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Abstract: Bismuth-based nanostructures (BBNs) have attracted extensive research attention due
to their tremendous development in the fields of photocatalysis and electro-catalysis. BBNs are
considered potential photocatalysts because of their easily tuned electronic properties by changing
their chemical composition, surface morphology, crystal structure, and band energies. However, their
photocatalytic performance is not satisfactory yet, which limits their use in practical applications. To
date, the charge carrier behavior of surface-engineered bismuth-based nanostructured photocatalysts
has been under study to harness abundant solar energy for pollutant degradation and water splitting.
Therefore, in this review, photocatalytic concepts and surface engineering for improving charge
transport and the separation of available photocatalysts are first introduced. Afterward, the different
strategies mainly implemented for the improvement of the photocatalytic activity are considered,
including different synthetic approaches, the engineering of nanostructures, the influence of phase
structure, and the active species produced from heterojunctions. Photocatalytic enhancement via the
surface plasmon resonance effect is also examined and the photocatalytic performance of the bismuth-
based photocatalytic mechanism is elucidated and discussed in detail, considering the different
semiconductor junctions. Based on recent reports, current challenges and future directions for
designing and developing bismuth-based nanostructured photocatalysts for enhanced photoactivity
and stability are summarized.
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1. Introduction

Making the most of renewable resources is a top priority. In this regard, the use of solar
energy as a perennial energy source to drive chemical transformation is at the forefront of
this movement. In recent years, energy demand and crisis have experienced tremendous
growth due to the gradual growth of the global population and industrialization [1]. Pri-
mary energy sources come from fossil fuels, including coal, oil, and natural gas. However,
one of the main problems associated with the consumption of these non-renewable energy
sources is that they will run out soon. Another downside associated with this major energy
consumption is the emission of carbon dioxide, which contributes significantly to global
warming. Therefore, it is mandatory for humanity to switch to renewable energy sources
and reduce greenhouse gas emissions. In this regard, hydrogen (H2) is a completely clean
energy source when it is obtained from water-splitting processes and has been reported as an
alternative energy source [2,3]. The coming decades will experience sustainable growth in its
production and consumption. The photocatalytic process utilizing abundant solar energy as a
light source is considered the key to hydrogen production and carbon dioxide conversion [4].
In addition, photocatalysis can also be used to deal with some other environmental problems,
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including the degradation of organic pollutants, such as rhodamine B (RhB), indigo carmine
(IC), methylene blue (MB), methyl orange (MO), brilliant green (BG), bisphenol A (BPA),
tetracycline (TC), chlortetracycline (CTC), acetaminophen (APAP), 4-tert-butylphenol (BTBP),
ciprofloxacin (CIP), 2,4-dichlorophenol (2,4-DCP), etc., through some complex reactions under
mild conditions, such as photocatalytic organic synthesis [5]. Photocatalysis has emerged as a
benchmark tool that combines light and catalysts to perform chemical transformations that
are elusive using standard synthetic procedures.

In the past decade, rapid development in the synthesis of photocatalyst nanomaterials
has taken place [6]. In addition to this, a variety of photocatalysts have been used, which
can convert sunlight into chemical energy and transfer this energy to reactive molecules for
efficient photo-fuel conversion. Many catalysts have been studied for degrading pollutants or
water splitting. Wide-gap semiconductors such as TiO2 can absorb only <5% of solar light.
On the other hand, small-gap semiconductors can absorb visible light, but their photocatalytic
performance is also poor because of the rapid electron-hole recombination rate. Bismuth
compounds have emerged as a family of promising photocatalysts. According to their
composition, their band gap can be adjusted to the desired value for visible light absorption.
In addition, their internal electrical field induces the separation of the photogenerated charge
carriers so that the recombination rate is reduced. Among the different photocatalyst groups,
photocatalysts based on nanostructures, nanocomposites, or heterostructures have shown
superior photodegradation efficiency compared to their bulk counterparts [7,8]. However,
the relevant photocatalytic processes involved in nanostructured photocatalysts are more
complex and far from fully understood. For example, identifying the real catalytically active
species remains unsolved in most cases and is needed to obtain reproducible and efficient
nanostructured or heterostructured photocatalyst materials for practical applications. In fact,
the importance of discovering the truly catalytically active species involved in photocatalytic
systems allows for a better and more general understanding of the photocatalytic process,
which can help improve its efficiency.

In this review article, more attention is paid to the fundamental concepts, mechanisms
of the synthetic process, and structural features dependent on the photocatalytic activity of
bismuth-based photocatalysts. Their intrinsic photocatalytic properties, namely the charge
transfer and separation, excitation formation, and catalytic activity by the formation of
nanostructures are described. Their recent trends, including photodegradation, H2O de-
composition, CO2 conversion, and important approaches to enhance photocatalytic activity
are highlighted. Photocatalytic enhancement via the surface plasmon resonance effect is
also examined and the photocatalytic performance of the bismuth-based photocatalytic
mechanism is elucidated and discussed in detail, considering the different semiconduc-
tor junctions. Finally, the current challenges and future development of bismuth-based
photocatalysts are described.

2. Background

Bismuth(III) oxide (Bi2O3) exists in six crystallographic polymorphs; namely, mono-
clinic α, tetragonal β, body-centered cubic γ, face-centered δ, orthorhombic ε, and triclinic
ω [9]. Among them, the α, β, and δ phases show photocatalytic reactivity upon visible light
irradiation [10]. Bi2O3 has been used as a heterogeneous photocatalyst capable of catalyzing
the degradation of several synthetically important sunlight-driven pollutants. It possesses a
narrow bandgap (2.1–2.8 eV) with useful photocatalytic activity. Due to the high-oxidation
potential of valence band holes (+3.13 V vs. normal hydrogen electrode (NHE)), its photo-
efficiency has been demonstrated in a variety of applications ranging from energy storage
and pollutant degradation to bio-compound degradation [11–13]. Although Bi2O3 exhibits
high efficiency in promoting photooxidation, its conduction band (CB) electrons (+0.33 V
vs. NHE) are unable to interact with organic molecules because of the rapid recombination
of charge carriers, which hinders its application in reduction processes. However, several
studies have shown that the Bi2O3 photocatalytic activity can be improved either by doping
or by combining two or more materials or tuning surfaces [14–16].
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Recently, Bi2O3 has also become a popular photocatalyst for driving the photodegra-
dation of organic dyes. Its photocatalytic activity was investigated for the formation of
C-C and C-S bonds [17,18] and atom-transfer radical-addition-type reactions [19]. Bi2O3 is
low-cost and non-toxic. Other advantages are its visible-light drive and high availability.
Moreover, in some cases, it can replace the use of organo-metal complexes such as the pho-
toredox catalysts Ru(bpy)3Cl2-combining 2,2′-bipyridine and expensive and not-abundant
ruthenium [20]. The semi-metallic nature of Bi0 enables its use as a semiconductor photo-
catalyst, or as a cocatalyst to tune the photocatalytic behavior of the host material [21,22].
Bismuth is a metal element in group V B in the periodic table (Mw = 208.98 g mol−1) with
the 6s26p3 electron configuration [23]. The lone-pair distortion of Bi 6s orbitals in Bi-based
composite oxides may lead to the overlap of O 2p and Bi 6s orbitals in the valence band,
which is beneficial to reduce the bandgap and the mobility of photogenerated charges and
improve the photoactivity [24]. At the same time, when the 6s orbital is empty, the Bi5+

valence state also has good absorption of visible light [25]. Bismuth exists as Bi3+ in most
common Bi-type photocatalysts, such as complex oxides (BiVO4, Bi2WO6, BiPO4) [26–28],
sulfides (Bi2S3) [29], and oxyhalides (BiOI, BiOBr, BiOCl) [30–33]. It is therefore not surpris-
ing that a 14-fold increase in the number of reports related to Bi-based photocatalysts has
been observed from 2010 to 2022 [34,35].

In order to improve the mineralization rate of organic dyes in wastewater, high
charge separation efficiency, long-term stability, suitable band edge positions, and good
redox capacity are also required for high-efficiency photocatalysts in addition to suitable
bandgaps. Therefore, due to the unsatisfactory photocatalytic activity of single-component
photocatalysts, various controllable bismuth-based compounds have been synthesized
through morphological structure mediation, the construction of heterostructures or nanos-
tructures, the doping of metal elements, and defect site mediation [36–39]. In particular,
S,F-codoped Bi2WO6 with oxygen vacancies synthesized via hydrothermal calcination
and post-sulfurization showed a photocatalytic performance in Cr(VI) reduction of 94.3%
and methyl orange degradation of 95.4% in 120 min under visible light [40]. Among de-
fects, oxygen vacancies (OVs) have been shown to improve photocatalytic activity [41,42].
However, the surface oxygen defects are unstable due to easy oxidation during the photo-
catalytic reaction process [43]. An exception is provided by Bi5O7Br nanotubes synthesized
with OVs by combing water-assisted self-assembly and a low-temperature wet chemical
approach [44]. In this case, the surface OVs were stable and able to capture and activate
N2, reducing it to NH3, in pure water. The properties of many Bi-based photocatalysts and
their performance in organic dye degradation and H2 production are described in detail in
the following sections.

2.1. Fundamental Mechanism and Main Active Species of Bismuth-Based Photocatalysts

The main mechanism of bismuth-based photocatalysts can be summarized as photon
absorption, excitation, and reaction processes. The photocatalytic process can be applied
not only to the degradation of dyes but also to the degradation of antibiotics. Specifically,
the photocatalytic degradation of antibiotics based on bismuth-based semiconductors is
an effective, eco-friendly, and promising method for toxic substances. The predominant
mechanisms of the bismuth-based photocatalysts for antibiotic photocatalytic degradation
could be summarized as absorbing photons, excitation, and reaction, as shown in Figure 1.
The antibiotics, as well as their intermediates, are converted to small-molecule compounds
via the oxidation of oxygen species (h+, •O2

− or •OH) and eventually decomposed into
CO2 and H2O [45].

In detail, when a photocatalyst absorbs photons with energy higher than its bandgap,
the valence band (VB) electrons can be excited and jump into the CB. A photohole is insep-
arable from a photocatalyst and is a vacancy in its crystal lattice. Thus, the photocatalytic
process is expressed as follows:

photocatalyst + hv→ (photocatalyst + h+) + e−, (1)
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then, the photogenerated electrons and holes are effectively separated and migrated to the
photocatalyst surface. The photo-induced holes directly attack dye molecules, as follows:

h+ + dye→ H2O + CO2 + degradation product, (2)

theoretically leading to the significant degradation of these pollutants. Furthermore, when
the holes further migrate to the photocatalyst surface, the oxidation pathway starts, accom-
panied by the oxidation of H2O/OH− to generate hydroxyl radicals (•OH), such as:

H2O/OH− + h+ → •OH + H+. (3)

Meanwhile, the typical redox potential of the photocatalyst should be higher than
•OH/OH− (+1.99 eV). Furthermore, hydroxyl radicals have stronger oxidation potential
(E0 = 2.8 eV) and lower selectivity than other oxidants during the decomposition of water
pollutants [46]. Remarkably, the top of the VB of most Bi-based catalysts is higher than
the redox potential of •OH/OH−, indicating that hydroxyl radicals are easily generated
during Bi-based catalysis. In fact, the reaction pathway between hydroxyl radicals and
dye molecules can be summarized as follows: (i) •OH and dye molecules simultaneously
adsorb on the catalyst surface and then react spontaneously, (ii) •OH in aqueous solution
and adsorbed on the photocatalyst surface reacts with dye molecules, (iii) •OH adsorbed
on the catalyst surface reacts with the surrounding dye molecules, and (iv) finally, •OH
reacts with the dye molecules in the aqueous solution. Generally, these main pathways
are considered for the degradation of dye molecules by bismuth-based photocatalysts [47].
Figure 2 displays the band edge positions of bismuth-based photocatalysts.
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Conversely, if the CB potential of the semiconductor is negative compared to the
O2/•O2

− redox potential (−0.13 V vs. NHE), a reduction pathway can also be observed,
in which O2 is reduced by electrons to •O2

− (O2 + e− → •O2
−). The excited H2 ions will

recombine with electrons and generate thermal energy (H+ + e− → energy), which reduces
the photodegradation efficiency of the catalyst. Then, dye molecules and their intermediates
are converted into small molecular compounds through the oxidation of O2 species (h+,
•O2

− or •OH) and finally decomposed into CO2 and H2O (dye molecules + radicals (•OH
or •O2

−)→ CO2 + H2O + small molecule compound). In contrast, due to their different
electronic structures, the effect of various active substances on the degradation of dye
molecules differs. In order to direct the preferential active species during the reaction,
different scavengers such as MeOH (for •OH), KI (for h+), p-benzoquinone (for •O2

−

radicals), and AgNO3 (for e−) were introduced into the reactor to trap the active species [48].
Apparently, besides superoxide radical (•O2

−), hydrogen peroxide (H2O2) and hole (h+)
play a major role in the photodegradation process of most organic, dye-based, bismuth-
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based photocatalysts [49]. For example, the main reason for their higher photocatalytic
degradation may be that the dye molecules are considered vulnerable to h+ attack [50]. In
addition, hydroxyl radicals (•OH) typically react rapidly and non-selectively with most
organic pollutants, so they also play a key role in the degradation of dye molecules. It is
worth noting that the resulting •O2

− is unstable and prone to disproportionation reaction
to generate other reactive oxygen species including •OH.
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2.2. Significance of Nanostructure or Heterostructure or Heterojunction or Nanointerfaces

In fact, a practical approach to improve the photo-response in photoactive materials is
the formation of nanointerfaces (heterojunctions) by coupling with other semiconducting
materials or metals. The formation of heterojunctions has been widely used in visible-
light-responsive photocatalytic dye degradation and H2O splitting in batteries [51–53]. It
is also worth noting that heterojunctions in nanomaterials can be mainly classified into
three different types: (1) type I is a straddling gap, where the VB and CB energies of the
cocatalyst are higher and lower than those of the photocatalyst; (2) type II is a staggered
gap, the VB and CB of the cocatalyst are higher than that of the catalyst; (3) Z-scheme has
the same band structure as Type-II, but with different charges of the acceptor/donor pair
carrier transfer pathway, which may enhance redox capacity. The Z-scheme configuration
can further be differentiated into three types; namely, direct Z-scheme (mediator free),
solid-mediator, and redox pair mediator types (see Figure 3 [54]).

Indeed, the band gap and Fermi level can be tuned at their interfaces, providing
charge separation and facilitating alternative paths for excited electrons to prevent charge
recombination. For example, Shan and co-workers [55] proposed a band alignment of
α-Bi2O3/BiOCl (001) core-shell heterojunctions based on the shifted positions of the CB and
VB to facilitate the accumulation of photoinduced electrons at their interfaces. Volnistem
et al. [56] constructed mechanistically synthesized BiFeO3/Fe3O4 nanostructures and used
them to degrade MB dyes under visible light. This study shows that the nanointerface
promotes the ferrous Fe2+ ions of Fe3O4 to enhance the catalytic efficiency compared to
the bulk. The direct Fenton-like method is another effective method to degrade dyes
using Fe2+ ions and H2O2. The presence of Fe2+ ions combined with the photo-Fenton
process can enhance the decomposition of H2O2 into oxidative radicals, thereby increasing
the degradation rate. In another study, Liu et al. [57] reported that the hydrothermally
synthesized Bi4Ti3O12/BiOI nanostructures degrade BPA. The results showed that the
degradation was 12 times faster than that of Bi4Ti3O12 crystallites, which was attributed
to the internal electric field in the ferroelectric domains under the external electric field.
The improved internal electric field in ferroelectric catalysts can facilitate the separation
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and transfer of charge carriers, driving more carriers to the surface of the photocatalytic
material, thereby enhancing its photocatalytic efficiency.
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BiOX/CuFe2O4 (X = Br, Cl, and I) nanostructured p–n junctions were constructed by
hydrothermal and coprecipitation methods [58]. Such a nanostructure induces a built-in
electric field at its interface, which facilitates the transfer of pattern changes, indicating a
significantly enhanced visible-light-driven photoactivity without the use of any cocatalyst.
The BiOI or BiOBr/CuFe2O4 nanostructure demonstrates the conventional type I and type II
charge-transfer mechanism, which can effectively reduce the charge-transfer resistance com-
pared with the bulk structure. Importantly, the direct Z-type mechanism of BiOCl/CuFe2O4
nanostructures has formed tight interfacial contacts, resulting in a 5.7-fold increase in H2
release compared to bare BiOCl and improved catalytic efficiency by a factor of two compared
to type II BiOI/CuFe2O4 nanostructures. The study also shows that the low resistance of the
Nyquist plot confirms the superiority of the direct Z-scheme in promoting charge separation
and transfer and increasing carrier density. Furthermore, by designing the band-edge po-
tential, the BiOX/CuFe2O4 heterostructure achieves optimal space charge layer width and
redox potential, which reduces the fast recombination rate. This work delivers a model for
designing highly engineered BiOX-based nanostructures with tuned band edges for efficient
photocatalytic activity. Therefore, the construction of nanostructures or heterostructures is of
great significance for improving photocatalytic efficiency.

2.3. Surface Plasmon Resonance Effects in Bismuth-Based Photocatalysts

The surface plasmon resonance (SPR) effect of noble metals such as gold and silver
is currently used to enhance the visible photocatalytic activity of semiconductor photo-
catalysts [59]. This mechanism is attributed to the huge local electric field enhancement
observed at the surface of metallic nanoparticles (NPs) due to the interaction with the
electric and magnetic fields of light. The excitation of electron-hole (e−-h+) pairs is boosted
in the catalyst with the enhanced near-field of NPs, improving the photocatalytic activity.
Although, the SPR effect of Bi nanospheres has been used to stimulate the excitation of
photo-generated e−-h+ pairs in Bi-based semiconductor photocatalysts by the deposition
of Bi on their surface. Improvement via the SPR effect of visible photoreactivity has been
demonstrated for BiOBr [60], Bi4MoO9 [61], BiPO4 [62], and Bi2WO6 [63].
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3. Synthesis Strategies of Bismuth-Based Photocatalysts

Various strategies have been proposed for the preparation of bismuth-based photocat-
alysts with desirable structure and morphology [64]. Synthesis methods of bismuth-based
photocatalysts include room-temperature solid-state milling [65], high-temperature solid-
state reaction [66], the precipitation method [67], the hydro/solvothermal technique [68,69],
the ion-exchange route [70], the microwave-assisted method [71], and the microemulsion-
based route [72]. Lu et al. [73] reported the synthesis of β-Bi2O3 microrods of ~1 µm in
width by a solution crystallization technique at 70 ◦C, without further calcination treatment.
The metastable tetragonal β-Bi2O3 crystalline powders with orange color transformed
into yellow monoclinic α-Bi2O3 crystals after 60 min of reaction. The morphology of a
pumpkin was changed from the microrod-like structure of β-Bi2O3 crystals to the large
rhomboid structure of α-Bi2O3 crystals. This synthesis method reflects the size control
process of metastable β-Bi2O3. By simply adjusting the experimental parameters such as
NaOH concentration, stirring, and reaction temperature, metastable β-Bi2O3 crystals can
be stably stored in the reaction system for different lengths of time. The pumpkin β-Bi2O3
nanostructures exhibited good photocatalytic performance for the degradation of RhB dyes
under visible light irradiation.

3.1. Synthesis Strategies of Bismuth Oxides

One-dimensional (1D) Bi2O3, including nanotubes [74], nanowires [75], nanosheets [76],
and nanorods [77], holds promise for photocatalytic activity. Tien et al. [78] reported the
synthesis of α-Bi2O3 nanowires with a diameter of 500 nm and a length of up to 20 µm
by catalyst-driven gas-phase transport, and the growth direction was (010). The growth
mechanism of α-Bi2O3 nanowires is explained as a two-step growth model, which considers
the formation of crystal planes catalyzed by gold and the growth of α-Bi2O3 nanowires
during bismuth catalysis. It is revealed that the formation and growth mechanism of
α-Bi2O3 nanowires is influenced by Au nanoparticles. In detail, the formation of nanowires
is shown in Figure 4. In steps 1 and 2, the Au-catalyzed growth of the precursor vapor
is adsorbed onto Au nanoparticles, where facets are formed between the Au/Bi interface
under an oxidizing environment. Once a facet is formed, it can serve as a nucleation site
for further one-dimensional growth. At this stage, growth has shifted into different growth
patterns (steps 3 and 4). Since the growth occurs at the dual-surface interface, the growth is
driven by a dual catalytic mechanism. By comparing nucleation on heterogeneous solid
surfaces (gold nanoparticles) and self-nucleation (sapphire surfaces), nucleation on gold
catalysts interacting with nuclei will have lower free energy than self-nucleation. Therefore,
the degree of supersaturation required for self-nucleation is much higher than for hetero-
geneous nucleation. Finally, the formation of crystal planes provides the nucleation and
growth of α-Bi2O3 nanowires, which facilitates a simple strategy to control the nucleation
and structural characteristics of α-Bi2O3 nanowires.

Xiao et al. [79] reported the solvothermal synthesis of β-Bi2O3 nanospheres followed
by a calcination process. In detail, monodispersed bismuth nanospheres were formed by a
solvothermal process with D-fructose as the main reducing agent, followed by calcination
in air to transform into β-Bi2O3 nanostructures, revealing that the D-fructose concentration
significantly affects the structural β-characteristics of Bi2O3 nanospheres. The growth
mechanism of β-Bi2O3 nanospheres involves the in situ reduction of Bi(III)-ethylene glycol
complex spheres as self-sacrificial agents, followed by the in situ oxidation of bismuth
nanospheres by contact with oxygen. The β-Bi2O3 nanospheres exhibited APAP degrada-
tion efficiency that was 79 times higher than that of TiO2 powder (Degussa P25), which
was attributed to the suitable energy band structure, high oxidation potential, and good
dispersion of β-Bi2O3 nanospheres. Higher photoactivity is supported by the experimental
determination of reactive oxygen species during photocatalysis. However, secondary pol-
lutants may still occur during the photocatalytic process, requiring an in-depth analysis of
the treated water.
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3.2. Synthesis Strategies of Bismuth Ferrites

BiFeO3, with a rhombohedral twisted perovskite structure and a narrow bandgap
visible light response of 2.2 eV, is an attractive candidate for its fascinating application
in novel photocatalyst materials [80]. BiFeO3 is a ferroelectric material, and the intrinsic
internal electric field reduces the recombination of photoinduced charge carriers and
increases the degradation rate. The low decomposition temperature of bismuth salts
and the change in ionic valence make it difficult to prepare impurity-free BiFeO3 by
conventional solid-state reactions at the evaluated temperature. Other strategies such
as the soft sol-gel method, co-precipitation method, and solvent/hydrothermal method
have been identified as promising strategies to prepare BiFeO3 nanoparticles with desirable
morphology [81–83]. The hydrothermal synthesis of BiFeO3 without high-temperature
calcination can better control the purity and morphology of the material by controlling
the reaction conditions. Due to the influence of the number of reaction sites and the size
of the bandgap energy, the shape and size control of the particles plays a very important
role in the photocatalytic activity. Many different morphologies of BiFeO3 particles have
been reported, including wires, tubes, submicron spindles, and rod-like particles [84,85],
including synthetic steps and controlled processes of self-assembly or organization of
BiFeO3 with regular geometry. However, the continuous regulation of the shape or size
of microscale BiFeO3 and its effect on photocatalytic activity is an important topic of core
research, which is of great significance for understanding the catalytic mechanism and
developing dual-semiconductor photocatalysts.

Ferrite bismuth materials, including perovskite (BiFeO3), mullite (Bi2Fe4O9), and
sillenite (Bi25FeO40), exhibit outstanding magnetic, electronic, and dielectric properties.
Among them, mullite-based Bi2Fe4O9 is a competitive candidate photocatalyst to drive
visible light-catalyzed oxidation reactions due to the band gap energy of 1.9–2.1 eV, with
standard multi-band semiconductor properties [86]. However, the catalytic efficiency
of Bi2Fe4O9 is relatively low due to the fast recombination of photogenerated electron-
hole pairs [87]. The photosensitivity can be improved by the separation of electrons and
holes in Bi2Fe4O9 with silver halides (AgX, X = Br, I, and Cl). Unfortunately, the strong
photosensitivity of silver halides leads to the reduction of Ag+ to Ag0 under light irradiation,
which reduces their stability and lifetime, thus limiting their photocatalytic applications.
In general, AgBr is a popular high-efficiency photocatalyst with a band gap of 2.6 eV.
Ma et al. [88] developed a one-dimensional magnetically separable Bi2Fe4O9/C@AgBr
nanostructured photocatalyst that can degrade 97.4% of MB within 60 min. The high
catalytic performance is mainly due to the efficient charge separation and migration in
the Bi2Fe4O9/C@AgBr nanostructures. In addition, carbon also promotes the chemical
protection of nanostructures and improves the conductivity and stability of catalysts.
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4. Recent Developments in Bi-Based Photocatalysts
4.1. Bi-Oxide Nanostructures

Bandgaps of Bi2O3 polymorphs range in the order of δ-Bi2O3 (3.0 eV) > α-Bi2O3
(2.8 eV) > β-Bi2O3 (2.1 eV) > γ-Bi2O3 (1.64 eV) [89]. Since γ-Bi2O3 has a narrow band gap,
it can efficiently utilize light in the visible region of the solar spectrum. However, the
photocatalytic efficiency of bare Bi2O3 is still unsatisfactory for dye degradation unless it
is integrated or doped with other semiconducting compounds, especially for the δ-phase
because of its wide bandgap value. In particular, the α-Bi2O3 type is a stable phase over a
wide temperature range, while β-, γ-, and δ-Bi2O3 are metastable at 25 ◦C. For this reason,
many strategies have been applied to enhance the photoactivity of Bi2O3. Barno et al. [90]
pioneered the hydrothermally prepared heterojunction features of BiVO4/MnV2O6 photo-
catalysts for the photodegradation of RhB and MB dyes, showing that the BiVO4/MnV2O6
heterojunction photocatalyst achieved a degradation rate of 96% in 35 min and MB dye
degradation efficiency reached 98% within 6 min under visible light exposure. This study
shows that superoxide anion radical is the main responding species during dye degra-
dation. Furthermore, the BiVO4/MnV2O6 heterojunction photocatalyst exhibits excellent
4-nitrophenol reduction in the presence of NaBH4, and 4-aminophenol is produced without
intermediate by-products, thanks to the heterojunction properties and its suitable band
alignment. By controlled hydrothermal synthesis, allowing the control of the ratio of
{010} to {110} facets on BiVO4, which respectively serve as reductive and oxidative sites,
Guan et al. obtained decahedral BiVO4 single crystals with superior photocatalytic water
oxidation achieving efficient water splitting [91]. Tian et al. [92] reported thermochemically
prepared β-Bi2O3/Mn3O4 nanostructures for the photodegradation of RhB, BPA, and MB
and the removal of nitric oxide (NO). The optimized β-Bi2O3/Mn3O4-2 wt.% photocatalyst
exhibits excellent photocatalytic activity for pollutant (RhB, MB, and BPA) degradation and
NO removal. This efficiency was ascribed to tight contacts between the β-Bi2O3 and Mn3O4
at their interface, which possesses a type-II heterojunction photocatalytic mechanism. This
mechanism facilitates the rapid separation of photo-induced charge carriers, resulting in
excellent photocatalytic activity.

He et al. [93] pioneered solvothermally synthesized 3D flower-like β-Bi2O3/Bi12O17Cl2
nanostructures for the degradation of PTBP under visible light. The nanostructures are
formed by reducing Bi(III) to nano-metallic bismuth, followed by the thermal treatment
of bismuth with oxygen and bismuth oxide chloride hydroxide in the presence of air. The
synthesized β-Bi2O3/Bi12O17Cl2 nanostructures have a good energy band structure, and a
close-contact heterojunction is formed between the synthesized β-Bi2O3 and Bi12O17Cl2,
with a high specific surface area and a hierarchical micro-nanostructure, thereby decom-
posing PTBP under visible light with excellent photo-mineralization efficiency. Compared
with the as-synthesized Bi12O17Cl2, the optimally synthesized β-Bi2O3/Bi12O17Cl2 nanos-
tructure exhibited 12-fold higher photocatalytic activity, which was attributed to the direct
hole and superoxide radical oxidation rather than oxidation by hydroxyl radicals. Due to
the presence of heterojunction features, the visible light absorption range is enhanced at
the origin of their remarkable photoactivity under visible light illumination. Sun et al. [94]
reported water thermal synthesis of α-/γ-Bi2O3 nanostructures for RhB degradation under
visible light. The key parameters of the hydrothermal process are holding time, temperature,
additive dosage, and pH conditions. Compared with α-Bi2O3 and γ-Bi2O3 nanostructures,
α-/γ-Bi2O3 nanostructures exhibited higher RhB photodegradation activity, which was
attributed to the synergistic effect of the homojunction. Gardy et al. [95] reported a solid
reactive heat treatment made of α-/β-Bi2O3 nanopowders to degrade a mixed dye of RhB
and IC under UV and visible light irradiation. It can be observed that the α-/β-Bi2O3
mixed phase produced 20% β-Bi2O3 phase after annealing at 550 ◦C, while the α-Bi2O3 het-
erojunction was formed after annealing at 650 ◦C. α-/β-Bi2O3 photocatalysts exhibit better
efficient charge separation and activity via α-/β-Bi2O3 transfer, indicating that α-/β-Bi2O3
heterojunctions are more efficient than commercial α- and β-Bi2O3 materials separately.
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4.2. Bismuth Vanadate (BiVO4)

BiVO4 has attracted extensive attention due to its remarkable structural, optical, and
chemical properties, photocorrosion resistance, and good activity for the photocatalytic
degradation of organic pollutants. The crystal structures of BiVO4 are monoclinic, or-
thorhombic, and tetragonal, among which the monoclinic with a band gap of about 2.4 eV
has good photocatalytic activity compared with the other two forms. The phase transition
from tetragonal to monoclinic occurs irreversibly at 500 ◦C. The basic building blocks are
developed from the VO4 tetrahedron and the BiO8 dodecahedron. In addition, Bi and V
atoms are alternately arranged along the crystallographic axis, which makes monoclinic
BiVO4 exhibit the properties of a layered structure. However, BiVO4 has limited use as a
photocatalyst because of its fast recombination rate of photogenerated carriers due to its
band edge position. Furthermore, the photocatalytic efficiency of BiVO4 is much lower
than expected due to its lower surface area and lower carrier separation and transfer
ability. Therefore, topography control, cocatalysts and selective deposition, and coupling
to other semiconductors to build nanostructures are needed. For example, Liu et al. [96]
developed an in situ transformation of as-prepared BiVO4 with the help of NaOH to
form BiVO4/Bi25VO40 nanostructures through a dissolution–recrystallization process, in
which the monoclinic decahedron of BiVO4 was first etched with an alkaline solution on
the preferential crystal planes (010) and converted to cubic Bi25VO40. In this study, the
authors successfully controlled the concentration conditions of the alkaline solution to
precisely tune the phase composition of the heterojunction by reducing BiVO4 and increas-
ing Bi25VO40 in the nanostructures. Advancing from the in situ switching strategy and
combined band structure, the type II tight heterojunction formed tight interfacial contacts.
This led to fast charge transfer with the spatial separation of carriers, which considerably
enhanced the photocatalytic degradation of tetracycline hydrochloride (TCHC) under visi-
ble light. In the obtained BiVO4/Bi25VO40 nanostructures, the role of Bi25VO40 is crucial
in the photoactivity; the atypical bismuth-rich phase bismuth vanadate consists of the
same elements as BiVO4 with a narrower bandgap of 2.1 eV, resulting in a wider range of
visible light absorption. Since BiVO4 and Bi25VO40 have suitable energy band positions
and approximate crystal structures, the rational coupling of BiVO4 and Bi25VO40 through
an in situ synthesis process has been shown to yield close-contact heterojunctions with
suitable band energies, leading to an enhanced charge-carrier transmission rate. In another
study, Duan et al. [97] reported hydrothermally synthesized BiVO4/rGO nanostructures
with the assistance of ethylenediaminetetraacetic acid disodium salt instead of nitrate,
which facilitates the formation of a fully acidic environment to prevent the hydrolysis of
Bi3+, and applied them as a photocatalyst for the degradation of RhB. The BiVO4/rGO
nanostructured photocatalyst exhibited 98.3% degradation in 180 min under visible light.
When photons land on the BiVO4/rGO surface, the electrons in the VB of BiVO4 are excited
to the CB by leaving a hole on the VB. Since rGO acts as an electron acceptor with good
electrical conductivity, the photogenerated electrons in the CB can move to rGO, which
speeds up the separation efficiency and thus enhances photoactivity.

El-Hakam et al. [98] reported the ultrasound-assisted introduction of mesoporous SiO2
(i.e., m-SiO2) on BiVO4 nanoparticles to control the size of BiVO4 nanoparticles to 2.4–5.1 nm
on m-SiO2 to form BiVO4/m-SiO2 nanostructures. This BiVO4/m-SiO2 nanostructure was
used to degrade MB and BG dyes as a function of m-SiO2 in the nanostructure. Compared
with bare BiVO4, the BiVO4/m-SiO2 nanostructured photocatalyst exhibits remarkable
photoactivity, which is attributed to the synergistic effect between m-SiO2 and BiVO4, which
enhances the separation of charge carriers. The effects of operating parameters such as
dye concentration, m-SiO2 content, reaction time, and temperature were closely related
to the photocatalytic activity. The nanostructure with a 10 wt.% m-SiO2/BiVO4 sample
exhibited the highest photocatalytic activity. Since the silica in the nanostructure is in close
contact with the BiVO4 nanoparticles, the photoelectron conversion of BiVO4 is improved
by reducing the recombination charge carriers based on the suitable band positions of
BiVO4, which is found to be reusable.
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4.3. Silver-Bismuth Photocatalysts

Advanced oxidation methods are considered promising methods to solve environmen-
tal problems by releasing free radicals, which have strong oxidative power. Furthermore,
chemical oxidation and photocatalysis are two common tools for removing pollutants from
wastewater. Compared with semiconducting oxides, perovskite-group silver-bismuth-
based photocatalysts have different crystal structures, which provide a wide range of
degrees for tuning their physicochemical properties. Recent studies have shown that sil-
ver bismuth, through defect engineering, can effectively enhance its photoactivity due to
its physical adsorption and chemical oxidation [99]. Therefore, it significantly improves
the mineralization ability of organic dyes. Typically, silver bismuth is synthesized from
AgNO3, which replaces the Na ions of NaBiO3 in a hydrothermal reaction. The silver-
bismuth photocatalyst has chemical oxidation abilities mainly due to the release of lattice
oxygen in bismuthate, which is partially converted into active oxygen. When these reactive
oxygen species come into contact with dye molecules, large amounts of reactive oxygen
species are released. However, due to the irreversible transformation of lattice oxygen into
chemisorbed oxygen, accompanied by the transformation from Bi(V) to Bi(III), the photocat-
alytic performance of silver bismuth single compounds decreases to varying degrees [100].
Many studies have been carried out to promote the release of reactive oxygen species,
thereby enhancing the catalytic ability of silver bismuth. Silver bismuth was converted
into α-/β-Bi2O3/Ag2O nanostructures by a simple calcination process, during which the
morphology was transformed from nanosheets to porous nanosheets and ravines, for
the degradation of TC under visible light [99]. After the deactivation of silver bismuth,
the lattice oxygen is transformed into chemically and physically adsorbed oxygen, and
numerous carbon species can be adsorbed onto the surface of the material. Bi species
in silver bismuth are transformed to β-Bi2O3, and all Ag species are converted to AgO2.
Furthermore, with increasing temperature, the β-Bi2O3 phase transforms into α-Bi2O3
identified by the color of the sample, and morphological changes may occur as described
above. β-Bi2O3/Ag2O activated at 290 ◦C exhibited the best degradation efficiency of 78%
within 2 h, and its reaction rate constant was 3.7 times higher than that of silver bismuth
due to the low recombination probability and strong photoresponsivity. Figure 5 shows the
possible photocatalytic mechanism of silver-bismuth-based photocatalysts.
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4.4. Bismuth Oxide Silicate-Based Photocatalysts

The compounds with molecular formula Bi2XO20 (X = Si, Ti, Ge, Pb, etc.) are called
bismuth sillenites and are considered promising materials for developing low-temperature
co-fired ceramic technology [101]. Mainly bismuth silicates, such as Bi2SiO5, Bi12SiO20,
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and Bi4Si3O12, have received increasing attention, in particular Bi2SiO5, as an alternative
to conventional lead-based ferroelectric materials with a phase transition temperature of
673 K. Bi2SiO5 crystallizes with an orthorhombic structure (space group Cmc21) with lattice
constants a = 15.19 Å, b = 5.68 Å, c = 5.314 Å and Z = 4 [102]. As the general formula of
the Aurivillius-like structure is (Bi2O2)[Am−1(B)mO3m+1], Bi2SiO5 with m = 1 is composed
of BiO4 pyramids in the [Bi2O2]2+ layers and [SiO3]2− layers, as shown in Figure 6a [103].
First-principle calculations suggest that the polarization of Bi2SiO5 originates from the SiO3
layer rather than the Bi2O2 layer [104].
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Attribution (CC-BY) Licence.

Figure 6b–e confirm the concept of fragments for the experimental extraction of
single dipole units derived from BiO and SiO3 clusters. The boundaries of a segment
can be determined by local minima around the segment. Therefore, the fragments satisfy
the charge neutrality of Bi2SiO5, and their partial electrical polarization is estimated by
considering the volume of the unit cells. Bi2SiO5 crystals have special properties, namely
dielectric properties, thermoelectric properties, and nonlinear optical properties, and have
ferroelectric properties due to their non-centrosymmetric structure, and the band gap of
3.54 eV is narrower than that of BiPO4 (3.85 eV) [105]. Actually, the inductive effect of
PO4

3− benefits the separation of the photoinduced electron-hole pairs, but the large energy
gap of BiPO4 implies that this compound is a good photocatalyst only in UV light, which
accounts for 4% of solar irradiation. Therefore, the formation of nanostructures with a
smaller gap material such as Bi2SiO5 is a means of avoiding this drawback.

Co-precipitated hydrothermally synthesized Bi2SiO5/BiPO4 nanostructures were con-
structed and applied to degrade phenol and MB dyes under UV-light irradiation [106]. This
work revealed the extension of the photoresponse range of BiPO4 by coupling with Bi2SiO5
and forming a type-II heterojunction. Bi2SiO5/BiPO4 nanostructures exhibit significantly
enhanced photoactivity against phenols and dyes, being 4.36-fold and 1.13-fold higher
with respect to Bi2SiO5. This improvement was attributed to the significantly enhanced
charge separation ability, expanded absorbance, and good crystallinity through the hetero-
junction. A synergistic effect was observed with medium Brunauer–Emmett–Teller specific
surface area. The energy (vs. NHE) of the bottom of the CB of BiPO4 (−0.65 eV) is more
negative than that of Bi2SiO5 (0.05 eV), while the top of the VB of BiPO4 is at 3.2 eV against
3.59 eV for Bi2SiO5. Therefore, the two components, BiPO4 and BiSiO5, have matched
charge potentials, which can facilitate the flow of charge carriers through their interfaces.
Furthermore, it is reasonable to design a type-II heterojunction as a novel and robust pho-
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tocatalytically active system by coupling BiPO4 with a narrower bandgap semiconductor,
Bi2SiO5. Zou et al. [107] reported a one-pot solvothermal synthesis of Bi2SiO5/Bi4MoO9
nanostructures for the degradation of CIP under UV-light irradiation. The results show
that the Bi2SiO5/Bi4MoO9 nanostructures exhibit higher photoactivity than Bi2SiO5 and
Bi4MoO9; such a heterostructure not only suppresses the recombination of photoexcited
charge carriers but also enhances light absorption. In addition, the effects of initial CIP
concentration and coexisting ions on the photodegradation process of Bi2SiO5/Bi4MoO9
nanostructures were also confirmed. Figure 7 pictures the density-functional theory re-
sults of Bi2SiO5 and Bi4MoO9, indicating that the VB and CB of Bi2SiO5 and Bi4MoO9
are the same k-space, indicating that the intrinsic optical transition properties of Bi2SiO5
and Bi4MoO9 are direct transitions. The estimated theoretical band gaps of Bi2SiO5 and
Bi4MoO9 are 3.69 and 2.86 eV, respectively, which are in good agreement with the exper-
imental results. The total and partial electronic state densities of Bi2SiO5 and Bi4MoO9
are shown in Figure 7c,d. The VB top of Bi2SiO5 is mainly composed of O 2p and Si 3p
orbitals, while the CB bottom is mainly composed of Bi 6p orbitals (Figure 7c). In the case of
Bi4MoO9, the VB top is mainly composed of O 2p states, while the CB bottom is contributed
by Mo 4d states.
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In general, the sol-gel route has potential advantages over traditional solid-state
synthesis methods because it allows precise control over composition, coating deposition,
and uniformity. Veber et al. [108] proposed a synthetic procedure for bismuth silicate,
consisting of bismuth nitrate pentahydrate, dried in a vacuum oven at 65 ◦C for 96 h
to remove water contamination. The dehydrated bismuth nitrate was then dissolved in
acetic acid and placed in a magnetic stirrer for 2 h. Another solution was prepared with
tetraethoxysilane (Si(OC2H5)4, TEOS) and 2-ethoxyethanol with continuous stirring for
30 min. 2-ethoxyethanol can be used as a solvent for TEOS. After the two solutions were
stirred separately, they were mixed and placed under magnetic stirring for 3 h and adjusted
to pH 4 with ethanolamine. Di et al. [109] reported Bi2SiO5 nanosheets modified by carbon
quantum dots (CQDs) with a diameter of 3 nm and applied them to the photocatalytic
degradation of RhB under UV-light irradiation. CQDs-modified Bi2SiO5 nanosheets were
shown to accelerate the charge transfer between the interiors of Bi2SiO5 nanosheets and
promote the separation of surface charge carriers. The active species that enhance the
photocatalytic activity are hydroxyl radicals and superoxide radicals, as evidenced by



Int. J. Mol. Sci. 2023, 24, 663 14 of 39

electron spin resonance analysis. Under UV-light irradiation, electrons are transferred
from the VB to the CB of Bi2SiO5. Electrons migrating from the surface of Bi2SiO5 are
transferred to the CQDs through the interface between the CQDs and Bi2SiO5. Electrons
on the CQDs reduce the adsorbed O2 to •O2

−, while holes on the VB oxidize OH− to OH.
The generated reactive oxygen species play a key role in the subsequent photocatalytic
degradation process. Yang et al. [110] developed nanostructures of Bi2SiO5/g-C3N4 using a
controllable hydrothermal method. The synthesized Bi2SiO5/g-C3N4 nanostructures were
applied to the degradation of crystal violet (CV) dyes under visible-light irradiation, and
the reaction rate constant was 0.1257 h−1, which was five times and three times higher than
that of Bi2SiO5 and g-C3N4, respectively. From electron spin resonance and scavenger-test
results, it was revealed that •O2

− active species played a major role in the degradation of
CV dyes, while other primary reactive oxygen species such as •OH, h+ and 1O2 played
a secondary role (where 1O2 is the first excited state of molecular oxygen (O2), known
as singlet oxygen). Wu et al. [111] developed Bi2SiO5-SiO2, and Bi12SiO20-SiO2 photonic
crystal films were prepared by spin-coating Bi2SiO5 or Bi12SiO20 on SiO2 photonic crystals
and used as photocatalysts for the degradation of RhB dyes under UV-light irradiation.
The photon localization of SiO2 photonic crystal plays a key role in improving the light
absorption of bismuth silicate. This study provides a simple approach to improve the light-
harvesting efficiency of photocatalysts and expand the application of photonic crystals.
However, the thickness of the bismuth silicate film exhibits dual photocatalytic activity;
with the thickening of bismuth silicate, the light absorption of bismuth silicate increases,
but the photon localization weakens.

Building heterojunctions or nanostructures to prolong the lifetime of electron/hole
pairs is a very important strategy to endow them with excellent photoactivity. However,
developing nanostructures of bismuth silicate with the same composition, but forming
different crystal structures, and with suitable band gaps, remains challenging. Jia et al. [112]
developed different crystal structures using a one-pot hydrothermal synthesis method
without the addition of other inorganic materials. However, the dose of cetyltrimethylam-
monium bromide (CTAB) is the key to modulating the formation of bismuth silicate crystal
phases with assembled nanostructures and their surface states. When the concentration
of CTAB was 1.5–2 mmol, Bi2SiO5 nanoparticles were anchored on Bi12SiO20 or Bi4Si3O12
nanosheets. The obtained two kinds of bismuth silicate nanostructures, Bi2SiO5/Bi12SiO20,
have rod-like structures, and Bi2SiO2/Bi4Si3O12 have flower-like nanostructures. Ow-
ing to these two nanostructures, the optimized bismuth silicate material exhibits high
photoactivity and remarkable cycling stability. Specifically, the degradation rate of RhB
under visible light can reach as fast as 15 min with a reaction rate constant of 0.34 min−1,
which is 189 times faster than other reports. This one-pot synthesis strategy for devel-
oping single-component nanostructures has significant implications for designing other
novel photocatalysts based on their natural multivalent states, or various crystals such
as Mn-, Fe-, and V-based nanostructures. Liu et al. [113] reported novel nanostructures
of Bi4O5Br2/Bi24O31Br10/Bi2SiO5 developed by in situ ion exchange. The successful for-
mation of nanostructures between bismuth bromide and Bi2SiO5 can be attributed to
their structural similarity, thermodynamic tolerance, and high lattice matching. The novel
nanostructured photocatalysts have well-aligned span bands at their closely contacted inter-
faces and exhibit remarkable photoactivity for phenol degradation under visible light. This
ternary nanostructure exhibits about 2.5 times higher photoactivity against phenol than bulk
BiOBr. The detailed photocatalytic mechanism of Bi4O5Br2/Bi24O31Br10/Bi2SiO5 nanos-
tructures shows that in this ternary nanostructure (Figure 8), Bi4O5Br2 and Bi24O31Br10
have narrower band gaps than BiOBr, so they can absorb more long-wavelength light and
improve the light utilization rate. For example, Bi4O5Br2 nanosheets with vertically aligned
facets exhibited ∼6 times greater visible-light photodegradation efficiency against BPA
than that of BiOBr nanosheets [114].
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Figure 8. Schematic illustration of the band-gap structure and possible flow of charge carriers through
the ternary heterostructure under visible light irradiation. Reproduced with permission from [113].
Copyright 2015 Elsevier.

Based on the electrical structure, the band potentials of Bi4O5Br2, Bi24O31Br10, and
Bi2SiO5 are compatible, forming a heterojunction with well-aligned cross-bands when
they are in close contact. The photogenerated electrons in the CB of Bi24O31Br10 easily
migrate to the CB of Bi4O5Br. Meanwhile, the holes formed in the VB of Bi4O5Br2 are
easily transferred to the VB of Bi24O31Br10 and occur also in the VB of Bi2SiO5. Thus, long-
lived reactive photo-charges can be generated, allowing for improved charge separation
at their interfaces. The nanostructure-enhanced photocatalytic activity can be attributed
to (i) improved photo-utilization due to the presence of multi-components with narrower
band gaps, (ii) significantly improved charge separation capability due to the well-aligned
cross-band structure, and (iii) having a large specific surface area due to their layered
features, which can generate abundant active sites for catalytic reactions. This study may
help to design novel nanostructured photocatalysts with higher photoactivity.

The photoreactivity of Bi/Bi2WO6 was found to steadily increase from 12.3% to 53.1%
with increases in the number of Bi nanospheres from 0 to 10 wt% due to the SPR effect of Bi
nanospheres on the Bi2WO6 photocatalyst [63]. After the modification of Bi2WO6 microspheres
with Bi nanospheres, the photo-generated carriers can transfer from the CB of Bi2WO6 micro-
spheres to Bi nanospheres, retarding the recombination. In addition, the near-field enhancement
produced on Bi nanospheres by the SPR effect can significantly enhance the energy of electrons,
which then consequently boosts the separation and migration of photo-generated carriers. Then,
highly concentrated reactive oxygen species such as •O2

− and •OH radicals are produced in
Bi/Bi2WO6 to oxidize NO (Figure 9).
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Zhang et al. [115] developed Bi-induced Bi2O2CO3/Bi12SiO20 (i.e., Bi/Bi2O2CO3/Bi12SiO20)
nanostructures grown in situ on Bi2O2CO3 on Bi12SiO20 by the oil bath method and applied them
to the degradation of RhB and TC dyes. RhB and TC degradation by Bi/Bi2O2CO3/Bi12SiO20
nanostructures under simulated light are 12 times and 3.3 times higher than those of RhB and
TC, respectively, which is attributed to the synergy effect of Bi heterojunction and the SPR effect.
The trapping test results showed that •O2

− played a key role in the photodegradation process.
The band gaps of Bi2O2CO3 and Bi12SiO20 materials are 2.57 and 3.2 eV, respectively. The
estimated CB for Bi12SiO20 is−0.65 V vs. NHE, which is more negative compared to Bi2O2CO3
(−0.59 V vs. NHE). Electrons in Bi12SiO20 can migrate to the CB of Bi2O2CO3. Moreover, since
the redox potential of •O2

− is−0.33 V with respect to NHE, the photoinduced e− accumulation
on the CB of Bi2O2CO3 further generates a large amount of •O2

−-degrading dyes. Meanwhile,
the VB (2.61 eV) of Bi2O2CO3 is still more negative than that of Bi12SiO20, and the h+ on the VB
of Bi2O2CO3 can be transferred to Bi12SiO20, thereby directly degrading the dye. Therefore, the
nanostructure composed of Bi12SiO20 and Bi2O2CO3 effectively promotes carrier separation and
enhances photoactivity. In addition, the SPR effect of Bi on the surface of Bi2O2CO3/Bi12SiO20
nanostructures not only broadens the light absorption and improves the light utilization effi-
ciency, but also increases the surface electron excitation and interfacial electron transfer rate. The
local electromagnetic field induced by the SPR effect of metallic Bi also promotes the migration
and separation of charge carriers in the Bi2O2CO3/Bi12SiO20 nanostructures. The Fermi level of
Bi (−0.17 eV vs. NHE) is more negative than the CB of Bi12SiO20, •O2

− can also be generated on
Bi, and e− from Bi12SiO20 can be moved to metallic Bi to facilitate carrier separation and enhance
photoactivity. The synergy effect and SPR effect of Bi/Bi2O2CO3/Bi12SiO20 nanostructures are
caused by metallic Bi, making Bi/Bi2O2CO3/Bi12SiO20 exhibit good photoactivity.

4.5. Bismuth and Bismuth-Rich Oxyhalides

Recently, a promising photocatalyst of the bismuth family, bismuth oxyhalide (BiOX,
X = I, Cl, and Br), has been shown to induce more efficient charge separation due to its
unique layered structure with an internal electrostatic field perpendicular to each layer,
thus exhibiting significant photoactive performance [116]. Among them, BiOI has the
smallest bandgap and strong absorption in the visible-light region. BiOI is a p-type semi-
conductor with a narrow bandgap of 1.8 eV, enabling it to absorb and utilize visible light.
Therefore, it exhibits good photoactivity under sunlight exposure. Other forms of BiOI
materials including the Bi4O5I2, Bi7O9I3, β-Bi5O7I, and α-Bi5O7I types have been widely
reported [117]. However, the bandgap energy of these compounds is higher than that of
BiOI, although lower than that of Bi2O3 [118]. Therefore, these materials are used as visible-
light-induced photocatalysts. Interestingly, the structural and compositional features of
bismuth iodide strongly affect its optical power, oxidative power, electronic properties, and
other physicochemical properties, providing opportunities to obtain novel nanostructure
photocatalysts for the efficient degradation of pollutants with different characteristics. Xiao
et al. [119] reported that high-purity Bi4O5I2 with a hierarchical nanoflake structure can
be easily obtained by reacting Bi3+, I−, and OH− under solvothermal conditions at pH
values of 6–10. The as-prepared Bi4O5I2 nanoflakes have a band gap of 2.17 eV, a CB edge
potential more negative than the superoxide radical reduction potential, and a specific
surface area of about 39 m2g−1. Bi4O5I2 nanoflakes exhibited excellent photoactivity and
mineralization efficiency for the degradation of PTBP under visible light, and the reaction
rate was 6.8 times higher than that of BiOI microspheres. More importantly, the as-prepared
Bi4O5I2 nanoflakes remain stable during the photoreduction process and can be reused.

Bi4O5I2/Bi4O5I2 nanostructures were synthesized by the electrostatic self-assembly
method and used to degrade RhB under visible light irradiation [120]. In detail, two
different Bi4O5I2 compounds were synthesized using an ionic iodine source, namely
[Hmin]I (1-hexyl-3-methylimidazolium iodide) and a KI source. The Bi4O5I2(KI) was
negatively charged, while [Hmin]I was positively charged, resulting in an electrostatic
attraction between Bi4O5I2(KI) and Bi4O5I2([Hmin]I) to form a final product in the form of
Bi4O5I2([Hmin]I) nanosheets introduced in the Bi4O5I2(KI) bulk. This final Bi4O5I2/Bi4O5I2
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product exhibited higher photoactivity with an RhB degradation rate of up to 98.34%, which
is higher than the physical mixture material (80.4%), which means that the heterojunction
between Bi4O5I2([Hmin]I) and Bi4O5I2(KI) was a chemical force rather than a simple physi-
cal connection. Within the Bi4O5I2/Bi4O5I2 nanostructure, the photoinduced transfer of h+

and e−, the h+ accumulated in the VB of Bi4O5I2(KI) (1.45 eV vs. NHE), was insufficient to
oxidize H2O or OH− to •OH since E0 (•OH/OH−) (2.38 eV vs. NHE). At the same time,
the e− accumulated in the CB of Bi4O5I2 ([Hmin]I) (0.54 eV vs. NHE) was more positive
than the E0(O2/•O2

−) (−0.04 eV vs. NHE), which means that no O2 was reduced to •O2
−.

Therefore, the RhB adsorbed on the nanostructured material is mainly degraded by the h+

oxidative degradation accumulated in the VB of Bi4O5I2(KI). In addition, Bi4O5I2 ultra-thin
nanosheets synthesized via processing the molecular precursor were found to photo-reduce
CO2 into CO selectively with a photocatalytic activity of 19.82 µmol h−1 g−1 [121]. Finally,
Yin et al. demonstrated that Bi4O5I2 has good catalytic activity in the degradation of not
only MB and RhB but also methyl orange [122].

BiOCl has attracted great interest due to its remarkable photoactivity under UV irradi-
ation [123], and a recent review has focused on this compound [124]. The high photoactivity
of BiOCl can be attributed to its unique layered structure, i.e., [Bi2O2]2+ lamellae are inter-
leaved by the double lamellae of Cl atoms, with an internal electrostatic field perpendicular
to each layer [125]. This structural feature can effectively promote the transfer of electrons
and holes generated inside the crystal face, promote charge separation, and improve quan-
tum yield [126]. However, the broad band gap of BiOCl is 3.1–3.6 eV, which, due to its
preparation method and morphology, can only absorb ultraviolet light similarly to TiO2,
which also limits the effective utilization of solar energy. Therefore, to utilize the high quan-
tum efficiency of BiOCl under visible light irradiation, an efficient approach is combining
BiOCl with narrow bandgap semiconductors to form a nanostructure/heterojunction. For
example, Li et al. [127] developed BiOCl/Bi24O31Cl10 nanostructures by an ionic liquid
self-association method. BiOCl/Bi24O31Cl10 nanostructures were obtained by heating and
burning the ionic liquid, which can also be used as the main fuel. The BiOCl/Bi24O31Cl10
nanostructure was applied for the degradation of MO and RhB, which was attributed
to the narrow bandgap of 2.3 eV, which enabled efficient electron transfer from the CB
of Bi24O31Cl10 to BiOCl and improved the separation efficiency of charge carriers. The
BiOCl/Bi24O31Cl10 nanostructure containing 60.4% BiOCl and 39.6% Bi24O31Cl10 exhibited
the highest photocatalytic performance. Among these dyes, BiOCl/Bi24O31Cl10 nanos-
tructures exhibited remarkable adsorption activity for cationic dyes of RhB due to their
negative surface charges. Furthermore, the main active species responsible for the efficient
degradation of pollutants are holes and superoxide radicals involved in the photocatalytic
process. Both Bi4O5Cl2 and Bi4O5l2 proved to be efficient for photocatalytic water splitting
for hydrogen evolution, but Bi4O5Cl2 is the best for H2 production [128].

BiOCl and related compounds are best prepared with an exposed (001) surface to
obtain the best activity, owing to the effect of the self-induced electric field by this polar
surface [129]. In addition, surface OVs play an important role. The OVs extend the visible-
light adsorption range from 200 nm to 800 nm because of the formation of a localized
state [130], and they significantly improve the UV-light harvesting ability [131]. In this
work, Dong et al. synthesized BiOCl with OVs by solvothermal-induced hot ethylene
glycol reduction at 160 ◦C for 12 h, followed by mixing with H2O2, drying, and subsequent
treatment at 300 ◦C in an O2 atmosphere for 4 h. They demonstrated that the solid solution
with OVs increased the removal ratio of toluene from 52.5% to 64% and that of NO from
33.2% to 43.5% in air under 360 nm UV-light irradiation for 15 min. They also showed that
the main reason for the important improvement of the toluene degradation comes from
the shortening of the toluene degradation pathway via the surface OVs, which enables the
production of radicals with high oxidation capability for the accelerated chain scission of
the ring-opening intermediates. Zhao et al. showed that the photocatalytic degradation
of dyes with Bifocal OVs is greatly enhanced when H2O2 is added, because the activation
of H2O2 increases the production of •O2¯, (H2O2 + h+ → •O2

− + 2H+) [130]. Again,
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the localized state introduced by the OVs is important here, because the electrons in
the localized state are transferred to the CB by interband excitation. Then electrons are
trapped by O2 and generate •O2¯. Besides OVs, co-doping is another way to create a
localized level in the band gap of BiOCl to expand the light absorption region. Wang et al.
prepared co-doped BiOCl nanosheets using a simple hydrothermal route. They exhibited
outstanding photocatalytic performance in degrading BPA under visible light irradiation
with a degradation rate of 3.5 times higher than that of pristine BiOCl [132].

Jia et al. used diatomite as a solid dispersant to immobilize BiOCl microspheres.
BiOCl/60% diatomite presented 94% removal efficiency for CIP under simulated solar light
within 10 min irradiation, and also presented a 42.9% total organic carbon (TOC) removal
after 240 min, and good reusability [133].

Alansi et al. [134] synthesized the OVs rich in BiOCl0.8Br0.2 flower-like materials under
direct sunlight exposure within 10 min and noted that they changed color from white to
black (i.e., UV-BiOCl0.8Br0.2), which the authors applied for RhB degradation under visible
light. When pristine BiOCl0.8Br0.2 was prepared using low-frequency UV radiation, pristine
BiOCl0.8Br0.2 nanoflowers with a highly exposed facet (001) on the surface were obtained.
The (001) facet of pristine BiOCl0.8Br0.2 has a tight structure, in which the high-density
oxygen atoms are exposed with long, weak Bi-O bonds, facilitating the escape of oxygen
atoms from the surface, creating OVs behind them. Due to the abundance of OVs of
UV-BiOCl0.8Br0.2, the nanoflowers enhanced photocatalytic activity because the vacancies
serve as electron capture centers. The proposed photocatalytic mechanism is as follows:
the presence of Br in the BiOCl0.8Br0.2 material significantly increased its surface area and
decreased the Bi-O bond energy on BiOCl, which in turn provides the formation of OVs
resulting in wider visible light absorption and a fast charge-transfer rate. Water molecules
are rapidly adsorbed on the OV sites of the aqueous solution, and adsorbing on the (001)
BiOCl0.8Br0.2 surface leads to the formation of a layer of hydroxyl groups. Hydroxyl groups
increase the length of the Bi-O bond and thus reduce its energy, which provides for the
escape of oxygen atoms from the surface upon exposure to an energy source, leaving OVs
behind them. Therefore, by exposing pristine BiOCl0.8Br0.2 to low-energy irradiation, such
as the UV component of natural sunlight irradiation, the hydroxyl readily exits and allows
the regeneration of OVs on the surface, which changes color from white to black. The
weakening of the Bi-O bond in the presence of Br has also been used to synthesize BiOBr
ultrathin nanosheets with abundant surface Bi vacancies (VBi-BiOBr) by reactive ionic
liquid ([C16mim]Br)-assisted synthesis at room temperature [135]. With the advantages of
optimized CO2 adsorption, activation, and CO desorption, VBi-BiOBr UNs can deliver a
3.8-times-improved CO formation rate relative to BiOBr nanosheets, with a selective CO
generation rate of 20.1 µmol g–1 h–1 in pure water. Another example of CO2 conversion is
given by BiOBr atomic layers with OVs obtained by ultra-sonication exfoliation followed
by UV irradiation. The visible-light-driven conversion rate of CO2 to CO was increased to
87.4 µmol g−1 h−1, much higher than the value obtained in the absence of VOs [136].

Wang et al. fabricated OV-rich sulfur-doped BiOBr nanosheets through a facile one-
step solvothermal method [137]. The synergistic effect between S doping and oxygen
vacancy led to superior photoactivity for non-dye organic contaminants. In particular, un-
der visible light irradiation, the optimal BB-5S sample exhibited 98% degradation efficiency
of 4-chlorophenol within 120 min.

The solid solution BiOClxBr1−x exists in the whole range 0 ≤ x ≤ 1, so that the ratio
of Cl and Br can be tuned to decrease the band gap and thus improve the photocatalytic
activity. In particular, Yang et al. prepared this solid solution through a glycol-assisted
hydrothermal process [138]. The degradation rate of methyl orange (in aqueous solution)
reached a maximum value at x = 0.5.

In BiO(ClBr)(1−x)/2Ix solid solutions, the introduction of I has two advantages. First,
the ionic radius of I is larger than that of Cl or Br, so that the introduction of I leads to a
lattice dilatation in the c axis, which reduces the energy barrier at the interface of different
crystal planes and reduces the recombination rate of the photo-electrons and holes. Second,
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the CB edge is mainly composed of Bi 6p and is thus not significantly dependent on x. On
the other hand, the valence band edge is mainly composed of the p states of the oxygen
and halogens, so it is modified, and actually increases with x. Consequently, the band gap
decreases with the introduction of I and can be varied from 2.88 to 1.82 eV depending on
x. As a result, BiO(ClBr)(1−x)/2Ix showed improved photoactivity for the degradation of
2-propanol to acetone and CO2, under visible light [139].

Dong et al. synthesized four-layered bismuth oxyhalides BiOX and BiOXO3 (X = Br, I).
They found that the order of the photocatalytic performance for water splitting (including
the carrier’s lifetime, photocurrent density, and H2 evolution rate) is BiOBrO3 > BiOI >
BiOIO3 > BiOBr, emphasizing the role of the polar electric field [140]. The remarkable
performance of BiOBrO3 is due to the inhibition of the recombination of the charge carriers
by the internal polar electric field along the (001) direction. On another hand, the built-in
electric field has no impact on the recombination rate in bulk BiOX, owing to the mirror
symmetry. However, the recombination is hindered in BiOI by the surface polar electric
field, which breaks the mirror symmetry. This polar behavior of BiOXO3 is due to the
difference between the crystallographic structure of BiOX and BiOXO3. They all crystallize
in the sillenite structure, but the double X− layers in BiOX are replaced by double [XO3]
layers in BiOXO3. The XO3 units have a trigonal pyramidal structure that generates electric
dipoles. For the same reason, BiOIO3 is a polar material, with the c-axis as the polar axis,
which explains its high photocatalytic activity [141,142]. Chen et al. synthesized BiOIO3
single crystal nanoribbons along the (001) direction to take advantage of the strong polarity
of the IO3 units. This polarity acted collaboratively with surface oxygen vacancies to boost
CO2 reduction [143]. Huang et al. found that the activity of BiOIO3 for photocatalytic water
splitting can be increased by V5+ ion doping into IO3 pyramidal units. The •O2

− and •OH
evolution rates of BiOI0.926V0.074O3 increased by ∼3.5- and ∼95.5-fold, respectively, with
respect to BiOIO3 [144]. Another example of the beneficial effect of the polarization-induced
electric field is the modification of porous BiVO4 microtubules with inorganic acids. The
generation of free hydroxyl radicals by the ionization of hydroxyl groups in the modified
inorganic acid increased the intensity of the surface electric field, enhancing their reactivity
toward CTC degradation [145].

5. Type of Photocatalytic Mechanism of Bismuth-Based Photocatalysts
5.1. p–n Junction

The synthesis of nanostructures with highly reactive exposed faces and p–n junctions
is of great interest for semiconductor photocatalysis. The construction of nanostructured
semiconductor junctions has been very active recently because of their perfect effect in
promoting the separation of photogenerated charge carriers and enhancing photocatalytic
reactions. In general, nanostructured catalysts containing p–n junctions with direct con-
tact between p-type and n-type semiconductors have drawn much devotion due to their
large potential gradients, and the built-in electronic field established at their junction
level can induce efficient charge transfer and separation. The main effective strategy to
enhance photocatalytic activity is crystal-facet engineering. We have already mentioned
the case of BiOX/CuFe2O4 [58]. Another example is provided by Cai et al. [146], who
reported nanostructures of β-Bi2O3/Bi2O2CO3 and α-Bi2O3 prepared by a rational calcina-
tion process of Bi2O2CO3, used as photocatalysts for MB degradation under visible light
irradiation. A p–n junction was successfully created by the proposed synthetic procedure.
The β-Bi2O3/Bi2O2CO3 (at 300 ◦C) nanostructure reduces recombination by promoting
the separation of photogenerated electrons and holes, showing higher MB degradation
efficiency than Bi2O2CO3 and α-Bi2O3. When β-Bi2O3 is in contact with Bi2O2CO3, the
CB potential of Bi2O2CO3 is more positive than that of β-Bi2O3 with the adjustment of the
Fermi level. Therefore, electrons generated on β-Bi2O3 CB can be transferred to Bi2O2CO3
by the electric field formed inside. Therefore, the formation of a p–n heterojunction of
β-Bi2O3/Bi2O2CO3 can effectively separate electron-hole pairs and suppress the undesired
recombination of electrons and holes. The separated electron-hole pairs are then freely
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transferred to the surface to react with the adsorbed dye molecules, thereby enhancing the
photocatalytic activity of the nanostructures.

Huang et al. [147] pioneered the in situ-constructed BiOI/Bi12O17Cl2 nanostructures
consisting of BiOI nanosheets grown vertically on the surface of the Bi12O17Cl2 plate, form-
ing a unique front-coupling nanostructure that enables high exposure of the (001) facet
reaction exposed surface of BiOI. The photocatalytic behavior of various industrial pollu-
tants such as 2,4-DCP, RhB, BPA, and antibiotics (TCHC) was tested on BiOI/Bi12O17Cl2
nanostructures. The BiOI/Bi12O17Cl2 nanostructures not only exhibited significantly en-
hanced photoactivity but also exhibited strong non-selective photooxidation ability under
visible light irradiation. The BiOI/Bi12O17Cl2 nanostructures exhibit the benefits of facili-
tating the separation and transfer of charge carriers, which originate from the BiOI (001)
active facet and p–n junction responsible for high photoactivity. The highly promoted
photoactivity of BiOI/ Bi12O17Cl2 nanostructures is mainly credited to the following as-
pects: (i) Bi12O17Cl2 can serve as an excellent substrate to support and uniformly distribute
BiOI nanosheets, which helps to increase the specific surface area for enhanced absorption
and reaction sites. Nevertheless, the enhanced level of the surface area is lower than the
enhanced level of photoactivity. (ii) The main advantage of BiOI/Bi12O17Cl2 nanostructures
is heterojunction formation, which plays an important role, due to the front-side surface
coupling assembly of BiOI/Bi12O17Cl2 nanostructures enabling the (001) crystal planes
to be more exposed. Due to the strong light absorption ability, a large number of photo-
generated carriers will appear under visible light irradiation. (iii) Driven by the strong
self-built electric field from the (001) active surface of BiOI, these induced electrons and
holes flow from the interior of the BiOI nanosheets, densely migrate to the surface, and
then accumulate on opposite surfaces, such as the top and bottom surfaces, respectively
(Figure 10).
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Therefore, the photoinduced electron-hole pairs of BiOI and BiOI/Bi12O17Cl2 also
contribute to high photoactivity. p-type BiOI and n-type Bi12O17Cl2 can form a stable p–n
junction. The CB and VB of BiOI before contact are lower than those of Bi12O17Cl2. After
the p–n structure is built, the energy level of Bi12O17Cl2 decreases, while the energy level of
BiOI increases until BiOI and Bi12O17Cl2 reach the Fermi level equilibrium. The bottom of
the CB of BiOI and the top of the VB can quickly migrate to the bottom of Bi12O17Cl2, while
the holes generated by the VB of Bi12O17Cl2 are transferred to the VB of BiOI. Therefore, the
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electron-hole pairs are effectively separated at the p–n junction of BiOI/Bi12O17Cl2 nanos-
tructures, and the holes accumulated in the Bi12O17Cl2 VB directly oxidize the pollutants.
The electrons accumulated at the CB of BiOI are further converted into •O2

− with a strong
oxidizing ability, which subsequently induces the decomposition of various pollutants. This
work delivered a new avenue for us to design novel nanostructured photoactive materials
with integrated p–n junctions and numerous active exposed facets. We have already noted
above that BiPO4 has a too-large band gap to have good photocatalytic properties in visible
light. BiPO4 is n-type. A solution is then to modify the surface of BiPO4 with BiOBrxI1−x,
which is p-type, to form a p–n heterojunction, and optimize the band gap by the choice of x.
The 5% BiPO4–BiOBr0.75I0.25 heterojunction showed the highest photocatalytic activity in
the reduction of CO2 [148]. After 4 h of visible light irradiation (λ > 420 nm), the yield of
CO and CH4 reached 24.9 and 9.4 µmol g−1, respectively.

Tang et al. [149] reported the construction of BiOI/tetrapod-like ZnO whiskers (T-
ZnOw). The p–n junction photocatalysts with different Bi/Zn molar ratios were prepared
by the in situ precipitation of BiOI on T-ZnOw templates and applied to degrade RhB and
oxytetracycline (OTC) under visible-light irradiation. Compared with other samples, the
1:10 nanostructured photocatalysts with different Bi/Zn molar ratios exhibited the highest
photoactivity, namely 97.1% RhB and 88% OTC. This is endorsed by the large specific
surface area and efficient separation of charge carriers caused by the formation of p–n
heterojunctions between T-ZnOw and BiOI. Figure 11a shows the energy bands of BiOI
and T-ZnOw before the formation of the BiOI/T-ZnOw nanojunction. BiOI and T-ZnOW
have nested energy levels that are not conducive to the transfer of system-generated charge
carriers. Since the BiOI/T-ZnOw nanostructure has higher photoactivity and photocurrent
response than T-ZnOw and BiOI, it can be inferred that a p–n junction is formed. T-ZnOw
is an n-type semiconductor with a Fermi level close to the CB, while BiOI is a p-type
semiconductor with a Fermi level close to the VB. When BiOI and T-ZnOw are in close
contact, a p–n junction is formed (Figure 11b).
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(b) after the formation of a p–n BiOI/T-ZnOw heterojunction and possible photocatalytic degradation
mechanism under visible light irradiation. Reproduced with permission from [149]. Copyright 2022
The Royal Society of Chemistry.

The electrons are transferred from the T-ZnOw near the p–n junction, and at the same
time, the holes are transferred from BiOI to T-ZnOw, causing the positive charge region
in T-ZnOw to reach equilibrium with BiOI, and the built-in electric field direction from
T-ZnOw to BiOI is constructed at the same time. The band positions of BiOI and T-ZnOw
shift up and down together with the Fermi level, and photoactivity occurs as follows: (i)
BiOI is excited under visible light, causing electrons to move from VB to CB. Then, since
the CB of BiOI is more negative compared to that of T-ZnOw, electrons are easily moved
to the CB of T-ZNOw from the CB of BiOI. Furthermore, the built-in electric field can
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provide the migration of photogenerated electrons from BiO to T-ZnOw. The holes remain
in the VB of BiOI, which enables the efficient separation of electrons and holes in BiOI.
Therefore, efficient charge carrier separation and more electrons and holes can participate
in the photocatalytic process, thereby enhancing the photoactivity. The electrons in the
CB of T-ZnOw can react with dissolved O2 to generate •O2

−, and then generate OH from
O2
− through a reduction process. The holes in the VB of BiOI directly participate in the

oxidation of OTC. Therefore, •O2
−, •OH, and h+ jointly participate in the degradation

of OTC.
Nie et al. [150] developed a p–n junction-derived flower-like CeO2-δ (n-type) coupled

to β-Bi2O3 of p-type (i.e., β-Bi2O3/CeO2-δ) nanostructures via the thermal decomposition
of Bi/Ce precursors (Figure 12). This β-Bi2O3/CeO2-δ nanostructure was used for NO
removal under visible light.
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Figure 12. X-ray diffraction patterns (a) and Raman spectra (b) of CeO2-δ, β-Bi2O3, and β-
Bi2O3/CeO2-δ samples. (c) Scanning electron microscopy images and schematic representation
of the formation process of 4% β-Bi2O3/CeO2-δ. (d,e) Transmission electron microscopy (TEM) and
high-resolution TEM showing the various species in sample (f,g) images of 4% β-Bi2O3/CeO2-δ.
Reproduced with permission from [150]. Copyright 2021 Elsevier.

The excellent photoactivity of β-Bi2O3/CeO2-δ nanostructures is attributed to the
synergistic effect of oxygen vacancies and p–n junctions. The associated oxygen vacancies
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not only improve the utilization of visible light and facilitate the separation of electron-
hole pairs, but also enhance the adsorption of NO and the activation of O2. In fact, the
synergistic effect of the p–n heterojunction through the p–n junction favors the interfacial
migration of charge carriers, and oxygen vacancies can induce more active radicals. The
nanoflower-like β-Bi2O3/CeO2-δ nanostructures exhibit excellent photoactivity, which can
completely remove NO and inhibit NO2 production. The authors verified the reaction
products by in situ fast Fourier infrared analysis, showing that the main product of nitrate
is formed during the photocatalytic process.

5.2. n–n Junction

Su et al. [151] developed a post-calcination process for hydrothermal synthesis. One-
dimensional, rod-like BiOI/Ag2Mo2O7 nanostructures can reduce the photocatalytic activity
of RhB and TC by 70- and 16-fold compared with Ag2Mo2O7, which is attributed to the
efficient separation of photogenerated charges. The reason is to form an n–n junction between
BiOI and Ag2Mo2O7. From the free radical trapping test results, it can be concluded that
•O2

− and h+ species play a major role in photoactivity. In addition, this nanostructure has a
photodegradable TC solution, which is basically harmless to Escherichia coli. Figure 13a,b
depict the possible photocatalytic mechanism of BiOI/Ag2Mo2O7 nanostructures, showing
the energy band positions of BiOI and Ag2Mo2O7 before and after contact. When BiOI is
combined with Ag2Mo2O7, an n–n junction is formed at the contact interface. Since the
Fermi level of BiOI is lower than that of Ag2Mo2O7, the electrons in BiOI can be transferred
to Ag2Mo2O7, thus generating a positive consumption layer on one side of BiOI and a
negative consumption layer on the other side of Ag2Mo2O7. When the Fermi levels of the two
components reach equilibrium, an internal electric field from BiOI to Ag2Mo2O7 will form
at the interface. Under illumination, the photogenerated electrons with strong yield in BiOI
CB can reduce O2 to O2

•− (O2/O2
•−) (−0.33 eV vs. NHE), and the photogenerated holes in

Ag2Mo2O7 VB have strong oxidizing ability, which can direct the oxidation of contaminants to
non-toxic products. Therefore, the n–n junction can facilitate the separation of photogenerated
charges, thereby enhancing the photocatalytic activity.
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nanostructure. Reproduced with permission from [151]. Copyright 2022 Elsevier.

5.3. Z-Scheme

Li et al. [152] constructed ternary nanostructures composed of AgBr anchored on
BiOI/g-C3N4 nanostructures and applied them to degrade MO (20 mg L−1) under visible
light irradiation. The MO degradation rate of AgBr/BiOI/g-C3N4 nanostructures on the
nanostructured catalyst reached 93.41% within 120 min, which is attributed to the double
Z-type heterojunction between AgBr, BiOI, and g-C3N4, which has a strong Ag electron
capture effect (Figure 14). It was concluded that the main active species was •O2

−, and
h+ also played a role. A double Z-type electron transfer mechanism is formed between
AgBr, BiOI, and g-C3N4. Under illumination, the electrons accumulated on AgBr can easily



Int. J. Mol. Sci. 2023, 24, 663 24 of 39

react with the attached Ag+ to form metallic Ag, so the AgBr/BiOI/g-C3N4 system is
transformed into Ag/AgBr/BiOI/g-C3N4. Metallic Ag has good electron-trapping ability;
it can capture electrons to generate active •O2

− from the CB of AgBr for degrading MO
molecules in solution. However, due to the small doping connection of BiOI and AgBr,
the degradation effect is limited. Finally, for the potential of oxidation to •OH (•OH/H2O
= +1.99 eV and •OH/OH− = +2.4 eV vs. NHE), the g-C3N4 VB is lower, but it is higher
for BiOI and AgBr. Therefore, the amount of •OH produced is small, and it is concluded
from the scavenger experiments that •OH can hardly degrade the pollutants during the
photocatalytic reaction.
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Graphitic carbon nitride (g-C3N4) has photocatalytic activity for BPA degradation [153,154]. g-
C3N4 is well matched with Bi2WO6 composites. In particular, the Z-scheme g-C3N4-Zn/Bi2WO6
synthesized by a two-step solvothermal method followed by a calcination process, using
2.0 g of dicyanamide as the precursor for g-C3N4, photodegraded 93% of the BPA within
120 min [155]. Even better results were obtained with Bi2WO6/g-C3N4/black phosphorus
quantum dots (BPQDs) composites fabricated by the hydrothermal reaction of Bi2WO6
and g-C3N4 and a succedent BPQDs modification [156]. This composite with a direct dual
Z-Scheme configuration showed photocatalytic activity for BPA degradation in visible light
(95.6%, at 20 mg L−1 in 120 min), higher than that of Bi2WO6 (63.7%), g-C3N4 (25.0%),
BPQDs (8.5%), and Bi2WO6/g-C3N4 (79.6%), respectively.

Deng et al. [157] fabricated a Z-scheme black BiOCl-Bi-Bi2O3/rGO heterojunction,
where rGO and metallic Bi serve as charge-transfer channels between black BiOCl and
Bi2O3. The black BiOCl-Bi-Bi2O3/rGO0.4 shows the highest visible-light photocatalytic
activity with almost complete degradation of 2-nitrophenol, owing to the proper bandgap
match between black BiOCl and Bi2O3, multiple charge-transfer channels via Bi-bridge and
rGO, and efficient charge separation.

Recently, Ag/SnO2-x/Bi4O5I2 showed high efficiency in degradation and antibacterial
properties, owing to the Z-scheme of this ternary composite. The optimum sample of 3%
Ag/SnO2−x/Bi4O5I2 can degrade 80% TC in 120 min, inactivate Escherichia coli (E. coil) in
15 min, and Staphylococcus aureus (S. aureus) in 20 min under LED light [158].

Zhang et al. [159] pioneered microwave-hydrothermally synthesized Bi2SiO5/Bi2SiO20
nanostructured photocatalysts by bismuth nitrate and nano-SiO2 as precursors and applied
for the degradation of RhB and MB dyes under UV-light irradiation. The results show that
the photocatalytic activities of the Bi2SiO5/Bi2SiO20 nanostructures of RhB and MB dyes
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are 3-fold and 4.3-fold higher than that of Bi12SiO20, which are attributed to their large
specific surface area, smaller particle morphology, and good crystallinity through their
heterogeneity. The heterojunction facilitates an efficient charge separation capability. The
trapping test results show that superoxide radicals and holes play a major role in the pho-
toactivity. The Bi2SiO5/Bi2SiO20 nanostructured photocatalyst has Z-type photocatalytic
activity. However, the oxidizing power of the photogenerated holes at the Bi2SiO20 VB is not
sufficient to oxidize H2O to •OH because its potential is shallower than that of •OH/H2O
(2.8 eV vs. NHE). The CBs of Bi2SiO5 and Bi2SiO20 are not sufficiently negative compared
to the standard reduction potential O2/O2

•− (−0.33 eV vs. NHE), indicating that electrons
cannot be captured by O2 in solution to form reduced •O2

−. According to the trapping test
and ESR results, h+ and •O2

− play important roles in photodegradation; therefore, another
common possible mechanism is a Z-type heterojunction. The photogenerated electrons on
Bi2SiO5 transfer from the CB of the photogenerated holes to the VB and can oxidize H2O to
•OH, while the photogenerated electrons on the CB of Bi12SiO20 cannot reduce O2 to •O2

−.
This finding contradicts the test results, indicating that the Z-scheme system also cannot
explain the degradation mechanism of Bi2SiO5/Bi12SiO20 nanostructures. Surface oxygen
vacancies are considered shallow donors for semiconductor photocatalysts and can serve
as adsorption and reaction sites, as shown in Figure 15a. For example, oxygen vacancies
can dynamically capture directly excited electrons from the CB and can directly activate O2
to form reactive oxygen species (•O2

−). In fact, Bi12SiO20 and γ-Bi2O3 have similar crystal
structures, in which 80% of tetrahedral sites are occupied by Bi3+ and 20% of vacancies (Si•)
in the γ-Bi2O3 crystal structure. Oxygen vacancies in Bi12SiO20 are mainly concentrated
in tetrahedral silicate groups (Si•BiO4) [160]. Therefore, the photocatalytic mechanism of
Bi2SiO5/Bi12SiO20 nanostructures can have multiple charge-transfer channels, as shown
in Figure 15b. The major contributions are: (i) the existence of surface oxygen vacancies
conducive to the enrichment of O2; (ii) the photo-induced generation of holes and electrons
can control the direction of charge transfer from Bi12SiO20 to Bi2SiO5 and also control the
electron transfer between O2 and Bi2SiO5/Bi12SiO20 nanostructures, thereby improving
carrier separation in photocatalysis; and (iii) surface oxygen vacancies continuously capture
and release electrons to generate new active species, acting as d-electron carriers, which
then donate electrons to the anti-bonding orbital of O2, reducing it to •O2

−. The relevant
reactions involving photocatalytic removal of dyes are as follows:

Bi2SiO5/Bi12SiO20 + hν→ (Bi2SiO5/Bi12SiO20 + h+) + e− (4)

O2 + e−OV → •O2− (5)

h+(Bi2SiO5)→ h+(Bi12SiO20) (6)

dye + •O2
− → degradation products (7)

dye + h+ → degradation products (8)

However, it remains questionable why •O2
−can still be generated when both Bi2SiO5

and Bi12SiO20 have negative CB potentials compared to the O2/•O2
− reduction potential.

Finally, the dye is degraded by the interaction of •O2
− and h+. This is the unique reaction

mechanism of the photocatalytic process proposed in their study.
Other members of the layered bismuth oxide family were also successfully used for

the construction of Z-scheme heterojunctions with high photocatalytic activity; in particular,
Bi2MoO6. This is a member of the Aurivillius family, a potential candidate as an excellent
photocatalyst and solar-energy-conversion material for water splitting and the degradation
of organic compounds under visible-light irradiation [161,162]. We guide the reader to
the excellent review on the recent advances in the photocatalytic degradation of organic
pollutants using Z-scheme Bi2MoO6-based heterojunctions [54].
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Figure 15. (a) Schematic diagram for the enhanced photogenerated electron transfer processes
induced by OVs. (b) Schematic diagram for the migration and separation of electron-hole pairs and
the photocatalytic process of the Bi2SiO5/Bi12SiO20 heterojunction photocatalyst: Crystal structure
of Bi2SiO5 (left) (Si•BiO4) tetrahedron and (BiO5) pyramids in Bi12SiO20 crystal structure (right).
Reproduced with permission from [159]. Copyright 2022 Elsevier.

5.4. S-Scheme

The S-scheme effect promotes the interface charge transfer and can be used to im-
prove photocatalytic activity. Lu et al. synthesized a Bi2O3/Bi2SiO5 p–n heterojunction
photocatalysts [163]. The p–n heterojunction was formed by increasing the amount of
nano-SiO2 precursor, which transformed α-Bi2O3 into β-Bi2O3. Dou et al. [164] devel-
oped Bi2O3-related oxygen vacancies coupled with Bi2SiO5 microspheres to self-assemble
to form OVs-Bi2O3/Bi2SiO5 heterojunctions via a simple one-pot solvothermal process.
The OVs-Bi2O3/Bi2SiO5 nanostructures consist of one-micron-sized microspheres for the
degradation of MO dyes under visible light. The synergistic effect of Bi2O3 and Bi2SiO5
greatly improved the removal rate of MO, and the carrier separation and transfer of the
OVs-Bi2O3/Bi2SiO5 nanostructure were associated with a ladder mechanism, which en-
dowed the OVs-Bi2O3/Bi2SiO5 nanostructure with higher photoactivity as compared to
bare Bi2O3. After the combination of Bi2O3 and Bi2SiO5, due to the interfacial electric field
gradient in the OVs-Bi2O3/Bi2SiO5 nanostructure, the Fermi energies of the two materials
are arranged into a new energy band structure at their interface (Figure 16). The photo-
generated electrons on the CB of Bi2SiO5 are transferred to the CB of Bi2O3. The relatively
useless photogenerated electrons on Bi2SiO5 CB can recombine with relatively useless holes
on the Bi2O3 VB. The holes on the Bi2SiO5 VB can oxidize H2O/OH− to form OH radicals.
Therefore, MO can degrade electrons and holes in different spatial regions through •O2

−,
•OH, or h+ oxidation pathways.
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Note that S-scheme heterojunctions have been also made between a Bi-based com-
pound and another compound. An S-scheme heterojunction was formed by depositing
Bi2O3 nanoplates on TiO2 nano-fibers [165]. This Bi2O3/TiO2 heterojunction demonstrated
good activity to remove phenol under visible light. The S-scheme heterojunction formed by
the combination of Bi2WO6 and a metal–organic framework (NH2-MIL-125(Ti)) displayed
enhanced photocatalytic activity for the removal of RhB and TC under visible light irradi-
ation [166]. Li et al. [167] fabricated a black phosphorus/BiOBr S-scheme heterojunction
by a convenient liquid-phase ultrasound combined with a solvothermal method. The
photocatalytic performance of this heterojunction for the TC degradation, oxygen evolu-
tion, and H2O2 production rate of Sol-10BP/BiOBr was 7.8, 7.0, and 2.6 times that of pure
BiOBr, respectively. Xie et al. fabricated an S-type g-C3N4/Bi/BiVO4 photocatalyst with
the aid of a facile substrate-directed liquid phase deposition route [168]. In addition to the
S-scheme effect promoting the interface charge transfer, this structure utilized the SPR effect
of bismuth. This effect accelerates the separation of the photo-generated carriers [169],
already evidenced in heterojunctions of Bi and BiOCl [21,170,171]. Moreover, the excellent
NO removal efficiency observed with nanoparticles of Bi on g-C3N4 was achieved for the
optimized size of the Bi nanoparticles (12 nm) [172]. Owing to these synergetic effects, the
g-C3N4/Bi/BiVO4 exhibited superior performance toward artificial carbon cycling.

A recent outstanding example of the efficiency of the S-scheme is the Bi4Ti3O12/ZnIn2S4
S-scheme heterojunction, which demonstrated an outstanding hydrogen production effi-
ciency of 19.8 mmol h−1 g−1 under visible light irradiation [173].

6. Other Strategies for Enhance the Photocatalytic Activity
6.1. Doped-Bismuth-Based Photocatalyst

Chen et al. [174] reported the synthesis of C-N-doped β-Bi2O3 nanosheets by solvother-
mal calcination using poly(aniline-co-pyrrole) as C and N sources and applied them to
degrade 17α-ethynylestradiol. The photodegradation rate of 17α-ethynylestradiol of C-N
doped β-Bi2O3 nanosheets was 98.86% within 20 min under visible light irradiation, which
was attributed to the high specific surface area and hydrophilicity of carbon and C and
N doping and the post-induced narrow bandgap in β-Bi2O3. Shahid et al. [175] reported
simple wet-chemically derived gadolinium (Gd)-doped BiFeO3 nanoparticles grafted onto
rGO using an ultrasonic strategy, and formed Gd-doped BiFeO3/rGO nanostructures,
which were applied by solar irradiation for the degradation of MB dye. Compared with
Gd-doped BiFeO3 and bare BiFeO3, Gd-doped BiFeO3/rGO nanostructures exhibited su-
perior photocatalytic activity. The Gd-doped BiFeO3/rGO catalyst removed 87% of MB
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dyes in 120 min with a rate constant of 0.016 min−1, while Gd-doped BiFeO3 and bare
BiFeO3 degraded only 66% (0.008 min−1) and 55% (0.003 min−1) of the MB dye, due to
the synergistic effect of Gd-doping and rGO inclusion, resulting in a red-shift in light
absorption. Due to the nanoscale features of the structures, the nanostructures fabricated
by this synthesis process can suppress charge carrier recombination and charge-transfer re-
sistance by enhancing electronic conductivity and diffusion properties. Shamin et al. [176]
developed a low-temperature hydrothermal synthesis of 10% Gd, Cr-doped Bi25FeO40
for the degradation of RhB and MB. Gd-Cr-doped Bi25FeO40 exhibits a low band gap of
1.76 eV and higher photocatalytic degradation performance for RhB and MB, which is
attributed to the phase distribution, regular power-like morphology, reduced electron-hole
recombination, and lower bandgap. Therefore, Gd-Cr-doped Bi25FeO40 has been shown to
be a compelling energy-saving and low-cost strategy for the preparation of sillenite-phase
bismuth ferrite as a promising photocatalyst.

6.2. Ligand Modification Strategy

Tien et al. [177] reported that Bi12O17Cl2 nanowires were synthesized by the chlori-
nation of α-Bi2O3 at 400 ◦C and consisted of tetragonal structures with a length of 15 µm
and a diameter of 400 nm. Bi12O17Cl2 nanowires were prepared by a chlorination method.
Typically, α-Bi2O3 nanowires are directly reacted with HCl and converted into Bi12O17Cl2
nanowires, as follows:

6α-Bi2O3 + 2HCl→ Bi12O17Cl2 + H2O (9)

Bi12O17Cl2 nanowires have red emission at 746 nm and strong green emission at
568 nm at room temperature, which is a hallmark of visible-light-emitting materials for
photocatalytic applications, because the synthesized Bi12O17Cl2 nanowires exhibit a narrow
bandgap of 2.28 eV.

7. Future Prospects and Expectations

Regarding the huge number of research works published in the last years, Bi-based
materials have received notable attention as possible active solar photocatalysts and demon-
strate high photocatalytic activity when used for the degradation of environmental pollu-
tants. Bismuth-based photocatalysts have proved to be a promising class of materials for a
variety of energy- and environment-related applications due to their unique, layered struc-
tures, excellent physicochemical properties, and tunable electronic structures. However, a
single component of bismuth-based materials often suffers from several inherent disadvan-
tages, including low light-harvesting efficiency, few active sites, and the recombination of
charge carriers. To overcome these shortcomings, efforts have been devoted to optimizing
the photoactivity of bismuth materials by coupling them with metallic or semiconducting
materials to alter their band energies, including rational structural design, compositional
tuning, electronic structure tailoring, and interfacial engineering. Furthermore, Bi-based
photocatalysts with rationally high catalytic yield still require further alteration to enhance
their photocatalytic activity. To satisfy this objective, it was recently revealed that mi-
crostructures synthesized in a controlled manner using an appropriate bromide source
exhibit improved photocatalytic performance induced by the formation of hierarchical
3D flower-like open petal structures [178]. Controllable morphological features of mi-
croparticles have always been an important research topic in material synthesis, which
allows us not only to perceive unique features but also to obtain desirable physicochemical
properties. For instance, several workers demonstrated the effect of solvent on the morpho-
logical characteristics of BiOBr by a solvothermal method and showed that the viscosity of
the solvent causes morphological changes in the formation mechanism of photocatalytic
materials [179–181].

Regardless of the good progress in bismuth-based photocatalysts, the nature of the
active sites in these nanostructures remains unclear. It is highly desirable to understand the
associated photocatalytic mechanism at the nanoscale level during multiple photocatalytic
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applications. More attention should be paid to the determination and quantification of
active sites by calculation and direct experimental analysis. Further in situ characterization
and calculations close to realistic conditions are needed to gain an atomic-level view of
the relationship between active sites and photoactivity, which would be a merit for better
design and adaptation of bismuth-based photocatalysts. As can be envisaged in this short
overview, one of the main approaches to the development of highly efficient photocatalytic
material passes through the fabrication of complex heterostructures. Table 1 summarizes recent
studies on nanostructured Bi-based photocatalysts for pollutant degradation [56,164,182–197].
The excellent photocatalytic performance of Bi-based heterojunctions for the degradation of
cationic pollutants under visible-light irradiation is superior to that of single sheets, which is
ascribed to the efficient charge separation and transfer across the phase junction.

Recently, Bi et al. [184] constructed a Bi2WO6/ZnIn2S4 phase junction with a Z-scheme
structure showing high photocatalytic activity due to the rapid transfer of carriers, which
inhibits the recombination of e− and h+. Thus, the phase-junction approach is opening new
avenues for the development of efficient photocatalysts for water purification and energy
conversion. Highly active S-scheme heterojunctions show outstanding photocatalytic activity,
in which both •O2

− radical attack, H+ direct oxidation, and OH oxidation are the processes
implicated in the removal of pollutants. Ligand modification based on chlorination is another
successful strategy to enhance the photocatalytic activity of BBNs [177].

There is a separate class of bismuth-based photocatalysts—alkaline earth metal (Mg,
Ca, Sr, Ba) bismuthates (BiO3

– or Bi2O6
2–)—with bismuth in its pentavalent state [198].

Magnesium bismuthate with the composition MgBi2O6 is a degenerate semiconductor with
a bandgap of only 1.8 eV. Shtarev et al. [199] examined the sillenite structure MgBi12O20 to
probe the effect of the cationic composition of this magnesium bismuthate on its photocat-
alytic properties.

Table 1. Recent studies on nanostructured Bi-based photocatalysts for pollutant degradation.

Catalyst Dosage
(g L−1) Pollutant

Dye
Concentration

(mg L−1)
Light Conditions

Degradation
Time and
Efficiency

Ref.

CNFs/g-
C3N4/BiOBr 3.0 TC 20 300 W, Xe lamp, λ > 400 nm 120 min/86.1% [182]

Bi2MoO6/CQDs/Bi2S3 0.3 TC 20 300 W, Xe lamp, λ > 420 nm 120 min/92.5% [183]
Bi2WO6/ZnIn2S4 0.2 MO 10 300 W, Xe lamp, λ > 420 nm 60 min/97.5% [184]
OVs-
Bi2O3/Bi2SiO5

1.0 MO - 500 W, Xe lamp, λ > 420 nm 7 h/71.8% [164]

BiVO4/Bi2S3 - Cr(VI) - 500 W, Xe lamp, 420 nm filters - [185]
BiVO4/Bi2O2CO3 - RhB - - - [186]
Bi25FeO40/Bi2Fe4O9 0.1 RhB 10 - - [187]
Bi2WO6/BiOBr - RhB - 300 W, Xe lamp, λ > 420 nm - [188]
Bi2WO6/ZnFe2O4 0.05 RhB 50 - 300 min [189]
BiFeO3/TiO2 0.5 MB - 300 W, Xe lamp 120 min/96% [190]
BiFeO3/carbon 0.01 MB - 300 W, Xe lamp 54 min/54% [191]
BiFeO3-GdFeO3 0.01 MB - Sunlight 120 min/56% [192]
BiFeO3/Fe3O4 0.02 MB - 500 W, halogen lamp 40 min/100% [56]
MOF-BiFeO3 0.02 MB - 300 W, Xe lamp 120 min/93% [193]
CuO–BiVO4 0.01 MB - 150 W, Xe lamp 150 min/100% [194]
Bi2MoO6–
ZnSnO3

0.01 MB - 300 W, Xe lamp 60 min/95% [195]

BiOBr/Bi2O3 0.01 MB - 300 W, Xe lamp 50 min/87% [196]
BiFeO3/Bi2WO6 0.06 MB - 500 W, halogen lamp 54 min/75% [197]

The photocatalytic activity of Ca3Bi8O15 [200] was estimated from the decomposition
of various pollutants, e.g., MO (6.1 × 10–5 mol L−1), RhB (3.0 × 10–4 mol L−1), and 4-CP
(3.0 × 10−4 mol L−1) in aqueous media irradiated with visible light (420 nm < λ< 800 nm)
at room temperature. The photocatalytic activity of SrBi4O7 assessed by Yang and cowork-
ers [201] was examined through the decomposition of MG in aqueous media (initial con-
centrations, 5–50 mg L−1) under visible light irradiation, subsequently homogenizing the
suspension in the dark to ensure adsorption–desorption equilibrium. Optimal conditions



Int. J. Mol. Sci. 2023, 24, 663 30 of 39

appeared to be 5 mg L−1 of MG and 1.5 g L−1 of the SrBi4O7 bismuthate. Under such
conditions, the irradiation of the SrBi4O7/MG aqueous suspension for 3 h caused about
98% degradation and 90% mineralization.

8. Concluding Remarks

In summary, this review article further emphasizes the development of and recent
advances in bismuth-based photocatalysts and discusses various approaches to improve
their photocatalytic performance and associated photocatalytic mechanisms by modifying
the band energies and electronic structures of nanostructures or heterojunctions. Particular
attention has been devoted to the application of BBNs in the degradation of organic pol-
lutants (i.e., organic dyes and pesticides) and water treatment due to their photocatalytic
activity for the formation of C-C and C-S bonds and atom-transfer radical-addition-type
reactions. Hazardous dyes in wastewater treated by BBN photocatalysts include methylene
blue, rhodamine B, 2,4,6-trichlorophenol, methyl orange, acid orange, acetaminophen,
carcinogenic reactive black 5, carbamazepine, malachite green, benzene in aqueous so-
lution, phenol, bisphenol A, and antibiotics. BiOX (X = Cl, Br, and I) nanoparticles and
up-conversion phosphors/BiOBr composites are also efficient catalysts for the degradation
of NOx gas. Overall, the fundamental study of the synthesis, characterization, adsorption,
and photocatalytic applications of some popular bismuth oxide-based materials have been
examined and may be helpful for the development of other metal oxide compounds toward
dye degradation under solar illumination and for other environmental and energy-related
applications. The introduction of crystal plane tailoring, the creation of porous or hollow
structures, and the construction of nanostructured features can enhance the photoactivity
of bismuth materials. Various strategies have been applied to further enhance their pho-
toactivity, including double-rich approaches, interfacial engineering, metal doping and SPR
effects, and the internal coupling of cocatalysts to host materials for various environmental
applications. Although efforts have been made to tune bismuth-based materials and opti-
mize the high performance of their photocatalytic activity, their potential has not been fully
exploited. Thus, there are several fundamental insights into the formation of phases and
their effects on photocatalytic processes. Current research on the interfacial engineering of
bismuth-based materials shows that due to the rich physicochemical structural features
of nanostructures that bulk materials do not possess, changing their electronic structures
and band energies has a great impact on their photocatalytic efficiency. Therefore, more
attention needs to be paid to controlling the preparation of bismuth-based photocatalysts
using facile synthetic methods. Although efforts have been made to introduce defects
and form heterojunctions to optimize photocatalytic activity, the defect types or doping
types present in bismuth materials are almost always oxygen vacancies. These defects can
induce additional electronic states and affect the electron transfer rate in nanostructures,
implying that an increase in the density of states generally increases the photoactivity of the
nanostructures. More efficient methods are needed to construct different types of defects
in nanostructures and gain insight into the relationship between defect type and number
and photoactivity. Therefore, it is highly desirable to achieve high-efficiency photoactivity
through further interfacial engineering of bismuth-based materials.
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Abbreviations

1D One-dimensional
2,4-DCP 2,4-dichlorophenol
4-CP 4-chlorophenol
APAP Acetaminophen
BBNs Bismuth-based nanostructures
BG Brilliant green
BPA Bisphenol A
CB Conduction band
CIP Ciprofloxacin
CQDs Carbon quantum dots
CTAB Cetyltrimethylammonium bromide
CTC Chlortetracycline
CV Crystal violet
IC Indigo carmine
LED Light-emitting diode
MB Methylene blue
MO Methyl orange
NHE Normal hydrogen electrode
NO Nitric oxide
OTC Oxytetracycline
OVs Oxygen vacancies
PTBP 4-tert-butylphenol
rGO Reduced graphene oxide
RhB Rhodamine B
SPR Surface plasmon resonance
TC Tetracycline
TCHC Tetracycline hydrochloride
TEOS Tetraethoxysilane
TOC Total organic carbon
UV Ultraviolet
VB Valence band
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