolarity XFerroptosis
Lipid peroxidation XFerroptosis
↓Lactoferrin 5 n.d.*
↓Lysozyme 5 n.d.*
Chemokyne/cytokines XNecroptosis, pyroptosis

* n.d. = not defined. It is not associated with a specific cell death mechanism.

3. Regulated Cell Death (RCD): An Emerging Field

Cell death is considered one of the most important mechanisms to maintain cell home-
ostasis and integrity of multicellular organisms [78]. Primarily observed by Carl Vogt in
1842, it has been studied for more than two centuries [79]. Over the past decades, many
experimental evidence unveiled and characterised a detailed set of endogenous genes
involved in the cell death machinery [80]. In 1964, Lockshin and Williams introduced the
concept of “programmed cell death” (PCD), based on the observed cells capacity to induce
a genetically regulated self-destruction [81–83]. In 1972, with the definition of the term
“apoptosis” by John Kerr and his group, the concept of “regulated cell death” emerged [84].
Traditionally, a distinction was made between regulated (RCD) and accidental cell death
(ACD), based on the different morphological features [80]. Specifically, RCD was used as a
synonym for apoptosis, while ACD referred to necrosis [85]. While RCD can undergo spe-
cific morphological modification that can be potentially targeted, ACD occurs in response
to extreme physical stresses with a nonspecific response preventing any molecular inter-
vention [86]. Since 2005, the Nomenclature Committee on Cell Death (NCCD) formulated
guidelines for the classification of different cell death types [87]. They proposed unified
criteria that moved from the historical oversimplistic classification of RCD and ACD to a
more updated classification based on events associated with specific cell death modalities,
their biological context, and effectors [80]. With an increased number of research groups
working in the field of regulated cell death, the importance of this phenomenon is now
widely recognised and many novel types of non-apoptotic RCD have been identified over
the last 20 years [85,88].

Among RCD, apoptosis and inflammatory RCD can be separately distinguished [89].
Apoptosis is characterised by cell shrinkage, with consequent reduction of cellular vol-
ume, chromatin condensation, membrane blebbing, nuclear fragmentation, and the final
separation of the cellular components into apoptotic bodies collected by neighbouring
cells with phagocytic activity and degraded by lysosomes [80,84]. These specific biochem-
ical features distinguish it from the other RCD. More importantly, in apoptosis, there is
no disruption of the cellular membrane and, therefore, no inflammation process occurs,
whereas inflammatory RCD is characterised by an inflammatory response induced by cell
membrane lysis and release of cytosolic material [90]. The most widely studied RCDs
are: ferroptosis, an iron-dependent form of regulated cell death driven by enhanced lipid
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peroxidation which reduces the organism antioxidant defence-inducing cell damage [91];
necroptosis, a programmed form of necrosis dependent on RIPK1-RIPK3 activation of
MLKL [92]; pyroptosis, an inflammasome gasdermin D dependent form of RCD [93].

The role of apoptosis in DED has been investigated for several years. A correlation
between ocular surface inflammation and the expression of proapoptotic markers (Fas,
Fas ligand, APO2.7, CD40, and CD40 ligand) has been found [94]. In chronic dry eye in
human and dog models, apoptosis has been demonstrated [70]. Recently, the upregulation
of apoptosis in human corneal epithelial cells (HCEpiCs) because of hyperosmolarity has
been verified [95]. Vitoux M.A. et al. demonstrated that BAK can induce apoptosis in
a concentration-dependent manner in HCE [96]. Whereas, a recent study reported BAK
not only as oxidative stress and apoptosis inducers, but also as a trigger of emerging cell
death mechanisms [97].

More importantly, apoptosis is included in the vicious cycle of DED as reported by
Baudouin and co-workers, underlying the relevant role of conjunctival and corneal cell
death in the etiopathology of dry eye [98]. Therefore, the possible implication of the
inflammatory RCDs ferroptosis, necroptosis, and pyroptosis as a potential therapeutic
target for DED is also examined.

4. Targeting RCD as an Innovative Strategy in DED
4.1. Ferroptosis

Ferroptosis is an iron-catalysed non-apoptotic form of cell death initially described in
RAS-mutated oncogenic cells and more recently connected with the pathophysiological
processes of many diseases in different vital organs (Figure 3) [99,100]. The key features
of ferroptosis are the accumulation of lipid peroxides, abnormal iron metabolism, and
reduced levels of glutathione (GSH) as well as GPX4, which can lead to a reduced antiox-
idant defence of the cells, damage on the phospholipids bilayers, and consequently, cell
death [101,102]. Specifically, during lipid peroxidation, a chain reaction of bis-allylic hydro-
gen abstraction and oxygenation of polyunsaturated fatty acids (PUFAs) of phospholipids,
catalysed by redox-active iron, results in the accumulation of toxic lipid hydroperox-
ides [103]. Iron availability is regulated by two main sources: ferrous iron (Fe2+) in the
cytosolic labile iron pool (LIP) and in the catalytic centres of non-heme iron proteins, e.g.,
lipoxygenase (LOXs) [104]. The former leads to non-enzymatic random oxidation based on
Fenton reaction, whereas the latter gives enzymatic oxidation of specific substrates [105]. In
addition, the enzyme GPX4 can control iron-dependent lipid peroxidation by the reduction
of reactive lipid peroxides in their corresponding inactive lipid alcohols [101]. In order to
exert its mechanism of action, the selenocysteine GPX4 requires two electrons provided
by the intracellular cofactor GSH, synthesised from cysteine [106]. Cysteine availability is
regulated by cystine/glutamate antiporter (System Xc-), which transports cystine inside
the cytosol in exchange for glutamate in a 1:1 ratio [107]. Activating or blocking the ferrop-
tosis pathway to alleviate the progression of the disease provides a promising therapeutic
strategy [100]. Recent studies reported the implication of ferroptosis in the occurrence and
progress of many diseases, such as tumours, neurological diseases, acute kidney injury, and
ischemia/reperfusion [108–112]. There are different eye disorders where the implication of
lipid hydroperoxide and GPX4 have been underlined, without proving the ferroptosis role.
Whereas the presence of the main hallmarks has been detected in retinal cells, photorecep-
tors, cornea, and conjunctival cells, ferroptosis has been confirmed in the ethiopathology of
only a few conditions [113]. Therefore, further research should be undertaken to investigate
the potential central role of ferroptosis in other eye disorders [114].

Possible Implication of Ferroptosis in Dry Eye and Ocular Surface Dysfunction

ROS accumulation and modification of the lipid layer on the ocular surface are key
features in the pathogenesis of DED as described in Section 2. Oxidative stress and in-
flammation in DED [115]. Different studies underlined how the loss of cell functions is an
important contribution to the alteration of the ocular barrier [35,116,117]. We hypothesise,
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therefore, that ferroptosis can be considered as a key mechanism in the etiopathology
of DED.
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Figure 3. Overview of ferroptosis pathway. The system Xc- exchanges glutamate and cystine in
a 1:1 ratio. From cystine, GSH is synthesised and available as a substrate for GPX4, responsible
for controlling the lipid peroxidation process. Transferrin is responsible for the intake of Fe3+,
which is transformed into its reduced form ferrous iron (Fe2+) by the metalloreductase STEAP3.
Fe2+ constitutes the labile iron pool and mediates lipid peroxidation via the Fenton reaction. The
lipid peroxides chain process is depicted in the central area of the figures. PL = phospholipids;
PL• = phospholipid radicals; PLOOH = phospholipid hydroperoxides; PLO• = alkoxyl phospholipid
radicals; PLOO• = phospholipid peroxyl radicals; PLOH = phospholipids alcohols.

The cornea is exposed to many different external and environmental factors [118].
Ultraviolet radiation (UV) and global warming are among the causes that can promote
oxidative stress and, consequently, cornea cell dysfunction [114,119]. GPX4 is one of the
enzymes that maintains redox homeostasis and promotes wound healing [115,120]. As
described in Section 4.1 Ferroptosis, reduced availability of GSH or GPX4 promotes lipid
peroxidation and decreases regeneration of the corneal epithelium [121]. The addition
of α-tocopherol, a lipophilic antioxidant, and known ferroptosis inhibitor, significantly
improved the delay in wound healing [120]. This study suggested how ferroptosis in-
hibition can help to protect the corneal cells. Recently, Katsinas N. et al. demonstrated
the antioxidant and anti-inflammatory activity of a phenolic extract from olive pomace,
which can control the imbalanced ROS formation [122]. In an additional study reported
by Lovatt M. et al., the use of another well-known ferroptosis inhibitor, Ferrostatin-1, in
the Fuch’s endothelial corneal dystrophy (FECD) could prevent the accumulation of lipid
peroxides [123]. Recently, Yuan J. and co-worker reported a study where excessive ROS
production induced ferroptosis in a DED model [124]. They verified the upregulation of
the enzyme aldo-keto reductases (AKR1C1), which is responsible for detoxifying 4-HNE in
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its corresponding non-toxic byproduct. Moreover, they detected a decrease of the common
inflammatory biomarkers expression (TNFα, IL-1β) after Ferrostatin 1 treatment in a mouse
model. However, partial ferroptosis was detected in HCE cells under hypertonic conditions
and AKR1C1 overexpression. Certainly, additional studies are required to fully confirm the
potential role of AKR1C1 in ferroptosis and DED.

The tear fluid contains several antioxidants able to protect the ocular surface from dif-
ferent diseases connected with ROS accumulation [125]. In patients suffering from Sjogren’s
syndrome, where there is a lack of tear fluid, a high level of late and early-stage lipid peroxi-
dation biomarkers such as 4-HNE and hexanoyl-lysine (HEL) have been detected [20]. ROS
overexpression might be induced by exposure to atmospheric oxygen and/or alteration
of antioxidant support, contributing to tear film instability and consequent ocular surface
damage and inflammation [58]. Among the most common damage caused by ROS, lipid
peroxidation of the membrane, oxidative stress of protein, and oxidative damage of DNA
have been highlighted [126]. Wakamatsu T.H. et al. detected an increased lipid peroxidation
in the tear film and conjunctival cells [59]. Unfortunately, very little is described regarding
the role of epithelial lipids in the cell death process and inflammation involved in eye disor-
ders, particularly in DED. In a recent study reported by Magny R et al., lipid markers were
analysed as a consequence of BAK and hyperosmolarity inflammation [127]. In patients
suffering from dry eye, an alteration of the cornea epithelial cells due to the accumulation
of ROS was observed, reducing the differentiation capacity of the cells and hindering the
blinking mechanism [128]. Possibly, the use of a radical scavenging agent might be an
interesting therapeutic approach, particularly lipid radical trapping antioxidants (RTAs)
could tackle the accumulation of lipid peroxides [129].

The exposure of the ocular surface to oxidative stress together with UV light and envi-
ronmental stress is also responsible for many dysfunctions of the conjunctiva [118,130]. Dry
eye, atopic keratoconjunctivitis, and conjunctivochalasis are only a few of the pathologies that
can affect the ocular surface, caused by an alteration of the redox balance [31,58,127,131,132].
Together with other antioxidative enzymes such as GPX1, and superoxide dismutase (SOD1
and SOD2), GPX4 controls redox homeostasis [121,133,134]. Specifically, a reduction of its
expression could lead to lipid ROS accumulation, promoting cell deaths in conjunctival cells
and diseases associated with oxidative stress. Although apoptosis is the main mechanism
of cell death associated with GPX4 loss, the recently discovered ferroptosis could also be
considered as a possible mechanism involved in the alteration of the conjunctival cell and
different eye diseases [135]. Sakai O. et al., verified the fundamental role of GPX4 in human
conjunctival epithelial cells to maintain oxidative homeostasis and protect conjunctival
cells from cytotoxicity [136]. Although further evidence is needed, all the elements above
suggest that ferroptosis and GPX4 could be novel therapeutic targets for dry eye disease
and other ocular surface diseases.

The correlation between ferroptosis and other types of eye diseases is beyond the
scope of this review. However, it is relevant to mention that previous studies detected the
presence of ferroptosis hallmarks in age-related macular degeneration (AMD) [137–142],
glaucoma [113,143], retinitis pigmentosa [113,144,145], cataract [132,146], Retinal Ischemia-
Reperfusion Injury (RIRI) [113,147], and alkali burn [148].

4.2. Necroptosis

Necroptosis is a caspase-independent form of regulated cell death that can be triggered
by TNFα, toll-like receptors TLR3-TLR4, interferon receptor 1 (IFNAR1), Z-DNA binding
protein 1 (ZBP1), and Fas (Figure 4) [149]. Necroptosis is regulated by the activity of
receptor-interacting serine/threonine kinase 1 (RIPK1), a serine/threonine protein kinase
which can be activated through the phosphorylation of its kinase domain. Activated RIPK1
then recruits RIPK3 through the interaction with the conservative RIP homotypic interaction
motif (RHIM) which forms the so-called Necrosome [150]. Then RIPK3 phosphorylates
the Thr357 and Ser358 residues of downstream protein mixed lineage kinase domain-
like (MLKL), which oligomerises and translocates to the plasma membrane [151]. Here,
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pMLKL can execute necroptosis, inducing direct rupture of the plasma membrane, and
form a pore-complex to promote leakage of intracellular material, or can dysregulate the
Na+ and Ca2+ channels, leading to increased intracellular osmotic pressure and final cell
death [152,153]. The membrane permeabilization induces the release of different pro-
inflammatory cytokines, promoting inflammation [92]. Moreover, mitochondrial ROS
production contributes to necroptosis induction, although the exact mechanism is not
completely understood [154]. RIPK1 can be therapeutically targeted in order to inhibit
necroptosis and the consequent inflammatory process. In different organs and pathologies,
necroptosis plays a fundamental role and, therefore, has been widely investigated since
2005 [155]. Upregulation of RIPK1 was detected in ischaemia-reperfusion injury (IRI),
atherosclerosis, acute kidney injury, and neurodegenerative diseases [156–161]. Recently,
different studies revealed the possible implication of necroptosis in ocular conditions,
with particular attention paid to corneal surface dysregulation [144,162–164]. Additionally,
RIPK1 also regulates cell survival and a form of RIPK1-dependent apoptosis (Figure 4) [165].
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Figure 4. Overview of the TNF-mediated RIPK1 activation pathway. (1) RIPK1 can mediate cell
survival when cIAP1/2 and LUBAC polyubiquitinate different components of TNFR1-complex I,
resulting in the downstream activation of TAB2/TAB3/TAK1 and NEMO/IKKα/IKKβ complex. The
activation of IKKα/β can promote cell survival by NF-kB-dependent upregulation of pro-survival
genes. (2) When complex IIa is formed, it can mediate apoptosis. CYLD deubiquitinates RIPK1
which subsequently is released from complex I. The TRADD-RIPK1 complex recruits FADD, activates
caspase 8, and leads to cell death by apoptosis. (3) Complex IIb-mediated apoptosis which is
dependent on RIPK1 activity. When no RIPK1 ubiquitination can occur, complex IIb or the riptosome
is formed. This results in the induction of apoptotic cell death through a pathway similar to that
of complex IIa. (4) Complex IIc (Necrosome)-mediate necroptosis. When deubiquitinated RIPK1 is
present and caspases are inactivated, necroptosis will occur as a rescue mechanism, since caspase
8-dependent apoptosis can not happen. The execution of necroptosis is dependent on the kinase
activity of both RIPK1 and RIPK3, which activate downstream protein MLKL.

Possible Implication in Dry Eye and Ocular Surface Dysfunction

Recently, Shi K. et al. reported the implication of necroptosis in airborne particulate
matter (PM) ocular surface injury [71]. Necroptosis can induce cell death in the cornea
epithelial cells following PM exposure. Currently, this is the only study that verified
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necroptosis on the ocular surface, demonstrating a potential link between necroptosis and
DED. Indeed, DED is the most frequent clinical condition induced by PM exposure [71].
Treatment with Nec-1 successfully increased cell viability and reduced ROS formation,
confirming the potential of using necroptosis inhibitors to prevent cell death. Moreover,
considering the etiopathology of DED, it appears that inflammation is one of the main
features together with the redox imbalance [63]. Moreover, TNF-α is a well-described
mediator of DED pathophysiology and it is also indicated as an initiator of necroptosis.
Particularly, a dramatic increase of ROS level is observed when TNF-α interacts with
its receptor TNFR1 [166]. Additionally, in a recent study reported by Kessal K. et al.,
upregulation of RIPK1 was detected in a mouse dry eye model. However, the role of
necroptosis in the inflammatory cascade was not confirmed [167]. Whereas the release of
pro-inflammatory cytokines such as IL-1α, IL-1β, IL-6, and IL-8 and consequent activation
of MAPK kinases is verified, there are no studies available regarding the involvement of
RIPK1-RIPK3-MLKL and necroptosis [168].

Necroptosis is also implicated in different eye diseases. Particularly, the use of RIPK1 in-
hibitor Necrostatin 1 emerged as a promising therapeutic strategy to control the necroptosis-
mediated inflammatory process in dry AMD [113,164,169,170], glaucoma [162,163], and
retinitis pigmentosa [144,171].

4.3. Pyroptosis

The term pyroptosis, from the Greek words “pyro” (fire or fever) and “ptosis” (falling),
described a novel type of RCD discovered in 2001 by B. Cookson and co-workers
(Figure 5) [88,172,173]. The main feature of pyroptosis is the pore formation mediated
by gasdermin D (GSDMD) and the activation of the inflammatory response in a caspase
1-dependent (canonical) or independent (non-canonical) way. After stimulation, cells form
a cytosolic multiprotein complex, called inflammasome, among which, NOD-like receptor
pyrin 3 (NLRP3) inflammasome is the most investigated [174]. NLRP3 is responsible for
the release of inflammatory interleukins (IL-1β and IL-18), the formation of an apoptosis-
associated speck-like protein (ASC), and the activation of pro-caspase 1. Particularly,
caspase 1 (CASP-1) mediates the maturation of pro-IL-1β and pro-IL-18 in their correspond-
ing mature form IL-1β and IL-18, and the cleavage of GSDMD [175]. In the canonical
pyroptosis pathway, pathogens can trigger the NLRP3 inflammasome aggregation, lead
to CASP-1 activation and GSDMD cleavage [176,177]. The CASP-1-dependent inflamma-
somes are divided between NLR and non-NLR inflammasomes which can be activated
selectively by pathogen-associated molecular patterns (PAMPs) or damage-associated
molecular patterns (DAMPs) [178]. Whereas, in the non-canonical pyroptosis pathway,
a priming signal represented by microbial lipopolysaccharide (LPS) recognised by TLR4
or endogenous molecules like TNF-α stimulate the oligomerisation of caspase 4 or 5 (in
human) or caspase 11 (in mouse) and then cleavage of GSDMD [179]. For both canonical
and non-canonical pyroptosis, the final step is the cleavage of GSDMD in the N-terminal
fragment (GSDMD-N), which can generate pores on the phospholipids of the plasma
membrane and lead to the consequent cell death [180]. In addition, GSDMD cleavage from
the non-canonical pathway can also promote an amplification of pyroptosis by stimulating
the inflammasome release of CASP-1, the release of IL-1β and IL-18 and activates the
inflammatory response [181]. Particularly the latter, can recruit interferon-gamma (IFN-γ)
and, therefore, enhance the immune response [182]. In addition, caspase-8 activation by
RIPK1 was also recently reported to induce cleavage and activation of the pore-forming
molecule GSDMD in macrophages, thereby promoting the induction of a specific form
of pyroptosis [183].
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Figure 5. Overview of the pyroptosis pathway. After external stimulation mediated by pathogens,
pyroptosis can occur via a canonical or a non-canonical pathway. In the canonical pyroptosis,
following the external stimuli, the release of DAMPs or PAMPs can induce the formation of a
multiprotein complex, inflammasome. The most studied is NLRP3. Inflammasome mediates the
activation of CASP-1, which induces the maturation of IL-1β and IL-18 and the cleavage of GSDMD in
the N-terminal fragment GSDMD-N responsible for the pore formation in the phospholipids bilayer.
In the non-canonical pyroptosis, microbial LPS induces the oligomerisation of caspase 4/5 (human)
or 11 (mouse), which mediates GSDMD cleavage in GSDMD-N and pore formation without enabling
maturation of interleukins. At the same time, GSDMD activation via the non-canonical pathway can
also promote the amplification of pyroptosis, stimulating the canonical pathway.

Possible Implication in Dry Eye and Ocular Surface Dysfunction

Different cornea disorders can be connected with pyroptosis-pathway activation [162].
In keratitis, which can cause cornea ulcers and consequent blindness, inflammasomes
are formed as exogenous infections mediated by DAMPs signalling [184]. Mouse models
infected with streptococcus pneumonia and pseudomonas aeruginosa can trigger NLRP3
or NLRC4 inflammatory response [185]. Consequently, caspase 2 can activate the inflam-
matory mediators leading to the cleavage of GSDMD. Additionally, the non-canonical
pyroptosis pathway is involved in the p. aeruginosa keratitis [186]. Targeting caspase
4/5/11 could be a strategy to control the inflammatory response and prevent GSDMD
cleavage [187]. In alkali burn, which can affect permanently the cornea transparency, acti-
vation of NLPR3 inflammasome and IL-1β were detected and successfully reduced by the
use of NLRP3 inhibitors, underlying the role played by pyroptosis in this condition [188].
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The elevated level of GSDMD-N detected in dry eye patients supports the hypothesis
of pyroptosis implication in DED [189]. Environmental factors, and particularly fine partic-
ulate, can induce corneal pyroptosis and, therefore, promote dry eye [190]. A desiccating
stress-induced dry eye mouse model with elevated levels of NLRP3 inflammasome, ASC,
and CASP1 has been detected together with mature IL-1β and IL-18 [191]. In addition,
GSDMD-driven pyroptosis mediated by TLR4 activation has been demonstrated in a mouse
model [192]. In vitro, the increased concentration of ROS and hyperosmotic stress promote
pyroptosis-mediated inflammation, which was tackled by disulfiram and calcitriol, two py-
roptosis inhibitors [193]. The dry eye signs, such as tear loss or inflammatory response, can
be aggravated by NLRP12/NLRC4 inflammasome activation mediated GSDMD cleavage
together with IL-33 and IL-1β [191]. In dry eye patient tears, the administration of calcitriol
effectively alleviates the hyperosmotic stress induced by NLRP3-ASC-CASP1-GSDMD
pyroptosis cascade [193]. The administration of dexamethasone attenuated pyroptosis
in DED in vitro and in vivo models with decreased expression of inflammatory factors.
However, the specific mechanism of action still needs to be completely elucidated [194]. The
expression of inflammasome AIM2 and elevated levels of IL-1β was detected in patients
suffering from Sjögren’s syndrome [195].

The role of pyroptosis in various eye diseases is also widely studied. The presence
of the classical hallmarks are detected not only in vitro, but also in an in vivo rat model,
particularly for AMD [196–200]. Additionally, in glaucoma [200,201], cataract [202], and
uveitis [203], the implication of pyroptosis was determined. However, different from
ferroptosis and necroptosis, the implication of pyroptosis in retinitis pigmentosa is not
clarified yet [204].

5. Conclusions

With a higher incidence of dry eye in the worldwide population, the necessity of
discovering novel targets and biological pathways involved in the etiopathology of DED
has emerged. The vicious cycle is a well-established concept that includes the main features
of DED: tear film instability, tear hyperosmolarity, apoptosis, and inflammation. Breaking
the vicious cycle is one of the most investigated strategies that can help to alleviate dry eye
symptoms and the development of novel therapies. Based on the anatomy of the ocular
surface, corneal and conjunctival epithelia are the most exposed to external factors, which
can lead to a reduction in the thickness of the external lipid layer and ROS accumulation
followed by inflammation and cell death. Among the different cell death mechanisms,
only apoptosis has been included in the etiopathology of DED and the vicious cycle [1].
However, considering the complexity of DED, it is reasonable to investigate additional cell
death mechanisms. Particularly, the roles of ferroptosis, necroptosis, and pyroptosis are
emerging in different ocular diseases and have been verified directly to DED in the case of
necroptosis and pyroptosis. The hypothesis of a crosstalk among ferroptosis, necroptosis,
and pyroptosis cannot be excluded and left aside, considering the overlay for most of
the biochemical pathways involved. Moreover, different studies have underlined the
effectiveness of targeting regulated necrosis in various ocular diseases, and more recently,
in cornea disorders. Taking all these considerations together and keeping in mind the
crosstalk between the redox imbalance and inflammation in DED, as well as the link with
the different RCD mechanisms, the research on regulated cell death in DED might be
a novel area of study to identify novel therapeutic targets and develop novel therapies
for patients.
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4-HNE 4-Hydroxynonenal
ACD Accidental Cell Death
ADDE Aqueous Deficient Dry Eye
BAK Benzalkonium Chloride
CASP1 Caspase 1
DAMP Damage-associated Molecular Patterns
DED Dry Eye Disease
EDE Evaporative dry eye
FDA Food and Drug Administration
GPX4 Glutathione Peroxidase 4
GSDMD Gasdermin D
GSH Glutathione
HCE Human corneal epithelial cells
ICAM-1 Intracellular adhesion molecule-1
IL Interleukine
IF Interferon
IFNAR1 Interferon Receptor 1
JAK Janus Kinases
JNK c-Jun N-Terminal Kinase
LIP Labile Iron Pool
LOX Lipoxygenases
MAPK Mitogen-Activated Protein Kinase
MDA Malondialdehyde
MGD Meibomian gland dysfunction
MLKL Mixed Lineage Kinase Domain Like Pseudokinase
MMP Matric Metalloprotease
NET Neutrophil extracellular trap
NFκB Nuclear factor Kappa Beta
NSSDE Non-Sjögren Syndrome Dry Eye
OSDI Ocular surface disease index
PAMP Pathogen-associated Molecular Patterns
PCD Programmed cell death
PM Particulate Matter
PUFA Polyunsaturated Fatty Acids
RAS Rat Sarcoma virus protein
RCD Regulated Cell Death
RIPK1 Receptor-Interacting serine/threonine-Protein Kinase 1
RIPK3 Receptor-Interacting serine/threonine-Protein Kinase 3
ROS Radical Oxygen Species
SOD Superoxide Dismutase
SSDE Sjögren Syndrome Dry Eye
TLR4 Toll-like Receptor 4
TNF Tumour Necrosis Factor
ZBP1 Z-DNA binding protein 1
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