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Abstract: We report herein the design and synthesis of a series of novel acridine-triazole and acridine-
thiadiazole derivatives. The newly synthesized compounds and the key intermediates were all
evaluated for their antitumor activities against human foreskin fibroblasts (HFF), human gastric
cancer cells-803 (MGC-803), hepatocellular carcinoma bel-7404 (BEL-7404), large cell lung cancer
cells (NCI-H460), and bladder cancer cells (T24). Most of the compounds exhibited high levels of
antitumor activity against MGC-803 and T24 but low toxicity against human normal liver cells (LO2),
and their effect was even better than the commercial anticancer drugs, 5-fluorouracil (5-FU) and
cis-platinum. Further, pharmacological mechanisms such as topo I, cell cycle, cell apoptosis, and
neovascularization were all evaluated. Only a few compounds exhibited potent topo I inhibitory
activity at 100 µM. In addition, the most active compounds with an IC50 value of 5.52–8.93 µM
were chosen, and they could induce cell apoptosis in the G2 stage of MGC-803 or mainly arrest T24
cells in the S stage. To our delight, most of the compounds exhibited lower zebrafish cytotoxicity
but could strongly inhibit the formation of zebrafish sub-intestinal veins, indicating a potential for
clinical application.

Keywords: acridine-triazole; acridine-thiadiazole; topoisomerase I; anti-angiogenesis; zebrafish

1. Introduction

Today, cancer is one of the major health problems in the world. With the development
of molecular biology and molecular pharmacology, the pathogenesis of cancer is being
explored at the gene level. Pharmacological mechanisms such as signal transduction,
neovascularization, telomerase, topoisomerase, cell cycle and cell apoptosis have major
impacts on cancerous cells and can be used as targets in cancer therapy [1].

Acridines are an important classe of nitrogen-containing heterocyclic compounds. Due
to their structural characteristics as planar tricyclic aromatic molecules, acridines intercalate
tightly but reversibly to the DNA helix [2,3]. These compounds reveal a wide variety of bi-
ological activities, including anticancer [4], antimicrobial [5,6], anti-acetylcholinesterase [7],
etc. A number of acridine derivatives serve as chemotherapeutic agents, especially in
the field of antitumor DNA-binding agents [8]. An example of one such compound is
9-amsacrine, which has been clinically used for the treatment of leukemia [9].

Due to their beneficial characteristics, triazole and thiadiazole derivatives can serve as
potential antitumor agents and thus are of pharmaceutical interest. In drug development,
the triazole ring is often used to replace the amino group to reduce the resistance of
some anticancer drugs and enhance their anticancer activity [10]. Thiadiazole groups are
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commonly introduced in the design of anticancer drugs because of their high anticancer
activity. Kumar et al. recently reported the synthesis and anticancer activity of a series of
benzpyrole-thiadiazole derivatives and revealed the important role of the thiadiazole ring
in cytotoxicity [11].

Designing hybrid drugs with multiple effects is a common strategy in the recent search
for new anticancer drugs [12]. In recent years, many structurally diverse hybrid molecules
at the 9-position of the acridine skeleton have been reported for the enhancement of anti-
cancer activity. Examples of such compounds include acridine-mycophenolic acid hybrid
(a) [13], acridine-thiazolidinedione hybrid [14] (b), and acridine-chlormethine hybrid (c) [15]
(Figure 1).
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Considering these facts, our strategy was to couple an acridine and a triazole or
thiadiazole nucleus to obtain a new class of compounds such as the acridine-triazole hybrid
or acridine-thiadiazole hybrid (Figure 2). The anticancer activities of the synthesized
compounds were assessed based on various mechanisms of action and molecular docking.
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2. Results and Discussion
2.1. Chemistry

The general synthetic approach for aroyl thiourea derivatives (4), acridinyl 1,2,4-
triazole derivatives (5) and acridinyl 1,2,4-thiadiazole derivatives (6) is illustrated in
Scheme 1.
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NHNH2; (v) Na2CO3, reflux, or
98% H2SO4, 0 ◦C.

The target compounds of 1,2,4-triazolethiones (5) and 1,2,4-thiadiazoles (6) were
synthesized by means of a ring closure reaction using aroyl thiourea derivatives (4) in
sodium carbonate or concentrated sulfuric acid conditions, respectively. The synthesis of
aroyl thiourea derivatives (4) was carried out according to the known procedure of the
addition of substituted hydrazides to acridin-9-yl isothiocyanate (3). It is important to note
that the precipitate 3a is formed at room temperature, while 3b needs to be cooled in an ice
bath. The key intermediates (4) were obtained in 95% EtOH without purification with a
yield of 73–92% w/w.

As expected, auto-condensation cyclization proceeded effectively in the refluxing
condition of 5% Na2CO3 or 98% concentrated sulfuric acid in an ice bath. It is reported
that acridinyl 1,2,4-triazole derivatives (5) possibly exist in one of two tautomeric forms
(Figure 3), thione (a) or thiol (b) [16]. And the thione form (a) was established by comparison
of the HSQC and HMBC spectra and DFT calculations. To further confirm the structure
of our synthesized products, a single crystal of compound 5b was cultivated in absolute
ethyl alcohol, and the molecular structure was confirmed as indicated in Figure 3c. The
corresponding single crystal structural data for compound 5b is provided in the supporting
information (CCDC 2214949).
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The success of the cyclization of compound 6 mainly depended on reaction tempera-
ture and reaction time. The reaction temperature had to be maintained below 0 ◦C. When
R2 was an electron-withdrawing group such as pyridyl and nitrophenyl, the reaction time
had to be extended almost to 48 h. Interestingly, the final structure of compound 6 was not
the desired acridine skeleton (a, Figure 4) for the compound. The N-10 atom of the acridinyl
moiety captured a proton and thus resulted in the formation of a 9′,10′-dihydroacridine
structure (b, Figure 4), which was verified through X-ray crystallographic analysis (c). The
corresponding single crystal structural data of compound 6d is provided in the supporting
information (CCDC 2214923). The exchangeable NH protons of acridine thiosemicarbazides
are reported in the literature (Figure 5) [16].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 21 
 

 

N

N

R1

NHN
SR2

N

N

R1

NN
SHR2

a thione structure b thiol structure c single-crystal structure

5b

 
Figure 3. The molecular structure of compound 5b. 

The success of the cyclization of compound 6 mainly depended on reaction 
temperature and reaction time. The reaction temperature had to be maintained below 0 
°C. When R2 was an electron-withdrawing group such as pyridyl and nitrophenyl, the 
reaction time had to be extended almost to 48 h. Interestingly, the final structure of 
compound 6 was not the desired acridine skeleton (a, Figure 4) for the compound. The N-
10 atom of the acridinyl moiety captured a proton and thus resulted in the formation of a 
9′,10′-dihydroacridine structure (b, Figure 4), which was verified through X-ray 
crystallographic analysis (c). The corresponding single crystal structural data of 
compound 6d is provided in the supporting information (CCDC 2214923). The 
exchangeable NH protons of acridine thiosemicarbazides are reported in the literature 
(Figure 5) [16]. 

N
H

N

R

N
NS

R'

N

HN

R

N
NS

R'

a acridine skeleton b 9’,10’-dihydroacridine structure c single-crystal structure

6d

 
Figure 4. The molecular structure of compound 6d. 

NHNH
N

N
H S

R1

O

 
Figure 5. Reported structure of acridine thiosemicarbazides [13]. 

2.2. In-Vitro Anticancer Activity Assay and Structure-Activity Analysis 
All newly synthesized acridinyl derivatives (4–6) were screened for their anticancer 

activities in comparison to the reference compounds, 5-FU and cis-platinum. Compounds 

Figure 4. The molecular structure of compound 6d.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 21 
 

 

N

N

R1

NHN
SR2

N

N

R1

NN
SHR2

a thione structure b thiol structure c single-crystal structure

5b

 
Figure 3. The molecular structure of compound 5b. 

The success of the cyclization of compound 6 mainly depended on reaction 
temperature and reaction time. The reaction temperature had to be maintained below 0 
°C. When R2 was an electron-withdrawing group such as pyridyl and nitrophenyl, the 
reaction time had to be extended almost to 48 h. Interestingly, the final structure of 
compound 6 was not the desired acridine skeleton (a, Figure 4) for the compound. The N-
10 atom of the acridinyl moiety captured a proton and thus resulted in the formation of a 
9′,10′-dihydroacridine structure (b, Figure 4), which was verified through X-ray 
crystallographic analysis (c). The corresponding single crystal structural data of 
compound 6d is provided in the supporting information (CCDC 2214923). The 
exchangeable NH protons of acridine thiosemicarbazides are reported in the literature 
(Figure 5) [16]. 

N
H

N

R

N
NS

R'

N

HN

R

N
NS

R'

a acridine skeleton b 9’,10’-dihydroacridine structure c single-crystal structure

6d

 
Figure 4. The molecular structure of compound 6d. 

NHNH
N

N
H S

R1

O

 
Figure 5. Reported structure of acridine thiosemicarbazides [13]. 

2.2. In-Vitro Anticancer Activity Assay and Structure-Activity Analysis 
All newly synthesized acridinyl derivatives (4–6) were screened for their anticancer 

activities in comparison to the reference compounds, 5-FU and cis-platinum. Compounds 

Figure 5. Reported structure of acridine thiosemicarbazides [13].

2.2. In-Vitro Anticancer Activity Assay and Structure-Activity Analysis

All newly synthesized acridinyl derivatives (4–6) were screened for their anticancer
activities in comparison to the reference compounds, 5-FU and cis-platinum. Compounds
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4–6 were tested for their in vitro antitumor activities against HFF, MGC-803, BEL-7404,
NCI-H460, and T24 tumor cell lines, and human normal liver cells (LO2), and the results
are shown in Table 1. Most of the compounds had strong selective potency against MGC-
803 and T24 cancer cells. In the MGC-803 cell line assay, almost all of the compounds
displayed better cytotoxicity than the positive control 5-FU (IC50 = 30.45 ± 2.87 µM),
with an IC50 of 5.52–34.99 µM. This indicates that the introduction of the triazole and
thiadiazole groups on the acridine skeleton could improve the antitumor activity against
MGC-803. In addition, except for compounds 4c, 4d, 4e, 4i, 4j, 5a, 5g, 6b, 6d, and 6i,
almost all of the compounds demonstrated better cytotoxicity inhibition than cis-platinum
(IC50 = 15.97 ± 1.53 µM). Particularly, the IC50 values of compounds 5d, 5g, 5i, 6g, 6e,
and 6h were all below 10 µM, and the IC50 of them were 5.52 ± 1.04 µM, 8.5 ± 1.85 µM,
8.92 ± 0.99 µM, 9.01 ± 1.32 µM, 9.95 ± 1.03 µM, and 6.85 ± 0.84 µM, respectively. In the
T24 cell line assay, many compounds, especially the series of compound 4, had significant
activity against T24. This implies that there is a significant increase in potency after
the introduction of the aroyl thiourea group. Among these compounds, R1 = -CH3 and
R2 = -OCH3 might help to improve the antitumor activity of acridine nuclear, such as
compounds 4h, 5h and 6h, all of which exhibited the best inhibition compared with other
analogues, with IC50 values of 8.05± 1.06, 11.25± 1.16, and 8.93± 1.25 µM, respectively. In
particular, compounds 4h and 6h had better antitumor activities than the two commercial
anticancer drugs 5-FU (IC50 = 32.04 ± 1.23) and cis-platinum (IC50 = 9.13 ± 1.54 µM). To
our delight, most 1,2,4-triazolethiones (5) and 1,2,4-thiadiazoles (6) have low toxicity to
LO2 compared with the positive control. Compounds 5d and 6h were the most active but
had lower toxicities than 5-FU and cis-platinum. Therefore, compounds 5d and 6h or 4h
and 6h exhibited good cytotoxicity inhibition against MGC-803 or T24 cancer cells and
were selected for further exploration to identify their mechanisms of cancer cell growth
inhibition.

Table 1. Effect of compounds 4, 5 and 6 against cell viability of different cell lines # (µM).

No. HFF MGC-803 BEL-7404 NCI-H460 T24 LO2

4a 75.79 ± 3.52 10.89 ± 1.82 26.93 ± 2.58 36.41 ± 3.12 >100 21.96 ± 1.71
4b 72.56 ± 3.57 14.47 ± 2.06 25.78 ± 2.83 42.27 ± 2.15 29.82 ± 2.85 34.37 ± 2.05
4c 63.74 ± 2.59 21.04 ± 1.55 13.33 ± 1.37 52.37 ± 3.67 11.23 ± 2.51 19.45 ± 1.69
4d 65.28 ± 3.82 34.99 ± 3.57 43.91 ± 2.59 40.54 ± 4.52 13.01 ± 1.64 25.12 ± 1.33
4e 66.84 ± 4.52 25.55 ± 1.97 25.95 ± 2.17 73.25 ± 3.67 10.32 ± 1.07 10.23 ± 1.12
4f 55.21 ± 1.36 11.24 ± 0.96 34.37 ± 2.24 53.66 ± 3.04 9.66 ± 1.54 10.08 ± 0.96
4g 70.11 ± 3.97 13.54 ± 1.59 20.17 ± 4.13 39.01 ± 2.05 25.84 ± 1.51 14.34 ± 1.52
4h >100 11.25 ± 1.46 27.10 ± 2.91 25.36 ± 3.16 8.05 ± 1.06 9.01 ± 0.93
4i 60.73 ± 2.31 22.34 ± 1.35 23.32 ± 1.33 60.40 ± 2.95 9.89 ± 1.45 11.76 ± 1.38
4j 61.53 ± 1.85 16.37 ± 1.56 24.45 ± 3.53 32.22 ± 2.36 19.95 ± 1.32 20.53 ± 1.39
5a 74.50 ± 4.03 22.41 ± 1.32 22.06 ± 2.72 36.45 ± 2.96 21.17 ± 2.72 41.99 ± 2.31
5b 53.58 ± 2.78 15.81 ± 1.94 27.65 ± 2.97 42.08 ± 3.74 22.05 ± 1.85 58.28 ± 3.25
5c 75.51 ± 2.92 15.13 ± 0.98 28.71 ± 2.24 36.45 ± 3.92 29.29 ± 1.91 >100
5d 62.93 ± 1.90 5.52 ± 1.04 25.07 ± 2.89 19.44 ± 1.58 15.92 ± 1.38 51.79 ± 3.46
5e 74.93 ± 3.35 8.50 ± 1.85 34.66 ± 2.64 35.13 ± 1.94 18.45 ± 1.64 >100
5f 69.22 ± 2.16 15.24 ± 1.08 44.21 ± 2.68 58.79 ± 3.22 15.72 ± 1.58 46.78 ± 2.93
5g 68.31 ± 2.74 19.35 ± 1.38 20.54 ± 1.13 30.64 ± 2.21 19.36 ± 2.17 44.55 ± 2.35
5h 68.07 ± 2.64 10.88 ± 0.97 40.33 ± 2.06 26.32 ± 2.51 11.25 ± 1.16 37.67 ± 2.47
5i 70.85 ± 2.99 8.92 ± 0.99 31.66 ± 2.36 28.31 ± 1.32 14.26 ± 1.27 >100
5j 64.69 ± 3.36 13.51 ± 1.91 45.87 ± 2.48 21.78 ± 2.46 13.06 ± 1.70 36.44 ± 2.65
6a 68.82 ± 1.87 14.31 ± 1.29 19.21 ± 1.30 25.34 ± 3.57 10.18 ± 0.96 40.24 ± 2.74
6b 79.32 ± 2.48 23.27 ± 1.97 32.29 ± 2.82 47.51 ± 3.51 49.36 ± 4.59 >100
6c 65.21 ± 3.92 12.13 ± 1.22 25.11 ± 2.15 30.23 ± 2.45 24.27 ± 2.34 >100
6d >100 26.66 ± 3.35 >100 >100 >100 >100
6e 44.71 ± 1.44 9.01 ± 1.32 21.33 ± 2.81 27.88 ± 3.97 14.88 ± 1.30 33.64 ± 2.01
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Table 1. Cont.

No. HFF MGC-803 BEL-7404 NCI-H460 T24 LO2

6f 45.38 ± 2.18 12.35 ± 1.96 40.26 ± 2.19 55.72 ± 3.28 13.86 ± 1.37 37.22 ± 2.12
6g 76.45 ± 2.79 9.95 ± 1.03 31.25 ± 3.27 25.87 ± 1.83 19.33 ± 1.05 >100
6h 33.90 ± 1.28 6.85 ± 0.84 20.25 ± 1.59 13.33 ± 1.39 8.93 ± 1.25 43.77 ± 2.63
6i 91.95 ± 2.99 22.92 ± 1.85 43.66 ± 2.36 36.41 ± 3.15 29.89 ± 2.45 >100
6j 56.23 ± 3.16 12.99 ± 1.89 48.47 ± 3.06 13.88 ± 1.83 15.47 ± 1.98 51.17 ± 3.09

5-FU 25.45 ± 1.27 30.45 ± 2.87 34.52 ± 1.18 44.04 ± 0.54 32.04 ± 1.23 40.15 ± 1.65
cis-platinum 10.85 ± 0.34 15.97 ± 1.53 10.01 ± 0.52 7.126 ± 1.24 9.13 ± 1.54 21.38 ± 1.25

# human foreskin fibroblasts (HFF); human gastric cancer cells-803 (MGC-803); hepatocellular carcinoma bel-7404
(BEL-7404); large cell lung cancer cells (NCI-H460); and bladder cancer cells (T24); LO2 human normal liver cells
(LO2).

2.3. Antitumor Mechanism Studies
2.3.1. Apoptosis and Cell-Cycle Analysis

Apoptosis and the cell-cycle play a central role in cancer, since their induction in
cancer cells is critical to a successful therapy [17,18]. Therefore, the most active compounds,
including 5d and 6h or 4h and 6h were selected to study their effect on apoptosis and cell
cycle profiles in the MGC80-3 or T24 cell lines, respectively.

The apoptosis ratios of MGC80-3 or T24 cell lines induced by the selected compounds
at the concentration of IC50 and 0.5 IC50 were quantitatively determined by flow cytometry.
Four quadrant images (Q1, Q2, Q3 and Q4) were observed by flow cytometric analysis.
The results of apoptosis ratios (including the early and late apoptosis ratios) after 12 h are
presented in Figure 6 (MGC80-3) and Figure 7 (T24). Figure 6 revealed that compounds 5d
and 6h could induce apoptosis in MGC80-3 cells in a concentration dependent manner. The
apoptosis percentage of compound 5d measured at different concentrations were found
to be 6.616% (2.76 µM) and 17.51% (5.52 µM), while the value for control was 0.586%.
Treatment was also accompanied by a decrease in the percentage of live cells, with values
of 93.0% in control and 81.2% in treated cells. After treatment with compound 6h, 5.62%
(3.43 µM) and 14.25% (6.85 µM) of the cells were apoptotic. These were higher percentages
than the one observed in the control (0.586%). These results further demonstrate that
apoptosis was induced by compounds 5d and 6h in addition to cell proliferation inhibition.
From the results of Figure 7, compounds 4h and 6h led to an increase in the number of
apoptotic cells in T24 with the increase of the concentration (from 0.5 IC50 to IC50), and
their apoptosis ratios at their IC50 concentrations were increased to 12.377% and 10.749%,
respectively, when compared with the control (1.18%). All compounds had little effect on
late apoptosis of MGC80-3 or T24, and some normal cells were found to be necrotic in Q1
region. The results evidently illustrate that representative compounds 5d and 6h or 4h and
6h could suppress cell proliferation by inducing apoptosis in the early apoptotic period.
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Figure 6. Apoptosis ratio detection of compounds 5d and 6h by Annexin V-FITC and PI. (a,d) The
MGC80-3 cells not treated with compounds 5d or 6h were used as controls; (b,c) compound 5d
treated MGC80-3 cells for 24 h at concentrations of 2.76 and 5.52 µM, respectively; (e,f) compound 6h
treated MGC80-3 cells for 24 h at concentrations of 3.34 and 6.85 µM, respectively.
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T24 cells for 24 h at concentrations of 4.03 and 8.05 μM, respectively; (e,f) compound 6h treated T24 
cells for 24 h at concentrations of 4.50 and 8.93 μM, respectively. 

The cell cycle distributions of T24 and MGC80-3cells after 48 h of treatment with the 
most active compounds, 4h and 5d, at their IC50 concentrations are shown in Figure 8. 
Compared to control, both compounds 4h and 5d interfered with the cell cycles of T24 
and MGC80-3 cells, respectively. As shown in Figure 8a,b, the S-phase population of T24 
cells increased by 30.04% compared to the control cells (22.89%), indicating that 
compound 4h might inhibit the growth of tumor cells by arresting the cells in S phase 
during the DNA synthesis period. However, compound 5d could induce a significant cell 
cycle arrest in the G2 phase, resulting in a concomitant population increase (13.32%) 
compared with the control cells (8.91%) at a concentration of 5.52 μM (Figure 8c,d). These 
results suggest that compound 5d may inhibit the growth of tumor cells by arresting cells 
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Figure 7. Apoptosis ratio detection of compounds 4h and 6h by Annexin V-FITC and PI. (a,d) The
T24 cells not treated with compounds 4h and 6h were used as controls; (b,c) compound 4h treated
T24 cells for 24 h at concentrations of 4.03 and 8.05 µM, respectively; (e,f) compound 6h treated T24
cells for 24 h at concentrations of 4.50 and 8.93 µM, respectively.

The cell cycle distributions of T24 and MGC80-3cells after 48 h of treatment with the
most active compounds, 4h and 5d, at their IC50 concentrations are shown in Figure 8.
Compared to control, both compounds 4h and 5d interfered with the cell cycles of T24 and
MGC80-3 cells, respectively. As shown in Figure 8a,b, the S-phase population of T24 cells
increased by 30.04% compared to the control cells (22.89%), indicating that compound 4h
might inhibit the growth of tumor cells by arresting the cells in S phase during the DNA
synthesis period. However, compound 5d could induce a significant cell cycle arrest in
the G2 phase, resulting in a concomitant population increase (13.32%) compared with the
control cells (8.91%) at a concentration of 5.52 µM (Figure 8c,d). These results suggest that
compound 5d may inhibit the growth of tumor cells by arresting cells in the G2 phase in
the late stage of DNA synthesis.
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cells not treated with compounds 4h and 5d were used as control, (a,c). (G1: Prophase of DNA 
synthesis; S: stage of dna synthesis; G2: Late stages of DNA synthesis). 
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is depicted in Figure 9. Only compounds 4e, 5c, and 6h exhibit potent topo I inhibitory 
activity at 100 μM. Compounds that have little to no inhibitory activity may have other 
mechanisms for their anticancer effects. Molecular docking studies of the selected 
compounds were carried out by the Surflex-Dock algorithm of Sybyl-X 2.0 (Tripos Inc., St. 
Louis, MI, USA). The molecular docking approach was verified by our previously 
published methods (RMSD (root-mean-square deviation) value was 0.4438 Å) [19]. The 
binding affinities of protein-ligand complexes were expressed as a total score and shown 
in Figure 10. compounds 4e, 5c and 6h exhibited good binding affinities, with total scores 
of 9.79, 7.81 and 9.66, respectively. Potent Topo I inhibitory activity of these compounds 

Figure 8. Cell cycle analysis of compound 4h treated T24 cells (b) and compound 5d treated MGC80-3
cells (d) at their IC50 concentrations (8.05 µM and 5.52 µM) for 48 h. And the T24 and MGC80-3 cells
not treated with compounds 4h and 5d were used as control, (a,c). (G1: Prophase of DNA synthesis;
S: stage of dna synthesis; G2: Late stages of DNA synthesis).

2.3.2. Evaluation of Topo I Inhibitory Activity

DNA topoisomerase I (topo I) has become the main molecular target in anticancer
drugs on account of its significance in all living organisms, participating in replication,
transcription, recombination, and repair in many cellular metabolic processes. The topo I
inhibitory activity of the compounds with the known topo I inhibitor camptothecin (CPT) is
depicted in Figure 9. Only compounds 4e, 5c, and 6h exhibit potent topo I inhibitory activity
at 100 µM. Compounds that have little to no inhibitory activity may have other mechanisms
for their anticancer effects. Molecular docking studies of the selected compounds were
carried out by the Surflex-Dock algorithm of Sybyl-X 2.0 (Tripos Inc., St. Louis, MI, USA).
The molecular docking approach was verified by our previously published methods (RMSD
(root-mean-square deviation) value was 0.4438 Å) [19]. The binding affinities of protein-
ligand complexes were expressed as a total score and shown in Figure 10. compounds
4e, 5c and 6h exhibited good binding affinities, with total scores of 9.79, 7.81 and 9.66,
respectively. Potent Topo I inhibitory activity of these compounds may be attributed to the
formation of hydrophobic residue, hydrogen bond, and π–π stacking with the same amino
acid residue DA113, DC112, TGP11 as CPT.
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2.3.3. Toxicity and Anti-angiogenesis in the Zebrafish Model

Many antitumor drugs inevitably have side effects on normal cells, such as bone
marrow suppression, liver and kidney injury, and abnormal blood cells. Therefore, in order
to improve the possibility of clinical application of acridine-heterocyclic derivatives, the
effective and low-toxicity antitumor drugs were screened using a zebrafish model. In this
experiment, 2% DMSO was used to dissolve the target products, and the abnormal rate
(MAR) and mortality rate (MOR) of zebrafish embryos (72 hpf) were used for statistics. At
different concentrations (1–2 mg/mL) of the selected compounds, various deformities were
observed, such as failure to hatch, embryo necrosis, severe angulation of the spine and
severe pericardial edema (Figure 11). The mortality and malformation rates of embryos
increased with a dose-effect relationship (Table 2). Almost all compounds in the compound
4 series were toxic. Particularly, compounds 4a, 4b, 4f and 4h had a total mortality and
malformation rate of 100% at 2.0 mg.L−1, exhibiting the strongest embryonic toxicity. It is
worth mentioning that compounds 5d and 5h displayed high levels of antitumor activities
but were less toxic to zebrafish embryos. At the highest concentration of 2.0 mg.L−1, the
mortality rate of zebrafish embryos was close to 0% and the malformation rate was less
than 15%. Moreover, there was hardly any toxicity observed in compound 6 at lower con-
centrations (1.0 mg.L−1). Compound 6i exhibited very low toxicity at a high concentration
of 2.0 mg.L−1 with 0% mortality rate and 25% malformation rate.
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Currently, the zebrafish has emerged as a valuable model organism to substitute
traditional models for studying angiogenesis inhibitors [20]. The genes of zebrafish show
70–80% similarity to humans, and the vascular structure of zebrafish has high similarity to
that of other vertebrates [21–23]. Therefore, the subintestinal veins (SIVs) in the zebrafish
embryos are used as evaluation indicators for anti-angiogenesis inhibitors. In this study,
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NBT/BCIP vascular staining was used to observe the angiogenesis effect of representative
drugs (4h, 4f, 5d, 5h, 6g and 6h) in a zebrafish model. As shown in Figure 12, SIVs grew
well in the blank group, naturally extending into a network in the abdomen with many
branches. The length of SIVs of zebrafish was measured by Image J software and is shown
in Figure 10b. Compared with the blank control group, the area of the meshed pattern vessel
and the number of vascular branches in the network decreased after the administration of
compounds 4h, 5d, 5h and 6h. Among these compounds, compounds 5d and 5h exhibited
the strongest antiangiogenic effects that led to a nearly 50% reduction in the vessel length
compared to the mean vessel length for the controls. Compounds 4a and 6g could reduce
the area of blood vessels, but at the same time, additional blood vessels were formed on
the blood vessel edge.

Table 2. The mortality rate (MOR) and malformation rate (MAR) of some of the selected compounds.

NO.
Sample Concentration

Control 2% DMSO 2 mg/mL 1.5 mg/mL 1 mg/mL
MOR MAR MOR MAR MOR MAR MOR MAR MOR MAR

4a 0 0 0 0 45% c 55% c 40% c 60% c 15% c 85% c

4b 0 0 0 0 40% a 55% a 15% a 70% a 15% a 70% a

4c 0 0 0 0 35% a 50% a 25% a 60% a 45% a 50% a

4f 0 0 0 0 85% b 15% b 20% b 80% b 10% b 60% b

4h 0 0 0 0 65% a 35% a 15% a 85% a 15% a 35% a

5d 0 0 0 0 0 10% c 0 10% a 0 5% b

5h 0 0 0 0 0 15% a 0 10% a 0 5% a

5j 0 0 0 0 0 15% a 0 5% a 0 0
6a 0 0 0 0 5% b 90% b 0 95% b 0 15% b

6e 0 0 0 0 65% c 35% c 30% c 70% c 10% c 10% c

6h 0 0 0 0 15% b 65% b 0 80% b 0 35% b

6i 0 0 0 0 0 25% c 0 10% b 0 0

Note: a = p < 0.01; b = p < 0.001; c = p < 0.002, compared with the control group.
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Figure 12. Effects of representative compounds (4f, 4h, 5d, 5h, 6g and 6h) and control on the
subintestinal veins (SIVs) length of 72 hpf zebrafish embryos (x ± s, n = 12), p < 0.05.

3. Materials and Methods

All commercially available chemicals were reagent grade and bought from Aladdin
Reagent Co., LTD (Shanghai, China); NBT/BCIP kit was bought from Tiangen Biochemical
Technology Co., LTD (Shanghai, China); AnnexinV-FITC apoptosis detection kit was bought
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from Nanjing KGI Biotechnology Development Co., Ltd. (Nanjing, China); The spectra
such as NMR, MS, and IR were all evaluated and recorded on a Bruker DRX-400 (1H: 400
MHz, 13C: 100 MHz) (Rheinstetten, Germany), a Thermo Fisher LCQ Fleet (ESI) instrument
(Waltham, MA, USA), and FT-IR Thermo Nicolet Avatar 360 using a KBr pellet (Waltham,
MA, USA). And the melting points were measured by the XT-4 A melting point apparatus
(Shanghai, China) without correction. Other instruments include BD FACSAria II Flow
cytometer (Franklin Lakes, NJ, USA), MCO96 carbon dioxide incubator (Osaka, Japan) and
Bio Tek EL × 800 microplate reader (Winooski, VT, USA), etc.

3.1. Synthesis Methods
3.1.1. Synthesis of N-phenyl-o-aminobenzoic acid (1) and 9-chlorine acridine (2)

The synthesis of N-phenyl-o-aminobenzoic acid (1) and 9-chlorine acridine (2) was
carried out according to our previously published procedure, with slight modifications [24].
Compound 1 could proceed to the next step without further purification.

2-methoxyl-9-chlorine acridine (2a): Yellow-green needle crystal, yield 85.2%, m.p.
158–159 ◦C. ESI-MS m/z: 244 ([M + H]+); 1H NMR (CDCl3, 400 MHz) 8.00 (dd, 2H, J = 8.00,
ArH), 7.93 (d, 2H, J = 8.20, ArH), 7.55–7.60 (m, 2H, ArH), 7.50 (d, 1H, J = 8.40, ArH), 7.30 (s,
1H, ArH), and 3.73 (s, 3H, -OCH3).

2-methyl-9-chlorine acridine (2b): Pale green needle crystal, yield 78.5%, m.p. 122–
123 ◦C. ESI-MS m/z: 228 ([M + H])+ 1H NMR (CDCl3, 400 MHz), δ: 8.05 (dd, 2H, J = 8.00,
ArH), 8.00 (d, 2H, J = 9.20, ArH), 7.61–7.68 (m, 2H, ArH), 7.50 (d, 1H, J = 5.40, ArH), 7.43 (s,
1H, ArH), 2.35 (s, 3H, -CH3).

3.1.2. Synthesis of 9-acridinyl Isothiocyanate (3)

To a solution of chlorine acridine 2 (5 mmol) in acetone (50 mL), NaSCN (0.81 g,
10 mmol) and tetrabutylammonium bromide (0.32 g, 1 mmol) were added, and the mixture
was then refluxed at 60 ◦C for 1 h. After cooling to room temperature, crystals of 3a were
immediately precipitated in the reaction mixture, and crystals of 3b were precipitated in an
ice bath. At the end of the procedure, the crystals were filtered, washed with water, and
dried under vacuum, and no further purification was carried out.

2-methoxyl-9-acridinyl isothiocyanate (3a): bright yellow crystal, yield 88.0%, m.p.
149–150 ◦C; ESI-MS m/z: 267 ([M + H]+); 1H NMR (CDCl3, 400 MHz), δ: 8.25 (d, 2H,
J = 8.50, ArH), 8.15 (d, 1H, J = 9.20, ArH), 7.77–7.81 (q, 1H, ArH), 7.66–7.68 (t, 1H, ArH), 7.51
(d, 1H, J = 8.00, ArH), 7.40 (s, 1H, ArH), 4.08(s, 3H, -OCH3); 13C NMR (CDCl3, 100 MHz)
δ: 158.66, 130.48, 127.54, 127.04, 123.48, 122.62, 122.28, 98.50, 55.90; IR (KBr) ν: 2967, 2098
(-N=C=S), 1356–1557 cm−1.

2-methyl-9-acridinyl isothiocyanate (3b): faint yellow needle crystal, yield 94%, m.p.
128–129 ◦C; ESI-MS m/z: 351 ([M + H]+); 1H NMR (CDCl3, 400 MHz), δ: 8.26–8.28 (m,
2H, ArH), 8.15 (d, 1H, J = 8.40 Hz, ArH), 8.04 (s, 1H, ArH), 7.83 (t, 1H, ArH), 7.64–7.70
(m, 2H, ArH), 7.40 (s, 1H, ArH), 2.67 (s, 3H, -CH3); 13C NMR (CDCl3, 100 M Hz) δ: 137.59,
130.46, 127.08, 125.21, 122.92, 122.21, 121.17, 22.12; IR (KBr) ν: 2903, 2143 (-N=C=S), 1411–
1630 cm−1.

3.1.3. General Procedure for the Synthesis of Acridinyl Aroyl Thiourea Derivatives 4a–4f

To a solution of 9-isothiocyanatoacridine 3 (2mmol) in absolute ethyl alcohol (60 mL),
the appropriate substituted hydrazides (2 mmol) were added, and the reaction mixture
was refluxed until the reactants had been consumed (monitored by TLC). The precipitate
of 4a–4f was prepared, filtered off, washed with 95% ethyl alcohol, and dried at room
temperature.

1-2′-methoxyl acridinyl-3-4′-pyridinamide thiourea (4a): Yellow powder, Yield 91%,
m.p. 200–206 ◦C; ESI-MS m/z: 404 ([M + H]+); 1H NMR (400 MHz, DMSO-d6), δ: 11.26 (br,
s, 1H, -NH), 10.41 (br, s, 1H, -NH), 10.22 (br, s, 1H, -NH), 8.80 (s, 1H, ArH), 8.05–8.15 (m,
2H, ArH), 7.93 (s, 1H, ArH), 7.77 (t, 1H, ArH), 7.63 (t, 1H, ArH), 8.15 (d, 1H, J = 8.40 Hz,
ArH), 8.04 (s, 1H, ArH), 7.83 (t, 1H, ArH), 7.53 (d, 1H, J = 9.20 Hz, ArH), 7.45 (s, 1H, ArH),
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4.02 (s, 3H, -OCH3); 13C NMR (DMSO-d6, 100 MHz) δ: 183.19, 167.30, 165.41, 158.40, 150.74,
148.72, 141.00, 139.61, 131.03, 129.59, 125.82, 122.40, 113.46, 109.76, 56.09; IR (KBr) ν: 3108,
2948 (N–H), 1695 (-C=O), 1291 (-C=S) cm−1.

1-2′-methoxyl acridinyl-3-benzoyl thiosemicarbazides (4b): Yellow powder, Yield 76%,
m.p. 190–192 ◦C; ESI-MS m/z: 403 ([M + H]+); 1H NMR (400 MHz, DMSO-d6), δ: 10.96 (br,
s, 1H, -NH), 10.40 (br, s, 1H, -NH), 10.10 (br, s, 1H, -NH), 8.01–8.14 (m, 4H, ArH), 7.76 (s,
2H, ArH), 7.52–7.58 (m, 6H, ArH), 4.02 (s, 3H, -OCH3); 13C NMR (101 MHz, DMSO-d6) δ:
183.14, 166.84, 164.80, 157.06, 156.21, 144.80, 141.24, 139.31, 132.72, 129.80, 128.80, 127.28,
125.95, 122.46, 122.11, 112.10, 111.51, 56.22; IR (KBr) ν: 3102, 2941 (-N—H), 1686 (-C=O),
1289 (-C=S) cm−1.

1-2′-methoxyl acridinyl-3-4′-methoxy benzoyl thiosemicarbazides (4c): Yellow powder,
Yield 87%, m.p. 202–203 ◦C; ESI-MS m/z: 455 ([M + Na]+); 1H NMR (400 MHz, DMSO-d6),
δ: 10.81 (br, s, 1H, -NH), 10.37 (br, s, 1H, -NH), 10.04 (br, s, 1H, -NH), 8.02–8.09 (m, 4H, ArH),
7.32–7.87 (m, 6H, ArH), 7.06 (s, 1H, ArH), 3.82 (s, 3H, -OCH3), 3.32 (s, 3H, -OCH3); 13C
NMR (101 MHz, DMSO-d6) δ: 182.97, 166.60, 162.03, 156.30, 153.82, 140.77, 136.15, 132.16,
129.58, 128.77, 127.25, 125.82, 121.52, 111.00, 108.32, 55.90; IR (KBr) ν: 3107, 2945 (-N—H),
1677 (-C=O), 1256 (-C=S) cm−1.

1-2’-methoxyl acridinyl-3-4′-nitro benzoyl thiosemicarbazides (4d): Yellow powder,
Yield 94%, m.p. 223–227 ◦C; ESI-MS m/z: 448 ([M + H]+); 1H NMR (400 MHz, DMSO-d6),
δ: 11.30 (br, s, 1H, -NH), 10.45 (br, s, 1H, -NH), 10.22 (br, s, 1H, -NH), 8.38 (s, 2H, ArH),
8.26 (s, 2H, ArH), 8.02–8.16 (m, 2H, ArH), 7.53-7.63 (m, 4H, ArH), 7.46 (s, 1H, ArH), 4.02 (s,
3H, -OCH3); 13C NMR (101 MHz, DMSO-d6) δ: 183.22, 167.59, 162.87, 157.42, 149.87, 147.71,
146.73, 140.26, 138.66, 131.49, 131.11, 129.64, 125.67, 124.67, 124.15, 123.98, 117.74, 110.08,
100.87, 56.20; IR (KBr) ν: 3105, 2947 (-N—H), 1697 (-C=O), 1527 (-C=S) cm−1.

1-2’-methoxyl acridinyl-3-4’-nitro benzoyl thiosemicarbazides (4d): Yellow powder,
Yield 94%, m.p. 223–227 ◦C; ESI-MS m/z: 448 ([M+H]+); 1H NMR (400 MHz, DMSO-d6),
δ: 11.30 (br, s, 1H, -NH), 10.45 (br, s, 1H, -NH), 10.22 (br, s, 1H, -NH), 8.38 (s, 2H, ArH),
8.26 (s, 2H, ArH), 8.02-8.16 (m, 2H, ArH), 7.53–7.63 (m, 4H, ArH), 7.46 (s, 1H, ArH), 4.02 (s,
3H, -OCH3); 13C NMR (101 MHz, DMSO-d6) δ: 183.22, 167.59, 162.87, 157.42, 149.87, 147.71,
146.73, 140.26, 138.66, 131.49, 131.11, 129.64, 125.67, 124.67, 124.15, 123.98, 117.74, 110.08,
100.87, 56.20; IR (KBr) ν: 3105, 2947 (-N—H), 1697 (-C=O), 1527 (-C=S) cm−1.

1-2′-methyl acridinyl-3-4′-pyridinamide thiourea (4f): Orange powder, Yield 82%, m.p.
176–180 ◦C; ESI-MS m/z: 410 ([M + Na]+); 1H NMR (400 MHz, DMSO-d6), δ: 11.59 (br, s,
1H, -NH), 10.99 (br, s, 1H, -NH), 10.21 (br, s, 1H, -NH), 8.81 (s, 2H, ArH), 7.89 (s, 3H, ArH),
7.42–7.89 (m, 6H, ArH), 2.33 (s, 3H, -CH3); 13C NMR (101 MHz, DMSO-d6) δ: 183.47, 167.14,
155.61, 150.76, 140.45, 140.16, 138.18, 133.65, 131.24, 126.31, 124.88, 117.52, 111.80, 21.93; IR
(KBr) ν: 3104, 2918 (-N—H), 1556 (-C=O), 1471 (-C=S) cm−1.

1-2′-methyl acridinyl-3-benzoyl thiosemicarbazides (4g): Orange powder, Yield 82%,
m.p. 171–173 ◦C; ESI-MS m/z: 409 [M + Na]+; 1H NMR (400 MHz, DMSO-d6), δ: 10.68 (br,
s, 1H, -NH), 10.41 (br, s, 1H, -NH), 10.13 (br, s, 1H, -NH), 8.58–8.75 (m, 4H, ArH), 7.42–7.57
(m, 5H, ArH), 7.39 (d, J = 8.5 Hz, 2H, ArH), 7.09 (s, 1H, ArH), 2.42 (s, 3H, -CH3); 13C NMR
(101 MHz, DMSO-d6,) δ: 181.29, 166.81, 153.65, 150.24, 148.96, 140.25, 138.24, 133.58, 130.84,
130.35, 126.22, 125.07, 122.13, 121.38, 117.44, 116.40, 111.44, 21.25; IR (KBr) ν: 3102, 2917
(-N—H), 1569 (-C=O), 1471 (-C=S) cm−1.

1-2′-methyl acridinyl-3-4’-methoxy benzoyl thiosemicarbazides (4h): Orange-yellow
powder, Yield 93%, m.p. 210–212 ◦C; ESI-MS m/z: 439 ([M + Na]+); 1H NMR (400 MHz,
DMSO-d6), δ: 10.53 (br, s, 1H, -NH), 10.38 (br, s, 1H, -NH), 10.08 (br, s, 1H, -NH), 7.97–8.18
(m, 4H, ArH), 7.34–7.55 (m, 3H, ArH), 7.34–7.55 (m, 3H, ArH), 7.07 (s, 1H, ArH), 3.44 (s, 3H,
-OCH3), 2.42 (s, 3H, -CH3); 13C NMR (101 MHz, DMSO-d6) δ: 181.09, 166.30, 153.39, 148.81,
140.15, 138.18, 130.79, 130.04, 126.17, 125.32, 121.21, 117.39, 114.12, 111.37, 55.89, 22.24; IR
(KBr) ν: 3094, 2914 (-N—H), 1556 (-C=O), 1471 (-C=S) cm−1.

1-2′-methyl acridinyl-3-4’-nitro benzoyl thiosemicarbazides (4i): Orange-yellow pow-
der, Yield 73%, m.p. 187–188 ◦C; ESI-MS m/z: 457 ([M + Na]+); 1H NMR (400 MHz,
DMSO-d6), δ: 11.56 (br, s, 1H, -NH), 10.76 (br, s, 1H, -NH), 10.15 (br, s, 1H, -NH), 8.41 (d, J
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= 8.5 Hz, 2H), 7.96–8.26 (m, 4H, ArH), 7.26–7.57 (m, 4H, ArH), 7.11 (s, 1H, ArH), 2.44 (s,
3H, -CH3); 13C NMR (101 MHz, DMSO-d6) δ: 183.42, 166.78, 155.67, 149.20, 140.24, 140.14,
131.87, 130.89, 130.41, 124.68, 117.93, 111.56, 22.50; IR (KBr) ν: 3095, 2918 (-N—H), 1598
(-C=O), 1483 (-C=S) cm−1.

1-2′-methyl acridinyl-3-4′-chloro benzoyl thiosemicarbazides (4j): Orange-yellow
powder, Yield 86%, m.p. 178–179 ◦C; ESI-MS m/z: 443 ([M + Na]+); 1H NMR (400 MHz,
DMSO-d6), δ: 10.77 (br, s, 1H, -NH), 10.48 (br, s, 1H, -NH), 10.08 (br, s, 1H, -NH), 8.18–8.34
(m, 4H, ArH), 7.57–7.83 (m, 3H, ArH), 7.33–7.57 (m, 3H, ArH), 7.07 (s, 1H, ArH), 2.42 (s,
3H, -CH3); 13C NMR (101 MHz, DMSO-d6) δ: 182.61, 166.39, 155.38, 149.09, 140.26, 139.92,
131.03, 130.08, 129.29, 124.20, 117.53, 116.31, 111.58, 104.34, 22.83; IR (KBr) ν: 3094, 2915
(-N—H), 1567 (-C=O), 1480 (-C=S) cm−1.

3.1.4. General Procedure for the Synthesis of Acridinyl 1,2,4-triazole Derivatives 5a–5f

The appropriate acyl thiosemicarbazides (4a–4i, 1 mmol) and 5% aqueous sodium
carbonate (40 mL) were refluxed for 5 h. After cooling, the precipitate was filtered off and
the filtrate was acidified by hydrochloric acid to a pH of 2. The precipitates were formed,
filtered off and then crystallized from ethyl alcohol.

4-(2-methoxyacridin-9-yl)-5-(pyridin-4-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (5a):
Light yellow powder, Yield 75%, m.p. 272–273 ◦C; ESI-MS m/z: 384 ([M + H]+); 1H NMR
(400 MHz, DMSO-d6), δ: 14.79 (br, s, 1H, -NH), 8.38 (dd, J = 4.6, 1.5 Hz, 2H, ArH), 8.33–8.11
(m, 2H, ArH), 7.94–7.76 (m, 1H, ArH), 7.08 (dd, J = 4.6, 1.6 Hz, 2H, ArH), 6.87 (d, J = 2.6 Hz,
1H), 3.86 (s, 3H, -OCH3); 13C NMR (100 MHz, DMSO-d6) δ: 169.99, 159.21, 157.94, 150.89,
149.46, 134.90, 130.31, 129.15, 126.69, 125.10, 124.89, 120.97, 56.52; IR (KBr) ν: 3069, 2906,
2745 (-N—H), 1505–1633 (-C=N),1480 (-C=S) cm−1.

4-(2-methoxyacridin-9-yl)-5-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (5b): Light
yellow powder, 60%, m.p. 259–261 ◦C; ESI-MS m/z: 385 ([M + H]+); 1H NMR (400 MHz,
DMSO-d6), δ: 14.56 (s, 1H, -NH), 8.22 (dd, J = 12.2, 9.1 Hz, 2H, ArH), 7.89–7.75 (m, 1H, ArH),
7.70–7.58 (m, 2H, ArH), 7.56 (d, J = 8.6 Hz, 1H, ArH), 7.26 (t, J = 6.6 Hz, 1H, ArH), 7.21–7.07
(m, 4H, ArH), 6.82 (d, J = 2.6 Hz, 1H, ArH), 3.85 (s, 3H, -OCH3); 13C NMR (100 MHz,
DMSO-d6) δ: 169.50, 159.01, 151.69, 147.45, 146.68, 132.13, 131.27, 130.24, 130.13, 129.26,
128.94, 127.42, 126.58, 125.76, 124.95, 123.68, 122.58, 98.59, 56.44; IR (KBr) ν: 3056, 2912, 2749
(-N—H), 1500–1632 (-C=N), 1476 (-C=S) cm−1.

4-(2-methoxyacridin-9-yl)-5-(4-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione
(5c): Light yellow powder, Yield 58%, m.p. 262–267 ◦C; ESI-MS m/z: 415 ([M + H]+); 1H
NMR (400 MHz, DMSO-d6), δ: 14.45 (s, 1H, -NH), 8.23 (dd, J = 11.8, 9.1 Hz, 2H, ArH),
7.93–7.73 (m, 1H, ArH), 7.64 (s, 2H, ArH), 7.54 (s, 1H, ArH), 7.08 (d, J = 8.9 Hz, 2H, ArH),
6.80 (s, 1H, ArH), 6.70 (d, J = 8.9 Hz, 2H, ArH), 3.85 (s, 3H, -OCH3), 3.58 (s, 3H, -OCH3); 13C
NMR (100 MHz, DMSO-d6) δ: 169.30, 161.33, 159.01, 151.58, 147.51, 146.73, 134.08, 132.17,
130.20, 128.95, 126.56, 125.02, 123.76, 122.59, 117.89, 114.76, 98.57, 56.41, 55.60; IR (KBr) ν:
3066, 2883, 2726 (N—H), 1500–1632 (C=N), 1476 (C=S) cm−1.

4-(2-methoxyacridin-9-yl)-5-(4-nitrophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (5d):
Light yellow powder, Yield 40%, m.p. 253–255 ◦C; ESI-MS m/z: 430 ([M + H]+); 1H NMR
(400 MHz, DMSO-d6), δ: 14.79 (s, 1H, -NH), 8.24 (t, J = 9.3 Hz, 2H, ArH), 8.02 (d, J = 8.9
Hz, 2H, ArH), 7.93–7.75 (m, 1H, ArH), 7.63 (dd, J = 9.5, 2.7 Hz, 2H, ArH), 7.58 (s, 1H, ArH),
7.44 (d, J = 8.9 Hz, 2H, ArH), 6.91 (s, 1H, ArH), 3.87 (s, 3H, -OCH3); 13C NMR (100 MHz,
DMSO-d6) δ: 170.00, 159.22, 149.93, 148.90, 147.47, 146.78, 133.20, 132.22, 131.44, 130.25,
129.15, 128.69, 126.70, 124.93, 124.61, 123.51, 122.38, 98.64, 56.54; IR (KBr) ν: 3066, 2883, 2726
(-N—H), 1421–1633 (-C=N), 1345 (-C=S) cm−1.

4-(4-chlorophenyl)-4-(2-methoxyacridin-9-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (5e):
Light yellow powder, Yield 78%, m.p. 286–287 ◦C; ESI-MS m/z: 419 ([M + H]+); 1H NMR
(400 MHz, DMSO-d6), δ: 14.61 (s, 1H, -NH), 8.23 (dd, J = 11.4, 9.2 Hz, 2H, ArH), 7.93–7.76
(m, 1H, ArH), 7.73–7.60 (m, 2H, ArH), 7.55 (d, J = 8.6 Hz, 1H, ArH), 7.25 (d, J = 8.6 Hz,
2H, ArH), 7.17 (d, J = 8.6 Hz, 2H, ArH), 6.85 (s, 1H, ArH), 3.86 (s, 3H, -OCH3); 13C NMR
(100 MHz, DMSO-d6) δ: 169.59, 159.10, 150.72, 147.44, 146.71, 136.12, 133.51, 132.17, 130.22,
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129.54, 129.11, 126.64, 124.93, 124.62, 123.57, 122.49, 98.61, 56.49; IR (KBr) ν: 3056, 2909, 2748
(-N—H), 1344–1632 (-C=N), 1503 (-C=S) cm−1.

4-(2-methylacridin-9-yl)-5-(pyridin-4-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (5f):
Light yellow powder, Yield 48%, m.p. 264–268 ◦C; ESI-MS m/z: 370 ([M + H]+); 1H NMR
(400 MHz, DMSO-d6) δ: 14.84 (s, 1H, -NH), 8.37 (d, J = 6.0 Hz, 2H, ArH), 8.29 (d, J = 8.7 Hz,
1H, ArH), 8.23 (d, J = 8.9 Hz, 1H, ArH), 7.96–7.84 (m, 1H, ArH), 7.84–7.74 (m, 1H, ArH),
7.72–7.59 (m, 2H, ArH), 7.50 (s, 1H, ArH), 7.04 (d, J = 6.1 Hz, 2H, ArH), 2.52 (s, 3H, -CH3);
13C NMR (100 MHz, DMSO-d6) δ: 170.32, 150.92, 149.15, 148.75, 148.53, 139.37, 134.60,
134.56, 132.85, 131.15 130.21, 130.00, 129.04, 123.54, 123.40, 122.87, 120.84, 120.70, 56.49; IR
(KBr) ν: 3066, 2917, 2757 (-N—H), 1279–1600 (-C=N), 1426 (-C=S) cm−1.

4-(2-methylacridin-9-yl)-5-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (5g): White
powder, Yield 78%, m.p. 292–293 ◦C; ESI-MS m/z: 369 ([M + H]+); 1H NMR (400 MHz,
DMSO-d6) δ: 14.60 (s, 1H, -NH), 8.26 (d, J = 8.8 Hz, 1H, ArH), 8.20 (d, J = 8.9 Hz, 1H, ArH),
7.90–7.82 (m, 1H, ArH), 7.77 (d, J = 9.0 Hz, 1H, ArH), 7.72–7.56 (m, 2H, ArH), 7.48 (s, 1H,
ArH), 7.30–7.17 (m, 1H, ArH), 7.13 (d, J = 4.4 Hz, 4H, ArH), 2.51 (s, 3H, -CH3); 13C NMR
(100 MHz, DMSO-d6) δ: 169.73, 151.47, 148.71, 148.47, 139.08, 135.20, 134.51, 131.29, 131.07,
130.11, 129.91, 129.28, 128.83, 127.33, 125.66, 123.71, 123.58, 123.02, 120.86, 22.15; IR (KBr) ν:
3066, 2917, 2757 (-N—H), 1279–1600 (-C=N), 1426 (-C=S) cm−1.

4-(4-methoxyphenyl)-4-(2-methylacridin-9-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione
(5h): White powder, Yield 83%, m.p. 268–269 ◦C; ESI-MS m/z: 399 ([M + H]+); 1H NMR
(400 MHz, DMSO-d6) δ: 14.48 (s, 1H, -NH), 8.27 (d, J = 8.8 Hz, 1H), 8.21 (d, J = 8.9 Hz, 1H,
ArH), 7.86 (t, 1H, ArH), 7.78 (dd, J = 9.0, 1.5 Hz, 1H, ArH), 7.65 (d, J = 6.5 Hz, 1H, ArH), 7.60
(d, J = 8.5 Hz, 1H, ArH), 7.46 (s, 1H, ArH), 7.05 (d, J = 8.9 Hz, 2H, ArH), 6.68 (d, J = 8.9 Hz,
2H, ArH), 3.57 (s, 3H, -OCH3), 2.52 (s, 3H, -CH3); 13C NMR (100 MHz, DMSO-d6) δ: 169.51,
161.33, 151.35, 148.77, 148.53, 139.05, 135.42, 134.49, 131.06, 130.06, 128.85, 123.71 123.02,
120.86, 117.78, 114.78, 55.61, 22.17; IR (KBr) ν: 3095, 2925, 2750 (-N—H), 1360–1613 (-C=N),
1514 (-C=S) cm−1.

4-(2-methylacridin-9-yl)-5-(4-nitrophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (5i):
Light yellow powder, Yield 53%, m.p. 245–247 ◦C; ESI-MS m/z: 414 ([M + H]+); 1H NMR
(400 MHz, DMSO-d6) δ: 14.79 (s, 1H, -NH), 8.24 (t, J = 9.3 Hz, 2H, ArH), 8.02 (d, J = 8.9 Hz,
2H, ArH), 7.83 (s, 1H, ArH), 7.71–7.59 (m, 2H, ArH), 7.57 (d, J = 8.7 Hz, 1H, ArH), 7.44
(d, J = 8.9 Hz, 2H, ArH), 6.91 (s, H, ArH), 2.51 (s, 3H, -CH3), 13C NMR (100 MHz, DMSO-
d6) δ: 169.99, 150.53, 148.55, 139.72, 135.26, 131.39, 130.41, 129.19, 128.69, 126.71, 124.62,
123.78, 123.49, 120.98, 22.19; IR (KBr) ν: 3054, 2918, 2755 (-N—H), 1432-1633 (-C=N), 1376
(-C=S) cm−1.

4-(4-chlorophenyl)-4-(2-methylacridin-9-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (5j):
Yellow powder, Yield 80%, m.p. 259–263 ◦C; ESI-MS m/z: 403 ([M + H]+); 1H NMR
(400 MHz, DMSO-d6) δ: 14.65 (s, 1H, -NH), 8.27 (d, J = 8.8 Hz, 1H, ArH), 8.20 (d, J = 8.9 Hz,
1H, ArH), 7.88 (dd, J = 10.5, 4.0 Hz, 1H, ArH), 7.77 (d, J = 8.8 Hz, 1H, ArH), 7.73–7.57 (m,
2H, ArH), 7.49 (s, 1H, ArH), 7.24 (d, J = 8.5 Hz, 2H, ArH), 7.14 (d, J = 8.5 Hz, 2H, ArH); 13C
NMR (100 MHz, DMSO-d6) δ: 169.85, 150.49, 148.74, 148.52, 139.19, 136.15, 134.86, 134.52,
131.08, 130.17, 129.97, 129.55, 129.00, 124.51, 123.56, 122.98, 120.81, 22.15; IR (KBr) ν: 3097,
2933 (-N—H), 1258-1600 (-C=N), 1497 (-C=S) cm−1.

3.1.5. General Procedure for the Synthesis of Acridinyl 1,3,4-thiadiazol Derivatives (6)

About 3 mL of 98% concentrated sulfuric acid was added to a 50 mL round-bottom
flask and stirred in an ice bath for 10 min at 0 ◦C. Then, intermediate 4 (0.5 mmol) was
added into the solution in small portions over the course of 1 h. The reaction was continued
at room temperature for 24–48 h, and 10 mL pure water was slowly added to reaction
mixture in an ice bath. The final product 6 was precipitated, filtered off, washed with water,
dried, and crystallized from ethyl alcohol.

7-methoxy-N-(5-(pyridin-4-yl)-1,3,4-thiadiazol-2-yl)-10,10a-dihydroacridin-9(8aH)-imine
(6a): Orange solids, Yield 80%, m.p. 272–275 ◦C; ESI-MS m/z: 386 ([M + H]+); 1H NMR
(400 MHz, DMSO-d6), δ: 8.78 (d, J = 5.7 Hz, 2H, ArH), 8.22 (d, J = 8.6 Hz, 1H, ArH), 8.00–7.94
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(m, 3H, ArH), 7.90 (d, J = 6.2 Hz, 2H, ArH), 7.75 (dd, J = 9.3, 2.7 Hz, 1H, ArH), 7.58 (s, 1H,
ArH), 7.53 (dt, J = 8.3, 4.0 Hz, 1H, ArH), 3.86 (s, 3H, -OCH3); 13C NMR (DMSO-d6, 100 MHz)
δ: 156.40, 149.19, 140.03, 135.03, 130.65, 128.43, 127.65, 127.49, 127.29, 126.86, 125.02, 121.72,
119.38, 103.95, 56.20; IR (KBr) ν: 3055, 3011, 2837 (-C—H, -N—H), 1379-1631 (-C=N) cm−1.

7-methoxy-N-(5-phenyl-1,3,4-thiadiazol-2-yl)-10,10a-dihydroacridin-9(8aH)-imine (6b):
Orange- yellow solid, Yield 81%, m.p. 263–265 ◦C; ESI-MS m/z: 385 ([M + H]+); 1H NMR
(400 MHz, DMSO-d6), δ: 8.19 (d, J = 8.7 Hz, 1H, ArH), 7.92 (q, J = 9.3 Hz, 3H, ArH), 7.80
(dd, J = 6.6, 2.9 Hz, 2H, ArH), 7.68 (dd, J = 9.2, 2.7 Hz, 1H, ArH), 7.58 (s, 1H, ArH), 7.54–7.44
(m, 4H, ArH), 3.83 (s, 3H, -OCH3); 13C NMR (101 MHz, DMSO-d6) δ: 156.06, 140.22, 136.58,
134.49, 131.24, 130.46, 129.83, 127.72, 126.95, 126.79, 124.37, 121.59, 120.02, 120.33, 119.26,
116.76, 104.39, 56.03; IR (KBr) ν: 2771 (-C—H, N—H), 1329-1632 (-C=N) cm−1.

7-methoxy-N-(5-(4-methoxyphenyl)-1,3,4-thiadiazol-2-yl)-10,10a-dihydroacridin-
9(8aH)-imine (6c): Orange-red solid, Yield 54%; m.p. 230–232 ◦C; ESI-MS m/z: 415 ([M +
H]+); 1HNMR (400 MHz, DMSO-d6) δ: 8.35 (d, J = 8.5 Hz, 1H, ArH), 8.10 (d, J = 8.1 Hz, 3H,
ArH), 8.01 (d, J = 9.8 Hz, 1H, ArH), 7.96 (s, 1H, ArH), 7.91–7.79 (m, 1H, ArH), 7.76–7.55 (m,
3H, ArH), 7.06 (t, J = 9.1 Hz, 1H, ArH), 3.93 (s, 3H, -OCH3), 3.81 (s, 3H, -OCH3); 13C NMR
(101 MHz, DMSO-d6) δ: 156.91, 149.55, 144.54, 140.78, 136.88, 135.34, 129.01, 128.50, 126.77,
124.39, 121.00, 116.85, 112.99, 103.39, 103.21, 56.65, 56.17; IR (KBr) ν: 2771 (-C—H, -N—H),
1567 (-C=N) cm−1.

7-methoxy-N-(5-(4-nitrophenyl)-1,3,4-thiadiazol-2-yl)-10,10a-dihydroacridin-9(8aH)-
imine (6d): Orange-red solid, Yield 33%; m.p. 258–260 ◦C; ESI-MS m/z: 430 ([M + H]+);
1H NMR (DMSO-d6

, 400 MHz) δ: 8.32 (d, J = 8.9 Hz, 2H, ArH), 8.29 (d, J = 8.6 Hz, 1H,
ArH), 8.04 (dd, J = 6.9, 4.8 Hz, 5H, ArH), 7.81 (dd, J = 9.3, 2.7 Hz, 1H, ArH), 7.61 (dd, J = 8.5,
2.5 Hz, 2H, ArH), 3.89 (s, 3H, -OCH3); 13C NMR (101 MHz, DMSO-d6) δ: 156.85, 148.76,
145.74, 142.43, 139.80, 136.85, 135.92, 135.35, 129.32, 127.93, 126.55, 125.67, 125.01, 121.90,
120.38, 119.60, 117.03, 103.59, 56.32; IR (KBr) ν: 2829 (-C—H, -N—H), 1346-1633 (-C=N)
cm−1.

7-methoxy-N-(5-(4-chlorophenyl)-1,3,4-thiadiazol-2-yl)-10,10a-dihydroacridin-9(8aH)-
imine (6e): Orange-yellow solid, Yield 51%; m.p. 203–205 ◦C; ESI-MS m/z: 419 ([M + H]+);
1H NMR (400 MHz, DMSO-d6) δ: 8.21 (d, J = 8.6 Hz, 1H, ArH), 7.94 (d, J = 8.1 Hz, 3H, ArH),
7.82 (s, 2H, ArH), 7.72 (dd, J = 9.2, 2.6 Hz, 1H, ArH), 7.58 (dd, J = 5.9, 2.6 Hz, 3H, ArH),
7.55–7.41 (m, 1H, ArH), 3.85 (s, 3H, -OCH3); 13C NMR (101 MHz, DMSO-d6) δ: 156.36,
140.09, 135.90, 134.8, 129.89, 129.19, 128.58, 128.25, 126.65, 124.87, 121.70, 120.01, 119.45,
116.90, 104.12, 102.60, 56.21; IR (KBr) ν: 2781 (-C—H, -N—H), 1467 (-C=N) cm−1.

7-methyl-N-(5-(pyridin-4-yl)-1,3,4-thiadiazol-2-yl)-10,10a-dihydroacridin-9(8aH)-imine
(6f): Orange-yellow solid, Yield 43%; m.p. 276–278 ◦C; ESI-MS m/z: 370 ([M + H]+); 1H
NMR (400 MHz, DMSO-d6) δ: 8.34 (d, J = 8.7 Hz, 2H, ArH), 8.23 (d, J = 8.9 Hz, 1H, ArH),
8.14 (d, J = 8.3 Hz, 1H, ArH), 8.05 (t, J = 9.3 Hz, 3H, ArH), 8.01–7.91 (m, 2H, ArH), 7.88 (s,
1H, ArH), 7.51 (d, J = 8.2 Hz, 1H, ArH), 2.48 (s, 3H, -CH3); 13C NMR (101 MHz, DMSO-d6)
δ: 158.09, 155.78, 151.07, 140.54, 135.49, 133.66, 131.53, 127.77, 126.46, 123.78, 121.88, 118.38,
118.11, 116.14, 21.31; IR (KBr) ν: 2824 (-C—H, -N—H), 1347-1600 (-C=N) cm−1.

7-methyl-N-(5-phenyl-1,3,4-thiadiazol-2-yl)-10,10a-dihydroacridin-9(8aH)-imine (6g):
Yellow solid, Yield 56%; m.p. 294–296 ◦C; ESI-MS m/z: 369 ([M + H]+); 1H NMR (400 MHz,
DMSO-d6) δ: 8.17 (d, J = 8.5 Hz, 1H, ArH), 8.07 (s, 1H, ArH), 7.97–7.85 (m, 2H, ArH), 7.80 (d,
J = 6.9 Hz, 4H, ArH), 7.59-7.49 (m, 3H, ArH), 7.48–7.34 (m, 1H, ArH), 2.45 (s, 3H, -CH3); 13C
NMR (101 MHz, DMSO-d6) δ: 160.12, 157.49, 140.60, 138.98, 137.32, 135.07, 133.97, 131.26,
130.45, 129.82, 127.17, 127.15, 125.56, 124.06, 119.50, 119.21, 118.10, 117.00, 21.44; IR (KBr) ν:
2792 (C—H, N—H), 1366-1627 (C=N) cm−1.

7-methyl-N-(5-(4-methoxyphenyl)-1,3,4-thiadiazol-2-yl)-10,10a-dihydroacridin-9(8aH)-
imine (6h): Orange-yellow solid, Yield 84%; m.p. >300 ◦C; ESI-MS m/z: 399 ([M + H]+); 1H
NMR (400 MHz, DMSO-d6) δ: 8.33 (d, J = 8.7 Hz, 1H, ArH), 8.18 (s, 1H, ArH), 8.10–8.01 (m,
3H, ArH), 7.98 (d, J = 8.8 Hz, 2H, ArH), 7.91–7.77 (m, 1H, ArH), 7.68 (dd, J = 8.6, 2.3 Hz, 1H,
ArH), 7.62 (dd, J = 14.4, 7.9 Hz, 1H, ArH), 7.08 (d, J = 8.7 Hz, 1H, ArH), 2.48 (s, 3H, -CH3);
13C NMR (101 MHz, DMSO-d6) δ: 162.17, 159.02, 140.47, 139.22, 137.04, 136.13, 135.63,
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128.91, 127.11, 127.06, 126.92, 126.85, 125.57, 125.06, 120.71, 120.03, 119.59, 118.29, 117.35,
113.02, 56.20, 21.52; IR (KBr) ν: 3090, 2920, 2830 (-C—H, -N—H), 1486-1628 (-C=N) cm−11.

7-methyl-N-(5-(4-nitrophenyl)-1,3,4-thiadiazol-2-yl)-10,10a-dihydroacridin-9(8aH)-
imine (6i): Purple-red solid, Yield 53%; m.p. 224–226 ◦C; ESI-MS m/z: 414 ([M + H]+); 1H
NMR (400 MHz, DMSO-d6) δ: 12.17 (s, 1H, -NH), 8.35 (d, J = 8.9 Hz, 2H, ArH), 8.15 (d,
J = 8.9 Hz, 2H, ArH), 7.96 (d, J = 5.1 Hz, 2H, ArH), 7.72 (t, J = 7.0 Hz, 1H, ArH), 7.65–7.56 (m,
2H, ArH), 7.54 (d, J = 8.5 Hz, 1H, ArH), 7.18 (t, J = 7.6 Hz, 1H, ArH), 2.35 (s, 3H, -CH3); 13C
NMR (100 MHz, DMSO-d6) δ: 165.41, 148.81, 143.72, 140.52, 139.40, 138.81, 136.22, 135.69,
135.63, 127.93, 126.99, 125.65, 125.02, 120.12, 119.72, 118.15, 117.34, 113.14, 21.54; IR (KBr) ν:
2918 (-C—H, -N—H), 1340-1627 (-C=N) cm−1.

7-methyl-N-(5-(4-chlorophenyl)-1,3,4-thiadiazol-2-yl)-10,10a-dihydroacridin-9(8aH)-
imine (6j): Orange-yellow solid, Yield 67%, m.p. 258–260 ◦C; ESI-MS m/z: 403 ([M + H]+);
1H NMR (400 MHz, DMSO-d6) δ: 8.23 (d, J = 8.6 Hz, 1H, ArH), 8.12 (s, 1H, ArH), 8.04–7.93
(m, 2H, ArH), 7.88 (s, 2H, ArH), 7.81 (d, J = 8.5 Hz, 2H, ArH), 7.58 (d, J = 8.5 Hz, 2H, ArH),
7.51 (t, J = 7.5 Hz, 1H, ArH), 2.49 (s, 3H, -CH3); 13C NMR (101 MHz, DMSO-d6) δ: 160.71,
146.36, 140.56, 139.09, 137.87, 135.87, 135.50, 129.89, 129.14, 128.58, 127.04, 125.34, 124.71,
119.72, 119.37, 118.16, 117.13, 21.47; IR (KBr) ν: 2795 (-C—H, -N—H), 1366–1627 (-C=N)
cm−1.

3.1.6. Preparation of Single Crystal Compounds 5b and 6d and Their X-ray Single Crystal
Diffraction Method

A single crystal of 5b and 6d suitable for X-ray diffraction study was cultivated
from 95% ethyl alcohol and N, N-dimethylformamide respectively, by a slow evapo-
ration method at room temperature. All measurements were performed with Mo Kα
radiation (λ = 0.7107 Å) on a Brucker SMART 1000 CCD X diffractometer (Billerica, MA,
USA). The structure was solved by direct methods with SHELXS-97 [25] and refined by
SHELXL-97 [26]. All non-hydrogen atoms were refined with anisotropic thermal parame-
ters. The final full-matrix least-squares refinement of 5b gave R = 0.0914, ω = 1/[s2(Fo2)
+ (0.0431 p)2 + 0.2721 p] where p = (Fo2 + 2Fc2)/3, S = 1.043, (∆/σ)max = 0.237 and
(∆/σ)min = −0.267 e/Å3. In addition, the final full-matrix least-squares refinement of
6d gave R = 0.0914, ω = (1/[s2(Fo2) + (0.0650 p)2 + 0.0224 p] where p = (Fo2 + 2Fc2)/3,
S = 1.028, (∆/σ)max = 0.236 and (∆/σ)min = −0.197 e/Å3.

3.2. In-Vivo Antitumor Activity
3.2.1. Antiproliferative Activity

Test samples, including compounds 4–6 and commercial classical anticancer drugs
(5-FU and cis-platinum), were screened for their anti-cancer activity against HFF human
foreskin fibroblast cells, MGC-803 human gastric cancer cells, BEL-7404 human hepatocel-
lular carcinoma cells, NCI-H460 human large cell carcinoma cells, and T24 human bladder
carcinoma cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide
(MTT) assay method cited in the literature [27]. The initial concentration of all the test
samples was 100 µg/mL, which was serially diluted in complete medium with ten-fold
dilutions to give six concentrations per compound. Their cytotoxicity was determined
in 96-well flat bottomed microtiter plates. All the test samples were tested in triplicate.
The results were expressed as the drug concentration that inhibited cell growth by 50%
as compared to the controls (IC50). The IC50 values were calculated from regression lines
obtained from the percent cell growth inhibition plotted as a function of the logarithm of
the dose.

3.2.2. Apoptosis and Cell Cycle Analysis

The apoptosis assay and the cell cycle analysis were carried out by cytometry (FACS-
Verse, BD, Piscataway, NJ, USA) at an excitation wavelength of 488 nm according to the
method described in the literature with slight modifications [28]. The cells were seeded at
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2 × 106/well and washed by cold PBS. The buffer solutions were prepared using 0.1 M pH
7.4 Hepes/NaOH, 1.4 M NaCl, and 25 mM CaCl2.

3.2.3. Topo I Inhibitory Activity

Topo I and pBR322 were obtained commercially from Takara Bio Inc. (Shiga, Japan).
And the enzyme inhibitory activity was determined by our previous methods [19].

3.2.4. Anti-Angiogenic Effect Using the Zebrafish Model

(a) Zebrafish toxicity assay

The zebrafish embryos were collected at 6 hpf and randomly divided into naive control
(embryos maintained in distilled water), vehicle control (embryos treated with 2% DMSO),
and drug groups. Stock solutions of all drugs were prepared in 2% DMSO as a solubilizing
agent and diluted to three concentrations (0.5 mg/mL, 1 mg/mL, and 2 mg/mL). Each
group had 20 embryos per test concentration. The zebrafish embryos were maintained in
an incubator at 28 ◦C and read at 72 hpf for their mortality and teratogenicity (including
non-hatching, egg condensation, spinal curvature, pericardial enlargement, etc.). Each
compound was evaluated in three independent biological experiments.

(b) Angiogenesis assay

The 24 hpf zebrafish embryos were dechorionated with a 1 gL−1 pronase treatment and
maintained in distilled water in 12-well cell culture plates (each well contained 20 embryos).
A negative control group containing zebrafish embryos in distilled water and a vehicle
treatment group that was treated with 2% dimethyl sulfoxide (DMSO) were prepared.
The anti-angiogenic compounds were diluted to 1 mg/mL. After incubating at 28 ◦C for
72 h, the embryos were immersed in 4% paraformaldehyde and dehydrated by gradient
ethanol. Subsequently, the embryos were balanced in NTMT buffer (5 M NaCl + 1 M Tris
[pH 9.0–9.5] + 1 M MgCl2+ 10% Tween), and nitrotetrazolium blue chloride (NBT) and
p-toluidine salt (BCIP) staining were performed. To evaluate the effect of compounds on
the angiogenesis of zebrafish embryos, the growth of embryonic sub-intestinal veins (SIVs)
at 72 hpf was observed using an IX71 Olympus microscope (Hamburger, Germany). The
length of the SIVs was calculated using the image J 1.8.0 software (Bethesda, MD, USA).

4. Conclusions

A new series of acridine-triazole and acridine-thiadiazole derivatives were synthesized
and characterized by spectral studies. All the synthesized compounds were evaluated
for their in vitro cytotoxic activities against HFF, MGC-803, BEL-7404, NCI-H460, and
T24 by the MTT assay method. Most of the compounds were sensitive to MGC-803
and T24 cell lines. Compared to all the prepared compounds, 4a, 5d and 6h exhibited
the best anticancer activity against MGC-803 cell lines, and compounds 4h, 5h and 6h
showed the most excellent antitumor activity against T24. Preliminary studies of antitumor
mechanisms revealed that the representative compounds (5d and 6h or 4h and 6h) could
suppress cell proliferation by inducing apoptosis in the Q3 period of MGC-803 or T24 cell
lines. Compound 5d might inhibit the growth of tumor cells by arresting cells in the G2
phase, while compound 4h had a great effect on the S phase. In the zebrafish experiment,
compound 5d displayed a superior antiangiogenic effect and lower toxicity than other
compounds. Therefore, compound 5d has the potential to be an antitumor drug with high
efficiency and low toxicity.
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