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Abstract: It has become more widely available to use biopolymer-based films as alternatives to con-
ventional plastic-based films due to their non-toxic properties, flexibility, and affordability. However,
they are limited in application due to deficiencies in their properties. The marine collagen was the
specimen for the present study. Thus, the main objective was to reinforce marine collagen-based films
with 1.0% (w/w of the dry polymer weight) of iron oxide nanoparticles (IO-NPs), graphene oxide
nanoparticles (GO-NPs), or a combination of both oxides (GO-NPs/IO-NPs) as antibacterial and an-
tioxidant additives to overcome some of the limitations of the film. In this way, the nanoparticles were
incorporated into the film-forming solution (2% w/v in acetic acid, 0.05 M) and processed by casting.
Thereafter, the films were dried and analyzed for their physicochemical, mechanical, microstructural,
and functional properties. The results show that the effective combination of GO-NPs/IO-NPs
enhanced the physicochemical properties by increasing the water contact angle (WCA) of the films
from 77.2 to 84.4◦ and their transparency (T) from 0.5 to 5.2. Furthermore, these nanoparticles
added antioxidant and antibacterial value to the films, with free radical inhibition of up to 95.8% and
23.8 mm of bacteria growth inhibition (diameter). As a result, both types of nanoparticles are proposed
as suitable additives to be incorporated into films and enhance their different properties.

Keywords: marine collagen; extraction; films; graphene oxide; iron oxide; antioxidant; antibacterial

1. Introduction

In recent times, nanocomposites based on biopolymer films have been extensively
studied for their potential to provide environmentally friendly food packaging with inno-
vative design features [1]. However, although they possess some benefits, they also have
some drawbacks, such as their insufficient barrier properties and mechanical properties to
resist the passage of oxygen and water vapor.

Generally, films thinner than 1 mm are highly flexible, transparent, adaptable, im-
permeable, and suitable for wrapping products of a variety of shapes and sizes [2–4].
Considering all these advantages, films also have significant potential for many industries,
including food packaging. They can prevent auto-oxidation and reduction reactions, as
well as microbe interaction, which serves to extend the shelf life of the product [5].

Several critical factors have led to an increase in the demand for films during the past
few years: the importance of product safety during transportation, which requires more
packaging, and the trend in the industry towards more attractive products, using films for
both health and aesthetic benefits [6]. As a result, biopolymers such as polysaccharides,
proteins, lipids, and polyesters are used to meet the needs of industry and consumers
alike [7–9]. Consequently, numerous natural or naturally derived biopolymer-based films
(e.g., collagen, chitosan, and cellulose) have been developed that are biodegradable without
being toxic [10,11]. In addition, commercial collagen is usually obtained from bovine
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animals, porcine bones, and the remaining parts of mammalian carcasses. As increasing
demand and awareness persist, existing methods begin to be insufficient, and problems
related to cost, health issues, immune responses, religious beliefs, etc. begin to emerge.
Subsequently, marine collagen has been revealed as a solution for health issues, immune
responses, and religious beliefs. An elegant and attractive alternative source of collagen
derivatives from fish, jellyfish, marine sponges, etc., has been developed and proposed
to overcome these demands, and marine collagen has been revealed and proven to be
“disease free” [12]. The benefits of collagen are increasingly recognized, and its application
in different areas is increasing. Furthermore, collagen has revealed excellent biocompat-
ibility, biodegradability, and weak antigenicity. Such properties and knowledge led to
the development of collagen-based biomedical devices, including drug delivery systems,
surgical sutures, hemostatic agents, and tissue-engineering applications [13]. Fish-skin
collagen-based wound dressings have shown enhanced tissue regeneration and acceler-
ated wound healing in vitro and in vivo compared with mammalian-based collagen [14].
However, it has significant limitations, including those associated with water, water va-
por, and oxygen permeability, as well as weak thermal and mechanical resistance. In
addition, it is not suitable for use as resistance to infection. On the other hand, marine
collagen is also available to manufacture food packaging materials [12,14]. In both ap-
plications, this biopolymer needs to be reinforced with antimicrobial and antioxidant
additives [15,16]. Frequently, metal-based nanoparticles, such as silver (Ag-NPs), gold
(Ag-NPs) and copper (Cu-NPs), are one of the most suitable agents due to their potential
antibacterial capacity [17,18]. Moreover, non-metal functional materials, such as fullerenes
and graphene oxide, are reported to have excellent antimicrobial properties [19–21]. Fur-
thermore, some researchers have demonstrated the toxic effect of these materials on cells,
suppressing cellular growth and multiplication and causing cell death depending on con-
centrations and duration of exposure [22]. In recent studies about alternative antimicrobials,
such as improved biopolymers, there have been considerations for these to be used as
promising agents for protection against infections [23,24]. In previous studies, graphene
oxide and iron oxide-based materials were shown to have strong antimicrobial properties
that inhibit bacterial colonization [25–28]. However, such studies did not provide fur-
ther information on the synergic combination of magnetic nanomaterials (as metal-based
nanoparticles), graphene oxide (as non-metal-based nanosheets or layers), and polymers
that can be achieved when these materials are used as composites. Furthermore, these
materials were not characterized for their physicochemical, mechanical, or antioxidant
properties. This research shows the invigorating characteristics of polymeric composites
and provides a good introduction to the investigation of the synergic combination of metals,
non-metals, and biopolymers.

The main objective of this study was to reinforce marine collagen-based films with 1.0%
(w/w of the dry polymer weight) of IO-NPs, GO-NPs, and GO-NPs/IO-NPs as antibacterial
and antioxidant additives to overcome some of the limitations of the film. Further, the films
were processed by casting and were then analyzed for their physicochemical, mechanical,
microstructural, and functional properties. In this study, the antimicrobial and antioxidant
functions, structure, and characterization of marine collagen-based polymer composites of
magnetite iron oxide and graphene oxide are presented.

2. Results & Discussion
2.1. Physicochemical Properties
2.1.1. Water Contact Angle (WCA)

The hydrophobic/hydrophilic properties of the film surface were assessed by deter-
mining the WCA of the films [29]. Figure 1 shows the WCAs of collagen alone and collagen
reinforced with GO-NPs/IO-NPs, IO-NPs, and GO-NPs. The mean values of this variable
are presented in Table 1. As was expected, collagen alone showed hydrophilic behav-
ior, with WCA = 77.6 ± 0.5◦, which may be due to the configuration of the hydrophilic
compounds within the framework [30]. A similar WCA value (78◦) of collagen-based
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films (type I) has been reported elsewhere [31]. The reinforcement with GO-NPs/IO-
NPs, IO-NPs, and GO-NPs significantly increased the WCA to 84.2 ± 0.1, 82.1 ± 0.9, and
79.4 ± 0.1, respectively. This was attributed to the hydrophobic nature of GO-NPs and
IO-NPs; thus, the hydrophobic nanoparticles contributed to the impairment of the mem-
brane hydrophilicity and increased the WCA [32]. Similar results have been found with the
reinforcement of cellulose acetate/chitosan films with silica nanoparticles [33], cellulose
acetate with copper oxide nanoparticles [34], and gelatin/cellulose nanofiber films with
zinc oxide nanoparticles [35]. However, several factors can contribute to this phenomenon,
such as nanoparticle content, concentration, and size, as well as polymer concentration
and nature [30,36]. In this way, GO-NPs displayed larger particle sizes than IO-NPs, which
would explain why the IO-NPs contributed more to the increase in WCA than GO-NPs.
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Figure 1. Water contact angle photographs of the different films: (a) collagen alone, (b) collagen
reinforced with GO-NPs/IO-NPs; (c) collagen reinforced with IO-NPs; and (d) collagen reinforced
with GO-NPs.

Table 1. Water contact angle (WCA), transmittance at 600 nm (T600 %) and transparency (T) of
the different films: (a) collagen alone, (b) collagen reinforced with GO-NPs/IO-NPs; (c) collagen
reinforced with IO-NPs; and (d) collagen reinforced with GO-NPs.

Sample WCA (◦) T600 (%) T

Commercial Value 96 - -

a Collagen alone 77.6 ± 0.5 d 88.2 ± 1.4 f 0.5 ± 0.1 c

b Collagen reinforced with GO-NPs/IO-NPs 84.2 ± 0.1 a 17.6 ± 1.1 e 5.2 ± 0.2 a

c Collagen reinforced with IO-NPs 82.1 ± 0.9 b 37.2 ± 0.9 d 3.7 ± 0.1 b

d Collagen reinforced with GO-NPs 79.4 ± 0.1 c 34.4 ± 0.8 c 3.9 ± 0.1 b

Note: The same superscript letters (a–f) in each column indicate homogeneity of variances (p < 0.05).

2.1.2. Optical Properties

The photographs of the different films are shown in Figure 2, and detailed results for
T600 % and T are shown in Table 1. Further, collagen alone showed higher transmittance at
600 nm, with T600 = 88.2 ± 1.4%, corresponding to T = 0.5 ± 0.1. With the reinforcement
of GO-NPs/IO-NPs, IO-NPs, and GO-NPs, a significant decrease was observed in T600
% to 17.6 ± 1.1, 37.2 ± 0.9, and 34.4 ± 0.8, respectively. Furthermore, the addition of the
mixture of GO-NPs/IO-NPs produced the least transparent films in comparison with those
reinforced with only IO-NPs or GO-NPs, as demonstrated by the T index (Table 1). This is
due to the increase in solid content within the film chains, which restricts their mobility and
occupies the free spaces, thereby blocking light transmission. Several studies with similar
results have also been found in the literature [29,37–41].
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Figure 2. Photographs of the different films: (a) collagen alone, (b) collagen reinforced with GO-
NPs/IO-NPs, (c) collagen reinforced with IO-NPs, and (d) collagen reinforced with GO-NPs.

2.2. Mechanical Properties

Table 2 summarizes the mechanical parameters of different films, as shown in
Figure 3. The elastic zone of pure collagen was shorter than its plastic zone. This plastic
zone was significantly reduced as the GO-NPs and IO-NPs were incorporated separately,
whereas an increase was observed with the combination of both oxides (GO-NPs/IO-NPs).
Additionally, the separate incorporation of GO-NPs and IO-NPs led to an increase in
brittleness, which is due to the increase in the ultimate tensile strength (
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and 0.9 mm/mm, respectively. This was explained by the immiscibility of the particles,
which restricts the extensibility of the films, thereby forming a non-homogeneous network
within the film [42]. However, further incorporation of GO-NPs/IO-NPs did not increase

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 12 
 

 

tance at 600 nm, with T600 = 88.2 ± 1.4%, corresponding to T = 0.5 ± 0.1. With the rein-
forcement of GO-NPs/IO-NPs, IO-NPs, and GO-NPs, a significant decrease was ob-
served in T600 % to 17.6 ± 1.1, 37.2 ± 0.9, and 34.4 ± 0.8, respectively. Furthermore, the ad-
dition of the mixture of GO-NPs/IO-NPs produced the least transparent films in compar-
ison with those reinforced with only IO-NPs or GO-NPs, as demonstrated by the T index 
(Table 1). This is due to the increase in solid content within the film chains, which re-
stricts their mobility and occupies the free spaces, thereby blocking light transmission. 
Several studies with similar results have also been found in the literature [29,37–41]. 

 
Figure 2. Photographs of the different films: (a) collagen alone, (b) collagen reinforced with GO-
NPs/IO-NPs, (c) collagen reinforced with IO-NPs, and (d) collagen reinforced with GO-NPs. 

2.2. Mechanical Properties 
Table 2 summarizes the mechanical parameters of different films, as shown in Fig-

ure 3. The elastic zone of pure collagen was shorter than its plastic zone. This plastic 
zone was significantly reduced as the GO-NPs and IO-NPs were incorporated separate-
ly, whereas an increase was observed with the combination of both oxides (GO-NPs/IO-
NPs). Additionally, the separate incorporation of GO-NPs and IO-NPs led to an increase 
in brittleness, which is due to the increase in the ultimate tensile strength (Ϭmax = 0.8 and 0.7 MPa, respectively) and Young’s modulus (E = 0.8 and 0.5 MPa, respectively), along 
with a decrease in elongation at break from εmax = 1.2 mm/mm (collagen alone) to εmax = 
0.8 and 0.9 mm/mm, respectively. This was explained by the immiscibility of the parti-
cles, which restricts the extensibility of the films, thereby forming a non-homogeneous 
network within the film [42]. However, further incorporation of GO-NPs/IO-NPs did not 
increase Ϭmax but E; this is probably due to the increase in solid content, which may stiff-
en the matrix of the films [37]. 

Table 2. Results for thicknesses, maximum stress (Ϭmax), strain at break (εmax), and Young’s modu-
lus (E) of the different films: (a). collagen alone, (b). collagen reinforced with GO-NPs/IO-NPs; (c). 
collagen reinforced with IO-NPs; and (d). collagen reinforced with GO-NPs. 

Sample 
Thickness 

(µm) Ϭmax (MPa) εmax (mm/mm) E (MPa) 

a Collagen alone 99.9 ± 2.1 c 0.2 d 1.2 b 0.2 d 

b 
Collagen reinforced with GO-
NPs/IO-NPs 136.5 ± 1.3 a 0.7 b 1.3 a 0.6 b 

c Collagen reinforced with IO-NPs 116.1 ± 1.2 b 0.5 c 0.9 c 0.5 c 

d Collagen reinforced with GO-
NPs 

118.9 ± 1.9 b 0.8 a 0.8 d 0.8 a 

Note: The same superscript letters (a–d) in each column indicate homogeneity of variances (p < 
0.05). 

max but E; this is probably due to the increase in solid content, which may stiffen the
matrix of the films [37].

Table 2. Results for thicknesses, maximum stress (

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 12 
 

 

tance at 600 nm, with T600 = 88.2 ± 1.4%, corresponding to T = 0.5 ± 0.1. With the rein-
forcement of GO-NPs/IO-NPs, IO-NPs, and GO-NPs, a significant decrease was ob-
served in T600 % to 17.6 ± 1.1, 37.2 ± 0.9, and 34.4 ± 0.8, respectively. Furthermore, the ad-
dition of the mixture of GO-NPs/IO-NPs produced the least transparent films in compar-
ison with those reinforced with only IO-NPs or GO-NPs, as demonstrated by the T index 
(Table 1). This is due to the increase in solid content within the film chains, which re-
stricts their mobility and occupies the free spaces, thereby blocking light transmission. 
Several studies with similar results have also been found in the literature [29,37–41]. 

 
Figure 2. Photographs of the different films: (a) collagen alone, (b) collagen reinforced with GO-
NPs/IO-NPs, (c) collagen reinforced with IO-NPs, and (d) collagen reinforced with GO-NPs. 

2.2. Mechanical Properties 
Table 2 summarizes the mechanical parameters of different films, as shown in Fig-

ure 3. The elastic zone of pure collagen was shorter than its plastic zone. This plastic 
zone was significantly reduced as the GO-NPs and IO-NPs were incorporated separate-
ly, whereas an increase was observed with the combination of both oxides (GO-NPs/IO-
NPs). Additionally, the separate incorporation of GO-NPs and IO-NPs led to an increase 
in brittleness, which is due to the increase in the ultimate tensile strength (Ϭmax = 0.8 and 0.7 MPa, respectively) and Young’s modulus (E = 0.8 and 0.5 MPa, respectively), along 
with a decrease in elongation at break from εmax = 1.2 mm/mm (collagen alone) to εmax = 
0.8 and 0.9 mm/mm, respectively. This was explained by the immiscibility of the parti-
cles, which restricts the extensibility of the films, thereby forming a non-homogeneous 
network within the film [42]. However, further incorporation of GO-NPs/IO-NPs did not 
increase Ϭmax but E; this is probably due to the increase in solid content, which may stiff-
en the matrix of the films [37]. 

Table 2. Results for thicknesses, maximum stress (Ϭmax), strain at break (εmax), and Young’s modu-
lus (E) of the different films: (a). collagen alone, (b). collagen reinforced with GO-NPs/IO-NPs; (c). 
collagen reinforced with IO-NPs; and (d). collagen reinforced with GO-NPs. 

Sample 
Thickness 

(µm) Ϭmax (MPa) εmax (mm/mm) E (MPa) 

a Collagen alone 99.9 ± 2.1 c 0.2 d 1.2 b 0.2 d 

b 
Collagen reinforced with GO-
NPs/IO-NPs 136.5 ± 1.3 a 0.7 b 1.3 a 0.6 b 

c Collagen reinforced with IO-NPs 116.1 ± 1.2 b 0.5 c 0.9 c 0.5 c 

d Collagen reinforced with GO-
NPs 

118.9 ± 1.9 b 0.8 a 0.8 d 0.8 a 

Note: The same superscript letters (a–d) in each column indicate homogeneity of variances (p < 
0.05). 

max), strain at break (εmax), and Young’s mod-
ulus (E) of the different films: (a). collagen alone, (b). collagen reinforced with GO-NPs/IO-NPs;
(c). collagen reinforced with IO-NPs; and (d). collagen reinforced with GO-NPs.

Sample Thickness (µm)

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 12 
 

 

tance at 600 nm, with T600 = 88.2 ± 1.4%, corresponding to T = 0.5 ± 0.1. With the rein-
forcement of GO-NPs/IO-NPs, IO-NPs, and GO-NPs, a significant decrease was ob-
served in T600 % to 17.6 ± 1.1, 37.2 ± 0.9, and 34.4 ± 0.8, respectively. Furthermore, the ad-
dition of the mixture of GO-NPs/IO-NPs produced the least transparent films in compar-
ison with those reinforced with only IO-NPs or GO-NPs, as demonstrated by the T index 
(Table 1). This is due to the increase in solid content within the film chains, which re-
stricts their mobility and occupies the free spaces, thereby blocking light transmission. 
Several studies with similar results have also been found in the literature [29,37–41]. 

 
Figure 2. Photographs of the different films: (a) collagen alone, (b) collagen reinforced with GO-
NPs/IO-NPs, (c) collagen reinforced with IO-NPs, and (d) collagen reinforced with GO-NPs. 

2.2. Mechanical Properties 
Table 2 summarizes the mechanical parameters of different films, as shown in Fig-

ure 3. The elastic zone of pure collagen was shorter than its plastic zone. This plastic 
zone was significantly reduced as the GO-NPs and IO-NPs were incorporated separate-
ly, whereas an increase was observed with the combination of both oxides (GO-NPs/IO-
NPs). Additionally, the separate incorporation of GO-NPs and IO-NPs led to an increase 
in brittleness, which is due to the increase in the ultimate tensile strength (Ϭmax = 0.8 and 0.7 MPa, respectively) and Young’s modulus (E = 0.8 and 0.5 MPa, respectively), along 
with a decrease in elongation at break from εmax = 1.2 mm/mm (collagen alone) to εmax = 
0.8 and 0.9 mm/mm, respectively. This was explained by the immiscibility of the parti-
cles, which restricts the extensibility of the films, thereby forming a non-homogeneous 
network within the film [42]. However, further incorporation of GO-NPs/IO-NPs did not 
increase Ϭmax but E; this is probably due to the increase in solid content, which may stiff-
en the matrix of the films [37]. 

Table 2. Results for thicknesses, maximum stress (Ϭmax), strain at break (εmax), and Young’s modu-
lus (E) of the different films: (a). collagen alone, (b). collagen reinforced with GO-NPs/IO-NPs; (c). 
collagen reinforced with IO-NPs; and (d). collagen reinforced with GO-NPs. 

Sample 
Thickness 

(µm) Ϭmax (MPa) εmax (mm/mm) E (MPa) 

a Collagen alone 99.9 ± 2.1 c 0.2 d 1.2 b 0.2 d 

b 
Collagen reinforced with GO-
NPs/IO-NPs 136.5 ± 1.3 a 0.7 b 1.3 a 0.6 b 

c Collagen reinforced with IO-NPs 116.1 ± 1.2 b 0.5 c 0.9 c 0.5 c 

d Collagen reinforced with GO-
NPs 

118.9 ± 1.9 b 0.8 a 0.8 d 0.8 a 

Note: The same superscript letters (a–d) in each column indicate homogeneity of variances (p < 
0.05). 

max (MPa) εmax (mm/mm) E (MPa)

a Collagen alone 99.9 ± 2.1 c 0.2 d 1.2 b 0.2 d

b Collagen reinforced with GO-NPs/IO-NPs 136.5 ± 1.3 a 0.7 b 1.3 a 0.6 b

c Collagen reinforced with IO-NPs 116.1 ± 1.2 b 0.5 c 0.9 c 0.5 c

d Collagen reinforced with GO-NPs 118.9 ± 1.9 b 0.8 a 0.8 d 0.8 a

Note: The same superscript letters (a–d) in each column indicate homogeneity of variances (p < 0.05).
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 12 
 

 

 

Figure 3. Tensile test profiles of the different films: (a) collagen alone, (b) collagen reinforced with 

GO-NPs/IO-NPs, (c) collagen reinforced with IO-NPs, and (d) collagen reinforced with GO-NPs. 

Similar results for other polymer-based films reinforced with nanoparticles have 

been reported elsewhere [37,43,44].  

2.3. Morphological Properties 

The surface of polymers can be made smooth or rough, resulting in profound ef-

fects on macromolecule adsorption [45]. The surface morphology of various films is 

shown in Figure 4. Despite the expectation that pure collagen would have a smooth and 

homogeneous surface, it showed some irregularities. This may be due to the presence of 

suspended collagen after centrifugation, which means that collagen is not soluble in its 

entirety. Furthermore, an increase in surface roughness was observed with the incorpo-

ration of the different nanoparticles, being rougher in the films reinforced with GO-

NPs/IO-NPs and GO-NPs due to the larger size and aggregation formation [29,30,46,47].  

 

Figure 4. Scanning electron microscopy (SEM) images of the surfaces of the different films: (a) col-

lagen alone, (b) collagen reinforced with GO-NPs/IO-NPs, (c) collagen reinforced with IO-NPs, 

and (d) collagen reinforced with GO-NPs. 

Figure 3. Tensile test profiles of the different films: (a) collagen alone, (b) collagen reinforced with
GO-NPs/IO-NPs, (c) collagen reinforced with IO-NPs, and (d) collagen reinforced with GO-NPs.



Int. J. Mol. Sci. 2023, 24, 648 5 of 11

Similar results for other polymer-based films reinforced with nanoparticles have been
reported elsewhere [37,43,44].

2.3. Morphological Properties

The surface of polymers can be made smooth or rough, resulting in profound effects
on macromolecule adsorption [45]. The surface morphology of various films is shown in
Figure 4. Despite the expectation that pure collagen would have a smooth and homoge-
neous surface, it showed some irregularities. This may be due to the presence of suspended
collagen after centrifugation, which means that collagen is not soluble in its entirety. Fur-
thermore, an increase in surface roughness was observed with the incorporation of the
different nanoparticles, being rougher in the films reinforced with GO-NPs/IO-NPs and
GO-NPs due to the larger size and aggregation formation [29,30,46,47].
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2.4. Functional Properties
2.4.1. Antioxidant Activity

The aforementioned studies have demonstrated that different types of nanoparticles
act as antioxidants. The antioxidant properties of different films were evaluated using
DPPH free radicals with gallic acid as a positive control, which showed 95% inhibition.

In the observations in Figure 5, the DPPH inhibition percentages (IP%) are shown.
For example, the pure collagen-based film showed the lowest IP% = 71.1%. On the other
hand, the presence of GO-NPs/IO-NPs enhanced this inhibition to 95.8%, probably due
to the presence of IO-NPs, which increased the inhibition to 91.9%, and the presence of
GO-NPs, which increased the inhibition to 75.0%. The higher antioxidant activity of IO-NPs
is possibly due to their ability to produce reactive oxygen species (ROS) and enhance their
antioxidant capacity [37,48]. Similar results were found in the literature [37,43].
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2.4.2. Antibacterial Activity

The use of nanoparticles, graphene oxide, and magnetic iron oxide nanoparticles
is extensive in biomedical applications. This is mainly due to their antimicrobial prop-
erties, biocompatibility, and bioavailability [49]. The zones of inhibition of E. coli and
S. aureus produced by GO-NPs/IO-NPs, IO-NPs, and GO-NPs suspensions over time
are shown in Figure 5 and summarized in Table 3. Accordingly, the inhibition diameters
presenting the antimicrobial effect were between 13.2 and 23.8 mm. Furthermore, this
ability depended on nanoparticle types and sizes. Thus, the films reinforced with IO-NPs
showed better inhibition than the other samples against both S. aureus and E. coli. This was
attributed to different reasons, including the small size and the ability to generate ROS
(e.g., –O2− and –OH), which impair mitochondrial function and damage the DNA and pro-
teins of bacteria [2,18,20]. Previous research has supported similar results with Pseudomonas
aeruginosa (P. aeruginosa) [50]. Additionally, an important factor is nanoparticle agglomera-
tion/aggregation, which can affect the antimicrobial ability, resulting in a decrease in the
effective specific surface area and reducing the antimicrobial action [51].

Table 3. Inhibition diameters (mm) produced by the different films: (a) Collagen alone, (b) Collagen
reinforced with GO-NPs/IO-NPs, (c) Collagen reinforced with IO-NPs, and (d) Collagen reinforced
with GO-NPs.

E. coli S. aureus

Sample 0 h 24 h 48 h 0 h 24 h 48 h

a Collagen 10 - - 10 - -
b Collagen reinforced with GO-NPs/IO-NPs 10 15.0 ± 0.2 b 15.5 ± 0.6 b 10 13.2 ± 0.9 b 13.4 ± 1.0 c

c Collagen reinforced with IO-NPs 10 23.8 ± 1.1 a 21.5 ± 0.3 a 10 18.7 ± 1.1 a 19.0 ± 1.2 a

d Collagen reinforced with GO-NPs 10 15.5 ± 0.9 b 14.9 ± 0.3 b 10 14.9 ± 0.2 b 15.0 ± 0.3 b

Note: The same superscript letters (a–d) in each column indicate homogeneity of variances (p < 0.05).

Furthermore, GO-NPs show increasing effects on ROS levels at the highest concen-
tration (100 µg/mL) [52]. In addition, they are non-cytotoxic and nonhazardous at con-
centrations below 100 µg/mL [53] and can be used as an oral treatment for anemia or iron
deficiency [54]. In this context, both types of NPs have been proposed as suitable additives
to be incorporated into films and enhance their antimicrobial properties.
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3. Materials and Methods
3.1. Materials

The marine collagen (Type 1) was provided by Tetis Biotech company (Istanbul,
TURKIYE). The DPPH (2,2-diphenyl-1-picrylhydrazyl), methanol and gallic acid (C7H6O5)
were supplied by Sigma Aldrich (Darmstadt, Germany). The reagents used were all of
analytical quality.

Graphene oxide (GO-NPs, 500 nm and 2–5 layers) was provided by the Aerofen
company (Istanbul, TURKIYE).

Iron oxide nanoparticles (IO-NPs, 5–10 nm) were obtained from previous studies [43,55–57].

3.2. Film Processing Method

The films were processed by casting, as described in previous studies [43], with some
modifications. A quantity of 2% w/v of marine collagen was dissolved in acetic acid
(0.05 M) and stirred at 50 ± 5 ◦C for 2 ± 0.5 h at 600 rpm. The film solution was centrifuged
at 10,000 rpm for 10 min to gather the supernatant solution. Subsequently, glycerol (2% w/v)
was added. Additionally, a quantity of 1.0% w/w of GO-NPs, IO-NPs, and a combination of
both oxides (GO-NPs/IO-NPs, total 2%) were dispersed separately into a constant volume
(42.7 mL) in the film solution using an ultrasound bath for >30 min (Ultrasounds, J.P
Selecta, S.A., Barcelona, Spain) at 0.5 kHz frequency and 0.1 kW sonication power. Finally,
solutions were transferred onto Teflon plates and dried in an oven at 50 ◦C for 72 h. The
collagen-based film samples were referred to as collagen alone (1), collagen reinforced with
GO-NPs/IO-NPs (2), collagen reinforced with IO-NPs (3), and collagen reinforced with
GO-NPs (4). The films were prepared, carefully peeled off, and stored for characterization.

3.3. Characterization Technique
3.3.1. Physicochemical Properties
Water Contact Angle (WCA)

The water contact angle (WCA) was implemented to evaluate the hydrophobicity of
the film surfaces using the sessile drop method. An ≈ 2 µL droplet of distilled water was
placed on the surface of the film (≈1 cm2, horizontally leveled) using a µ-syringe. The drop
images were taken by a high-resolution camera (108 MP ULTRA-CLEAR CAMERA, Mi
10 T Pro Lunar Silver, Haidian District, Beijing, China) monitored for 15 s, and the WCA
was determined on both sides using Image-J free software (V. 1.53q; NIH, Bethesda, MD,
USA). A minimum of five tests were performed on each sample to ensure reproducibility,
discarding images that differed by more than 2◦ on either side.

Optical Properties

The transmittance and transparency of the films were estimated using UV-vis spec-
troscopy, according to a prior study [42,43,57]. In brief, the films were cut into pieces of
1 × 2 cm2, and their transmittance was recorded at 600 nm using a UV-vis spectrophotome-
ter (Model 8451A, Hewlett-Packard Co., USA). The results were presented as transmittance
percentage (T600 %), and the film transparency (T) was calculated from Equation (1) [57]:

T = −(Log T600/t) (1)

where T600 is a fraction expressing the amount of light transmitted through the film and t is
the film thickness in mm.

3.3.2. Mechanical Properties

The films were subjected to a static tensile test according to a slightly modified standard
ISO 527–3:2019 [57] to assess their mechanical characteristics. In this test, an increasing
axial force was applied to the films at a rate of 10 mm/min until failure, using a mechanical
testing machine (MTS Insight 10 Universal Testing Machine, Darmstadt, Germany). This
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test provides information on the maximum stress (
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max), strain at break (εmax), and Young’s
modulus (E).

3.3.3. Morphological Properties

The surface of the film and its morphological properties were examined by scanning
electron microscopy (SEM). The SEM images were captured using a Zeiss EVO microscope
(Pleasanton, CA, USA) at an acceleration of 5 kV and 2000×magnification [57]. In addition, the
film thicknesses were labeled using free Image-J software (V. 1.53q; NIH, Bethesda, MD, USA).

3.3.4. Functional Properties
Antioxidant Activity

The antioxidant properties of the films were evaluated in accordance with previous
studies [43], with some modifications. Additionally, the film-forming solution (1 mL)
was admixed with 1 mL of DPPH solution (dissolved in methanol, 40 ppm), followed by
centrifugation at 5000 rpm for 10 min at 22 ◦C. In addition, the absorbance was recorded
at 517 nm using a UV spectrophotometer. In this test, gallic acid was used as a positive
control. Finally, the DPPH inhibition percentage (IP %) was obtained from Equation (2).

IP % = (Au − Ai)/Au × 100 (2)

where Au refers to the uninhibited DPPH absorbance (in the absence of film solution) and
Ai refers to the inhibited DPPH absorbance (in the presence of film solution).

Antibacterial Activity

An agar diffusion experiment was conducted to evaluate the antimicrobial activity of
the different samples [37,43]. This involved sterilizing cylindrical films (9 mm in diameter)
by immersion in 96% (v/v) ethanol for 2 min. Furthermore, the films were submerged
in agar gels that contained Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli).
The inhibition diameters surrounding the film were determined after 24, 48 and 72 h of
incubation at 37 ◦C to express the antibacterial capacity using Image-J software (V. 1.53q;
NIH, Bethesda, MD, USA).

3.3.5. Statistical Analysis

The individual samples were measured at least three times in this study. The results
are summarized using a mean value and standard deviation estimated using IBM SPSS
software (IBM Corp, Armonk, NY, USA. Released 2019. IBM SPSS Statistics for Windows,
Version 26.0. Armonk, NY, IBM Corp). Furthermore, significant differences were estimated
using a one-way analysis of variance (ANOVA) with a 95% confidence interval (p < 0.05).

4. Conclusions

Marine collagen is an alternative source of collagen to conventional bovine and porcine
collagen. For example, collagen peptides derived from marine species have been shown to
illustrate biological activities. In addition, a wide range of implementations of marine collagen
have now been identified, and more of them are waiting to be discovered in the future.

In this study, marine collagen was a suitable candidate for film processing. However,
some of its shortcomings limit their application, a possible methodology to overcome these
limitations is the film reinforcement with particles of different properties, such as iron
and graphene oxide particles. Thus, the incorporation of GO-NPs and IO-NPs has shown
great potential to improve physicochemical properties. Thus, considerable decreases in the
hydrophilicity by about 9% (water contact angle measurement) and the optical properties
by about 90% (transmittance at 600 nm) were achieved with the incorporation of both
nanoparticles into the natural marine collagen-based films. Furthermore, mechanical
parameters, including the maximum stress and Young’s modulus, were both improved by
about 75%. On the other hand, the strain at break decreased with the separate incorporation
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of GO-NPs and IO-NPs by about 33 and 25%, respectively. The combination of both oxides
(GO-NPs/IO-NPs) led to an increase in the strain at break of about 8%, which may be
due to the overloaded concentration. Furthermore, the reinforcement with these particles
enhanced the inhibition of free radicals, with a maximum inhibition of 95.8%. This benefited
the antibacterial properties, which were improved with inhibition diameters of 23.8 and
19.0. mm against E. coli and S. aureus, respectively. The antioxidant and antimicrobial bio-
composites prepared in this study present great solutions for preventing autoxidation and
fighting against pathogens in many applications. Therefore, the obtained results of these
bio-composites can be helpful for future implementation in different industries, including
food packaging and medicine.

Nevertheless, further research is needed to assess the nanoparticle dispersion within
the films as well as the thermal properties. Moreover, the authors are planning to study the
potential immigration of these particles as well as their effect on film biodegradability.
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