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Abstract: Dormancy development in micropropagated plantlets at the acclimatization stage and early
growth ex vitro is undesirable as it lowers their survival rate and restricts the efficient year-round
production of planting material. Thus far, little is known about the factors and mechanisms involved
in the dormancy development of micropropagated herbaceous perennials, including rhubarb. This
study determined physiological and molecular changes in the Rheum rhaponticum (culinary rhubarb)
‘Raspberry’ planting material in response to photoperiod and temperature. We found that the
rhubarb plantlets that were grown under a 16-h photoperiod (LD) and a temperature within the
normal growth range (17–23 ◦C) showed active growth of leaves and rhizomes and did not develop
dormancy. Rapid growth cessation and dormancy development were observed in response to
a 10-h photoperiod (SD) or elevated temperature under LD. These morphological changes were
accompanied by enhanced abscisic acid (ABA) and starch levels and also the upregulation of various
genes involved in carbohydrate synthesis and transport (SUS3, AMY3, BMY3, BGLU17) and ABA
synthesis and signaling (ZEP and ABF2). We also found enhanced expression levels of heat shock
transcription factors (HSFA2 and HSFA6B), heat shock proteins (HSP22, HSP70.1, HSP90.2 and
HSP101) and antioxidant enzymes (PRX12, APX2 and GPX). This may suggest that dormancy
induction in micropropagated rhubarb plantlets is a stress response to light deficiency and high
temperatures and is endogenously coordinated by the ABA, carbohydrate and ROS pathways.

Keywords: ABA; antioxidant enzymes; heat stress; molecular analysis; rhubarb; starch; stress
response

1. Introduction

Culinary (garden) rhubarb (Rheum rhaponticum, syn. R. rhabarbarum; Polygonaceae)
is a perennial vegetable grown for its long fleshy petioles. Due to their high content
of phenolics (stilbenes, anthocyanins and flavonols), fruit acids and vitamins C and K,
they are a valued raw material for direct consumption and the food and pharmaceutical
industry [1–3]. Consumers and the food industry prefer red stalks for their taste and
health-promoting qualities. The red-stalked cultivars and valuable selections should be
propagated vegetatively to maintain desirable traits. Conventional propagation by crown
division gives a low yield of mother plants (2–6 propagules per plant each year) and the
risk of virus transfer. Tissue cultures from virus-indexed rhubarb plants are a valuable
alternative for the mass production of virus-free planting material. In vitro propagation
methods of culinary rhubarb have been demonstrated for different cultivars and selections,
including ‘Victoria’ [4], ‘Karpow Lipskiego’ [5], ‘Big Red’, ‘Cherry Red’ [6] and ‘Malinowy’
(‘Raspberry’) [7]. Thus far, little is known about the ex vitro growth of micropropagated

Int. J. Mol. Sci. 2023, 24, 607. https://doi.org/10.3390/ijms24010607 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24010607
https://doi.org/10.3390/ijms24010607
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-1092-1850
https://orcid.org/0000-0002-5900-5557
https://orcid.org/0000-0001-7511-6196
https://doi.org/10.3390/ijms24010607
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24010607?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 607 2 of 21

rhubarb plantlets. This stage is crucial due to the intensive growth of both above- and below-
ground organs (rhizomes). The plantlets with well-developed rhizomes and secondary
root systems show better growth in the plantation, higher resistance to different stresses
and, as a result, increased yield quantity and quality. Our previous study has indicated
dormancy induction in micropropagated rhubarb plantlets during ex vitro growth in the
greenhouse [8].

Bud dormancy is an important survival strategy to overcome periods with unfavorable
growth conditions, such as hot dry summers or cold winters [9,10]. Dormancy also occurs
frequently at different stages of micropropagation [11–13]. Some woody and herbaceous
perennials, including walnut, peony and magnolia, tended to develop dormancy during
acclimatization and early growth ex vitro [14–16]. It results in a poor survival rate of
plantlets and consequently restricts tissue culture application for the mass production of
planting material [17,18]. Knowledge of the dormancy development in micropropagated
plantlets is limited, and its control is essential in horticultural practice.

Temperature and photoperiod are the main environmental signals controlling the
seasonal dormancy cycle in perennials [9]. However, the species and cultivars vary signifi-
cantly in their responses to them. Shortening of the photoperiod (short days; SD) is widely
accepted as the primary regulator of growth cessation and winter dormancy induction
in many perennial plants of the temperate zone [19,20]. In some plant species, including
poplar, temperature modifies sensitivity to daylength signals [21,22]. In contrast, a low
temperature only is sufficient for growth cessation and dormancy induction in apples,
pears and Sorbus [23,24]. Evaluating how these key environmental factors affect the ex vitro
growth of rhubarb plantlets is extremely important in developing successful techniques for
the efficient year-round production of planting material.

The aim of the study was to determine the influence of photoperiod and tempera-
ture on the growth and dormancy development of micropropagated rhubarb ‘Raspberry’
plantlets. Physiological and molecular changes were evaluated to better understand the
mechanism of dormancy induction in the rhubarb planting material in response to environ-
mental signals.

2. Results
2.1. The Effect of Photoperiod and Temperature (Experiment 1)

The acclimatized plantlets of rhubarb ‘Raspberry’ derived from micropropagation
were grown with different photoperiods (16 h and 10 h) and temperatures (17 ◦C and
23 ◦C) for five months to determine the ex vitro growth of the planting material. We
observed intensive growth of the leaf petioles over the first month of growth in controlled
conditions. However, plantlets exposed to a 10-h photoperiod showed rapid growth
cessation and dormancy development (Figures 1–3). The daylength effect varied depending
on temperature (17 ◦C and 23 ◦C). At both temperatures, growth cessation in SD started
after one month. It was accompanied by a reduced number, length and mass of leaf petioles,
as well as rhizome and root system development. A lower temperature increased the rate
of SD-induced growth cessation and time (days) to dormancy induction/development.
At 17 ◦C, rapid leaf senescence was observed over the third month, and, at the end of
the fourth month, 100% of plantlets were leafless (Figure 2). At 23 ◦C, 50% of plantlets
continued growing after five months in SD, but the growth rate was significantly reduced.
In contrast, dormancy did not develop under LD, irrespective of temperature. However, at
23 ◦C, the fresh mass of leaf petioles and rhizomes was higher than at 17 ◦C (Figure 1).
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Figure 1. The effect of temperature (17 °C and 23 °C) and photoperiod (LD—long day, SD—short 
day) on ex vitro growth of micropropagated rhubarb ‘Raspberry’ plantlets after different growth 
periods (0, 1, 2, 3, 4 and 5 months) in the growth room. According to Duncan’s test (p = 0.05), the 
means marked with the same letter within each growth parameter do not differ significantly. Error 
bars represent standard deviation. 

 
Figure 2. Phenotypic characteristics of the rhubarb ‘Raspberry’ plantlets after different growth 
periods ((A)—2 months, (B)—3 months, (C)—4 months) in the growth room under different 
temperatures (17 °C and 23 °C) and photoperiods (16 h and 10 h); LD—long day, SD—short day. 

Figure 1. The effect of temperature (17 ◦C and 23 ◦C) and photoperiod (LD—long day, SD—short
day) on ex vitro growth of micropropagated rhubarb ‘Raspberry’ plantlets after different growth
periods (0, 1, 2, 3, 4 and 5 months) in the growth room. According to Duncan’s test (p = 0.05), the
means marked with the same letter within each growth parameter do not differ significantly. Error
bars represent standard deviation.

Int. J. Mol. Sci. 2023, 24, 607 3 of 21 
 

 

 
Figure 1. The effect of temperature (17 °C and 23 °C) and photoperiod (LD—long day, SD—short 
day) on ex vitro growth of micropropagated rhubarb ‘Raspberry’ plantlets after different growth 
periods (0, 1, 2, 3, 4 and 5 months) in the growth room. According to Duncan’s test (p = 0.05), the 
means marked with the same letter within each growth parameter do not differ significantly. Error 
bars represent standard deviation. 

 
Figure 2. Phenotypic characteristics of the rhubarb ‘Raspberry’ plantlets after different growth 
periods ((A)—2 months, (B)—3 months, (C)—4 months) in the growth room under different 
temperatures (17 °C and 23 °C) and photoperiods (16 h and 10 h); LD—long day, SD—short day. 

Figure 2. Phenotypic characteristics of the rhubarb ‘Raspberry’ plantlets after different growth periods
((A)—2 months, (B)—3 months, (C)—4 months) in the growth room under different temperatures
(17 ◦C and 23 ◦C) and photoperiods (16 h and 10 h); LD—long day, SD—short day.
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buds showed enhanced starch accumulation by 79.7% over the first month of growth 
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Figure 3. The effect of temperature (17 ◦C and 23 ◦C) and photoperiod (LD—long day, SD—short
day) on rhizome growth of rhubarb plantlets after three months of growth in the growth room.

2.1.1. Physiological Responses of the Underground Buds during Dormancy Induction

The content of soluble sugars and starch in the vegetative buds of the rhubarb ‘Rasp-
berry’ was determined to characterize the physiological changes that occurred during
five-month growth in the growth room under different photoperiods (16 h and 10 h) and
temperatures (17 ◦C and 23 ◦C).

In all treatments, the synthesis of soluble sugars was the lowest over the first month
of growth in controlled environments (Figure 4). In general, the buds’ highest content of
soluble sugars was observed under LD conditions and a higher temperature (23 ◦C). In this
treatment, the content of soluble sugars increased by 66.1% over the three months; it then
decreased but increased again over the fifth month. In response to SD, underground buds
showed enhanced starch accumulation by 79.7% over the first month of growth (Figure 4).
The starch content remained at a high level for three months. The lower temperature (17 ◦C)
accelerated starch accumulation and enhanced its level. Under SD conditions, enhanced
starch levels coincided with growth cessation and dormancy induction. When the plantlets
were grown with a 16-h photoperiod and temperature of 17 ◦C and 23 ◦C, the starch level
rose only at the end of the fourth month, and then decreased.
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Figure 4. Variation in the content of soluble sugars and starch in rhubarb buds during five months of
ex vitro growth under different temperatures (17 ◦C and 23 ◦C) and photoperiods (16 h and 10 h).
According to Duncan’s test (p = 0.05), means marked with the same letter do not differ significantly
(p = 0.05). Error bars represent standard deviation.

2.1.2. Expression Analysis of Dormancy-Related Genes in Plantlets during Ex Vitro Growth
under Different Photoperiods and Temperatures

The gene expression was analyzed during the five-month growth of rhubarb in the growth
room under different photoperiods (16 h and 10 h) and temperatures (17 ◦C and 23 ◦C).
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2.1.3. Expression of Genes Related to Carbohydrate Metabolism

As shown in Figure 5, SD was an essential factor affecting sucrose synthase 3 (SUS3)
expression levels. The relative expression of this gene was upregulated, reached the
maximum value after four months of growing at 23 ◦C and 17 ◦C and was almost 9.2-fold
and 8.8-fold higher, respectively, than in the control. In LD conditions, the expression of
the SUS3 gene peaked over the third and fifth month of growth at 23 ◦C and at the end of
the first month at 17 ◦C. The expression of the starch synthase 3 (SS3) gene was enhanced
rapidly over the first month of growth in SD, decreased, and then peaked again over the
third month (23 ◦C) and fourth month (17 ◦C). In contrast, LD conditions resulted in low
SS3 levels at the beginning of growth ex vitro, and the highest expression levels were
obtained at the end of the third month of growth at both temperatures. Among the starch
amylase genes examined, α-amylase (AMY3) was drastically downregulated under a 16-h
photoperiod and lower temperature. In turn, β-amylase 3 (BMY3) was downregulated under
a 16-h photoperiod and 23 ◦C. The gene of β-glucosidase (BGLU17), related to carbohydrate
transport, was upregulated by both photoperiod and temperature (Figure 5).
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Figure 5. The relative expression of the genes involved in carbohydrate metabolism in rhubarb
buds during five months of ex vitro growth under different temperatures (17 ◦C and 23 ◦C) and
photoperiods (16 h and 10 h). According to Duncan’s test (p = 0.05), means marked with the same
letter do not differ significantly (p = 0.05). Error bars represent standard deviation.

2.1.4. Expression of Genes Related to Abscisic Acid Metabolism

The genes involved in ABA syntheses, such as zeaxanthin epoxidase (ZEP) and 9-cis-
epoxycarotenoid dioxygenase 3 (NCED3), showed higher expression levels in the SD than
LD conditions. In the short photoperiod, the ZEP was enhanced over the second month
and remained high until the experiment’s end, but at different expression levels for each
temperature. The NCED3 gene was significantly upregulated over the second and third
months only. In the LD condition, the expression of ZEP was enhanced over the third
month at 23 ◦C, and then decreased. The gene ABA 8′-hydroxylase (CYP707A1), related to
ABA catabolism, was strongly downregulated during five months of growth in SD and
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at a low temperature (17 ◦C). However, LD conditions and a low temperature increased
the expression level of CYP707A1 2.5-fold over the third month of growth. In contrast, LD
and a low temperature resulted in decreased expression levels of ABF2, the gene of the
ABA signaling pathway. Under SD, this gene was upregulated rapidly during dormancy
induction (after two months) and establishment at 17 ◦C. Another gene (PP2C49) that was
involved in the ABA signaling pathway showed upregulated levels at the end of the fifth
month in plantlets grown in LD and at 23 ◦C (Figure 6).
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Figure 6. The relative expression of the genes involved in abscisic acid metabolism in rhubarb buds
during ex vitro growth under different temperatures (17 ◦C and 23 ◦C) and photoperiods (16 h
and 10 h). According to Duncan’s test (p = 0.05), means marked with the same letter do not differ
significantly (p = 0.05). Error bars represent standard deviation.

2.1.5. Expression of Genes Related to Antioxidant Metabolism

The genes involved in the antioxidant reaction, such as peroxidase 12-like (PRX12),
ascorbate peroxidase (APX2), glutathione peroxidase (GPX) and catalase 2 (CAT2), were upreg-
ulated rapidly in response to SD (Figure 7). The highest expression levels of these genes
were observed after the second month, and they then decreased strongly over the follow-
ing months. This coincided with growth cessation and dormancy induction in rhubarb
plantlets. Under LD conditions, the highest activity was recorded for GPX and APX2 in
plantlets growing at 23 ◦C, but it rose after the third and fifth month and was not correlated
with growth inhibition.
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2.1.6. Expression of Genes Related to Heat Stress

As shown in Figure 8, SD was an essential factor affecting the expression levels of
HSP22 and HSP70.1—heat shock proteins—and HSFA2—heat stress transcription factor.
The expression of HSP22 was enhanced rapidly over the second month and increased until
the end of the fifth month, reaching a value 5.3-fold higher than that of the control (Figure 8).
The expression level of HSFA2 significantly increased over the second month, remained at
a high level until the end of the third month and then gradually decreased. The expression
of the HSP70.1 gene started to increase over the first month, was enhanced rapidly until
the end of the third month, reaching a value almost 7.0-fold higher than in the control,
and then slowly decreased. The HSP70.1 gene showed also significant up-regulation in
response to LD and a higher temperature (23 ◦C). In these conditions, the expression of the
HSP70.1 gene was enhanced rapidly over the first month and was enhanced until the end
of the third month; it then decreased, but peaked again over the fifth month (Figure 8).
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2.2. The Effect of LD and Increased Temperature (Experiment 2)

The acclimatized rhubarb plantlets were transferred to the greenhouse in early March.
The effects of LD and natural temperatures in a greenhouse during a period of four months
on the growth and quality of the plantlets were evaluated. The daily average/maximum
temperature was 17.8/21.4 ◦C, 20.1/23.1 ◦C, 22.4/28.9 ◦C and 28.0/34.3 ◦C in March, April,
May and June, respectively.

After the short adaptation period (1–2 weeks) to the greenhouse conditions, the
rhubarb plantlets showed intensive growth of leaves and rhizomes (Figure 8). The highest
increase in leaf petioles and blades was observed in April, at the end of the second month
of growth in the greenhouse. However, the leaf number decreased. This resulted from the
death of the oldest leaves developed in vitro. In May, when the maximum temperature
increased to 28.9 ◦C (for four days), the growth rate slowed and leaf senescence was
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induced. A further increase in temperature in July resulted in a rapid increase in leaf
senescence (Figures 9 and 10) and dormancy development. At the end of June, most of the
leaves (80%) were yellow.
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Figure 10. Ex vitro growth of micropropagated rhubarb plantlets after different growth periods in a
greenhouse; from the left, after 1, 2, 3 and 4 months of growth in the greenhouse.

2.2.1. Physiological Responses of the Underground Buds during Dormancy Induction

To characterize the physiological changes that occurred during growth under a long
day and natural temperature in the greenhouse from early March to the end of June, the
content of soluble sugars, starch and abscisic acid (ABA) in the buds was determined.

During growth in the greenhouse, there was more starch than soluble sugars in
the rhubarb buds (Figure 11). In general, the levels of carbohydrates increased over the
three months of growth in the greenhouse and remained constant until the end of the
experiment. At the end of May, 50% more starch than soluble sugars was found in the buds.
In addition, our research found that rhubarb buds had high levels of abscisic acid already
in the early stages of growth in the greenhouse. The high ABA content remained constant
for three months, and then rapidly decreased over June. This coincided with dormancy
establishment in the rhubarb plantlets.
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Figure 11. The effect of a long day and natural temperature in the greenhouse from early March
to the end of June on the carbohydrate and ABA content of micropropagated rhubarb ‘Raspberry’
plantlets. Means indicated with the same letter within each carbohydrate and ABA do not differ
significantly (p = 0.05) according to Duncan’s test. Error bars represent standard deviation.

2.2.2. Expression Analysis of Dormancy-Related Genes in Plantlets during Ex Vitro Growth
in the Greenhouse

The gene expression was analyzed after 1, 2, 3 and 4 months of growth under a long
day and at a natural temperature in the greenhouse from early March to the end of June.

2.2.3. Expression of Genes Related to Carbohydrate Metabolism

As shown in Figure 12, the sucrose synthase 3 (SUS3) gene was upregulated rapidly
and reached the highest level at the end of April, and then its level decreased. The starch
synthase 3 (SS3) gene was drastically upregulated over the second month of growth in
the greenhouse and remained at a high expression level until the end of June. Among
the starch amylase genes examined, α-amylase (AMY3) was drastically upregulated at the
end of March and then rapidly decreased. However, the expression of β-amylase 3 (BMY3)
was upregulated gradually and reached the highest level at the end of May. The relative
expression level of the β-glucosidase (BGLU17) gene, related to carbohydrate transport and
metabolism, peaked at the end of May. It then drastically decreased over the next month of
growth of rhubarb plantlets in the greenhouse.
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2.2.4. Expression of Genes Related to Abscisic Acid Metabolism

The expression levels of the ZEP and ABF2 genes, involved in ABA synthesis and
signaling, increased over the three months of growth of rhubarb plantlets in the greenhouse,
and then decreased (Figure 13). Another gene related to ABA biosynthesis, 9-cis-epoxycarotenoid
dioxygenase 3 (NCED3), was upregulated rapidly over March, and then its expression level
remained constant until the end of April, and finally it decreased again. The genes involved
in ABA catabolism—ABA 8′-hydroxylase (CYP707A1)—and signaling—phosphatase PP2C49—
showed the highest expression levels after the first month of growth in the greenhouse, and
then decreased rapidly.
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2.2.5. Expression of Genes Related to Antioxidant Metabolism

As shown in Figure 14, the expression levels of genes involved in the antioxidant
reaction, such as peroxidase 12-like (PRX12), glutathione peroxidase (GPX) and catalase 2 (CAT2),
were low in March and April in plantlets grown in the greenhouse, but increased rapidly
in May, reaching maximum values being 11.0-, 4.0- and almost 2.0-fold higher than in the
controls, respectively, and they then quickly decreased in June. The ascorbate peroxidase
(APX2) gene was upregulated rapidly in April, remained at a high expression level until
the end of May and then its level also decreased.
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Duncan’s test (p = 0.05), means marked with the same letter do not differ significantly (p = 0.05). Error
bars represent standard deviation.

2.2.6. Expression of Genes Related to Heat Stress

As shown in Figure 15, the expression levels of genes related to heat stress, such as
heat shock proteins HSP22, HSP70.1 and HSP90.2, increased in May, reaching maximum
values that were 12.0-, 7.0- and 5.0-fold higher than in controls, respectively, and they then
decreased over the last month. The expression level of HSP101 significantly increased
over the four months of growth of plantlets in the greenhouse, reaching the maximum
values in June, being almost 12.0-fold higher than in the control. However, the expression
levels of two heat shock proteins, HSP70.2 and HSP90.1, were lower than or comparable
to the control. The expression levels of heat stress transcription factors, such as HSFA2
and HSFA6B, increased in May, reaching maximum values 4.0- and 2.1-fold higher than in
controls, respectively, and then decreased over the next month.
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3. Discussion

The unique conditions during in vitro culture (aseptic conditions, high humidity, low
irradiance, sufficient sugar and nutrients to allow heterotrophic growth) result in the forma-
tion of plantlets that differ in terms of morphology, anatomy and physiology from naturally
growing plants. After ex vitro transfer, the in-vitro-derived plant material is very sensitive
to various abiotic and biotic stresses [25,26]. Many herbaceous and woody perennials have
developed dormancy to survive under unfavorable growth conditions [9,10,27]. Dormancy
is a highly regulated and complex process and is subject to the influences of many internal
and external signals. Thus far, little is known about factors that induce the dormancy of
micropropagated planting material.

This study showed that micropropagated rhubarb ‘Raspberry’ plantlets are very sensi-
tive to the photoperiod. The plantlets exposed to a 10-h photoperiod and a temperature
within the normal growth range (17–23 ◦C) showed impaired growth of leaves and rhi-
zomes, rapid leaf senescence and dormancy development. We did not evaluate the effect of
low temperatures. Nonetheless, faster growth cessation and dormancy development at a
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temperature of 17 ◦C compared to 23 ◦C suggest the interaction of the photoperiod and
temperature in dormancy induction in rhubarb plantlets. Similarly, in the dormancy model
of plant leafy spurge, endodormancy was initiated by a decrease of the photoperiod and
temperature [28]. Authors indicated that the changes occurring in controlled environments
are similar to those under natural field conditions during the transition from summer to
fall in the northern hemisphere [29].

In rhubarb plantlets, dormancy did not develop under LD and temperatures within
the normal growth range (17–23 ◦C). However, the increased temperature during the
greenhouse growth (in May) resulted in rapid growth cessation, leaf senescence and en-
dodormancy development. Cooling treatment was required for the regrowth of dormant
rhizomes of rhubarb ‘Raspberry’ [8]. It is known that an elevated temperature (heat stress,
HS) is a significant factor limiting crop productivity and adaptation, especially when ex-
treme temperatures coincide with the critical stage of plant growth [30,31]. Similarly to
most plants from temperate climates, rhubarb has an optimum temperature of 20–25 ◦C for
vegetative growth in the field. The yield and quality of rhubarb decrease when the average
summer temperatures rise above 27–32 ◦C, but the plants develop endodormancy in the
autumn (September—October in Poland) [8,32]. Similarly, in many fruit trees, growth ces-
sation often occurs in summer under an increased photoperiod and temperature, whereas
the establishment of endodormancy occurs in late autumn, when the days become shorter
and the temperature lower. The rapid endodormancy development in micropropagated
rhubarb plantlets was probably a result of their higher sensitivity to stress as compared
to mature plants. Many reports showed that plants respond to adverse environmental
conditions through numerous morphological, physiological, biochemical and molecular
changes. However, adaptation mechanisms may differ depending on the environmental
signals, developmental stage and genotype [10,33].

Changes in carbohydrate content are an important physiological marker of plant
dormancy. Perennial plants exhibit strong fluctuations between dormancy stages in the
rate of soluble sugars and starch production. Sugars provide cell activity energy and act
as signaling molecules that regulate plant growth and development [34]. In many plant
species, short days and low temperatures during autumn cause a shift in the allocation
of fixed C away from soluble sugars toward starch, which acts as a reserve to support
metabolism and growth [29,35,36]. Similarly, we observed a clear relationship between
starch accumulation in the buds and the dormancy induction of rhubarb plantlets. The
starch levels were enhanced rapidly in response to SD and high temperatures, and it was
consistent with the increased expression of starch synthase 3 (SS3) and downregulation of the
α-amylase (AMY3) and β-amylase 3 (BMY3) genes. However, after dormancy establishment
in SD, the shift from starch to soluble sugars and the enhanced expression of the gene
sucrose synthase 3 (SUS3) were observed. These results agree with those of leafy spurge
crown buds [29]. It has been demonstrated that sucrose may contribute to plant thermal
adaptation by providing energy and also acting as a regulatory signal [37]. On the other
hand, in the greenhouse conditions, the high starch levels in the rhubarb buds remained
constant until the end of the experiment. Moreover, upregulation of BGLU17, involved
in sugar transport, was also observed in the rhubarb buds. This suggests high metabolic
activity over the endodormancy development process in rhubarb. Similar results have
been reported in other plant species, including Euphorbia esula, Paeonia lactiflora and Prunus
mume [36,38,39].

Plant hormones have been shown to be the most significant internal mediators in the
control of dormancy development in woody and herbaceous perennials [9,10]. Among
them, a crucial role in dormancy regulation is played by ABA. Moreover, it regulates many
aspects of plant growth and development and is a vital messenger of stress responses [40,41].
ABA levels are increased in response to environmental signals such as low temperatures or
shortened photoperiods [42]. They trigger dormancy induction in different plant species,
such as Vitis vinifera, Prunus persica, Pyrus pyrifolia and Paeonia lactiflora [39,40,43,44]. In this
study, SD and above-optimal temperatures induced the expression of ABA biosynthesis
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genes (ZEP and NCED3) and decreased ABA catabolism (CYP707A1). In the case of the
plants grown in the greenhouse, the changes in ABA metabolism genes coincided with the
increased levels of ABA and the transition of rhubarb plants from para- to endodormancy.
In turn, genes involved in ABA signaling (ABF3 and PP2C49) were upregulated in response
to stress conditions (SD or increased temperature), as well as normal growth conditions (LD,
optimal temperature). This indicates that ABA is essential in adapting micropropagated
rhubarb plantlets to ex vitro growth. There is increasing evidence that ABA mediates the
adaptation of plants to different stresses through modification of the expression status of
numerous genes, including genes involved in sucrose transport and metabolism [42]. For
example, ABA promotes starch accumulation in grape buds by increasing the expression of
starch biosynthesis genes SS1 and SS3 and inhibiting genes related to starch metabolism
(INVs) and sucrose synthesis (SUPs) [45]. Similarly, we observed increased ABA and starch
levels in the rhubarb buds. Additionally, ABA is related to ROS generation in guard cells
through the process of respiratory burst oxidase homolog (RBOH) regulation [46]. It may
also improve plants’ tolerance to stress by regulating activity of the heat shock transcription
factors (HSFs) and heat shock proteins (HSPs) [47]. For example, in wheat, exogenous
ABA enhanced the expression of HSP101 [48]. During the dormancy induction of rhubarb
plantlets in the greenhouse, a correlation between the level of ABA and expression of HSPs
and HSFs was observed. However, the detailed mechanisms await further investigation.

HFS and HSP are crucial elements of the heat shock response (HSR), a rapid response
mechanism that protects plants against elevated temperatures and other stresses [49]. Their
importance in the adaptation to adverse growth conditions, such as significantly elevated
temperatures, was reported for different plant species, including Sorbus [50], tomato [51],
maize [52], rice [53] and wheat [54–56]. Plants possess a complex regulatory network
consisting of multiple HSF and HSP genes. Upon heat stress, HSPs are rapidly induced
through the transcriptional activity of heat stress transcription factors (HSFs). We found
that the increased temperature in the greenhouse resulted in the significant up-regulation of
HSP22, HSP70.1, HSP90.2 and HSP101, as well as HSFA2 and HSFA6B. In addition, SD was
an essential factor affecting the expression levels of the HSP22, HSP70.1 and HSFA2 genes
in the rhubarb buds. However, their expression patterns varied according to the stage of
dormancy development in the rhubarb buds. Crosstalk between HSFs and HSPs has been
described in many papers, especially for the model plant Arabidopsis thaliana [31,57,58].

Under abiotic stresses, plants usually produce reactive oxygen species (ROS), which
have the potential to cause oxidative damage to cells. Nevertheless, many studies have
revealed ROS’s importance as a signaling molecule in mediating responses to environmen-
tal stresses [59]. Antioxidants (e.g., ascorbic acid and glutathione) and ROS-scavenging
enzymes (e.g., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase
(GPX)) are essential for ROS detoxification [60]. It is believed that enhanced activity of the
antioxidant system is positively correlated with high tolerance against different abiotic
stresses [27,31,61]. In the present work, the genes of peroxidase 12-like (PRX12), ascorbate
peroxidase (APX2) and glutathione peroxidase (GPX) showed significant upregulation in re-
sponse to enhanced temperatures. In turn, SD activated PRX12, APX2 and catalase 2 (CAT),
but their expression levels were lower than in plantlets growing in greenhouse conditions
(LD and above-optimal temperature). During the ex vitro growth of micropropagated
rhubarb plantlets, the enhanced expression levels of antioxidant enzymes coincided with
growth cessation and dormancy induction. After dormancy establishment, genes involved
in the antioxidant reaction were rapidly downregulated. Mala et al. [62] reported that in
Rheum australe, the enhanced activity of different antioxidant enzymes in response to low
temperatures may play an essential role in its adaptation to growth on the grassy or rocky
slopes of the Himalayas.

To summarize, dormancy induction in micropropagated rhubarb plantlets is a stress
response to unfavorable growth conditions, such as SD and high temperatures. This study
showed that the dormancy of rhubarb plantlets is an adaptation strategy coordinated
endogenously by the ABA, carbohydrate and ROS pathways. Knowledge of the factors



Int. J. Mol. Sci. 2023, 24, 607 15 of 21

affecting the ex vitro growth of micropropagated plantlets and the mechanism involved
in the response to them is fundamental in the development of the successful techniques
for the efficient year-round production of high-quality planting material. The results of
our research can be applied to other recalcitrant herbaceous and woody plant species to
improve their acclimatization and growth ex vitro.

4. Materials and Methods
4.1. Plant Material

Micropropagated planting material of a selected genotype of rhubarb ‘Raspberry’
(Polish name ‘Malinowy’) characterized by high content of anthocyanins-cyanidin-3-O-
rutinoside and cyanidin-3-O-glucoside was used for the study. In vitro shoot cultures were
established and multiplicated by axillary shoot growth stimulation [7]. For acclimatization,
rooted shoots were transplanted to a mixture of peat bedding substrate TS1 (Klasmann-
Deilmann, Warsaw, Poland) and perlite (2:1) and placed in the growth room (23 ± 2 ◦C;
PPFD—50 µmol m−2 s−1) in plastic plug boxes covered with transparent plastic caps
to prevent dehydration. The plantlets were hardened by gradually decreasing the air
humidity. After six weeks of acclimatization, the rhubarb plantlets were placed in pots of
7 cm diameter and were used for experiments.

4.2. Ex Vitro Growth and Dormancy Induction of Plantlets

The effects of temperature and photoperiod on the growth and dormancy induction of
micropropagated rhubarb plantlets were examined.

Experiment 1 was conducted in the growth room (phytotron). The rhubarb plantlets
were exposed to a combination of temperatures (17 ± 1 ◦C and 23 ± 1 ◦C) and day lengths
(10 h and 16 h) for five months. Light intensity of approximately 80 µmol m−2 s−1 was
provided by white LED tubes (6500 K). After 1, 2, 3, 4 and 5 months, plantlets’ growth
(number, length and mass of leaf petioles, and rhizome mass) was determined.

The second part of the study (Experiment 2) was carried out from early March to the
end of June in a greenhouse at the National Institute of Horticultural Research, Skierniewice,
Poland (WGS-84: 51.96143 N, 20.15032 E). The plantlets were grown at a natural tem-
perature and under a 16-h photoperiod. In March and April, the natural daylight was
supplemented with LED lighting at PPFD 125 µmol m−2 s−1. The daily average/maximum
temperature was 17.8/21.4 ◦C, 20.1/23.1 ◦C, 22.4/28.9 ◦C and 28.0/34.3 ◦C, respectively, in
March, April, May and June.

In both experiments, plantlets were manually watered as needed to maintain adequate
soil moisture. Plants were fed weekly with 0.1% Kristalon (Yara, Oslo, Norway) containing
18:18:18 (v/v/v) NPK. After 1, 2, 3 and 4 months, plantlets’ growth (number and length
of leaf petioles, leaf area) and quality (yellow leaves) were determined. Every month, ten
plantlets were selected randomly and pooled to determine the content of soluble sugars,
starch, abscisic acid and gene expression in the underground buds.

4.3. Measurements of Soluble Sugar Content

The rhubarb buds were frozen immediately after collection, and then lyophilized and
homogenized. Then, bud samples (approximately 20 mg) were extracted with 1.5 mL of
80% aqueous ethanol and centrifuged at 833× g for 10 min. The amounts of total soluble
sugars were estimated by the phenol–sulfuric method [63]. The supernatant was mixed
with 5% phenol and 96% sulfuric acid. The absorbance (λ = 490 nm) of the samples was
measured spectrophotometrically (Thermo Electron Corporation, Waltham, MA, USA,
type Evolution 300 BB). The amounts of soluble sugars were determined against a glucose
standard and expressed in grams per 100 g of dry mass (DM) plant tissue.

4.4. Measurements of Starch Content

Starch was determined in pellets remaining after soluble sugar analysis using a Megazyme
Total Starch Assay Kit (Neogen, Lansing, MI, USA). The pellets were rinsed with ethanol,
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and then 3 mL of thermostable alpha-amylase solution (1/30; alpha-amylase/sodium acetate
buffer, pH 5.0) was added. The samples were vortexed and placed in a boiling water bath
for 12 min. The samples were allowed to cool before 100 µL of amyloglucosidase solution
was added, and the samples were placed in a 50 ◦C water bath for 30 min. The supernatant
was mixed with glucose determination reagent (GOPOD Reagent, Neogen, Lansing, MI,
USA) and incubated at 50 ◦C for 20 min. The absorbance (λ = 510 nm) of the samples
was measured spectrophotometrically (Thermo Electron Corporation Waltham, MA, USA,
type Evolution 300 BB). The percentage of starch was directly calculated following the
Megazyme equation based on the measured absorbance values. The analyses of the starch
were performed in triplicate.

4.5. Quantification of Abscisic Acid

The lyophilized bud samples (approximately 25 mg) were extracted with a 1 mL mix-
ture of methanol/water/formic acid (15/4/1; v/v/v) according to Dobrev and Kaminek [64],
with modifications by Stefancic et al. [65]. An internal isotopic standard mixture of deuter-
ated IAA, SA and ABA was added to each sample. The extract was then centrifuged, the
supernatant was collected, and the extraction procedure was repeated. The combined super-
natant was dried and reconstituted in 1 mL 1 M formic acid. This extract was fractionated
with an SPE column, the Oasis MCX 1cc/30 mg (Waters, Milford, MA, USA), with 1 mL
methanol, evaporated to dryness and reconstituted in 50 µL methanol. Samples prepared
in this manner were analyzed on a HPLC column, the Supelco Ascentis RP-Amide (Saint
Louis, MO, USA) (7.5 cm 9 4.6 mm, 2.7 µm). Mobile phases were 0.1% formic acid solution
in water (solvent A) and acetonitrile/methanol (1/1) mixture. Gradient elution was applied
under the flow rate of 0.5 mL/min. The HPLC apparatus was an Agilent Technologies 1260
equipped with an Agilent Technologies 6410 Triple Quad LC/MS with ESI (Electrospray
Interface, Agilent Technologies, Santa Clara, CA, USA). The two most abundant secondary
ions were monitored (MRM—multiple reaction monitoring modes). The primary ion for
ABA (m/z 265.2) was used for quantification (quantifier ion), whereas the second (m/z
167.1) was used for additional identity confirmation (qualifier ion). Ten-point calibration
curves were prepared for the analyzed compounds.

4.6. Molecular Analysis

Molecular studies included the expression analysis of genes related to carbohydrate,
ABA and antioxidant metabolism and signal transduction pathways, as well as genes
related to heat stress. According to Chang et al. [66], RNA was extracted to examine the
expression of genes. DNA traces were removed from RNA samples by digestion with
RQ RNase-Free DNase (Promega, Madison, WI, USA). Then, RNA samples were purified
using the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the protocol for RNA
clean-up. The concentration and purity of the total RNA were examined using an Epoch
spectrophotometer (BioTek, Highland Park, VT, USA) in duplicate. From each sample, 1 µg
of RNA was reverse-transcribed using M-MLV reverse transcriptase (Promega, Madison,
WI, USA) and oligo (dT)15 primer (Promega, Madison, WI, USA) in a 25 µL reaction volume.
Obtained cDNA samples were used for the gene expression analysis, performed using
the quantitative real-time PCR (qRT-PCR) technique with specific primers. Sequences of
the primers are presented in Table 1 [31,39,57,62,67,68]. Relative expression was based
on the expression of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene, which
was applied as a reference gene [62]. Quantitative RT-PCR was carried out in a Rotorgene
6000 machine (Corbett Research, Bath, United Kingdom) using the KAPATM SybrFast
qPCR Master Mix (Kapa Biosystems, Amsterdam, The Netherlands), according to the
manufacturer’s instructions, in a total volume of 20 µL and with 1/10 cDNA dilution for
each tested sample. The annealing temperature for all primers was 58–60 ◦C, depending
on the primer. Four ten-fold dilutions of cDNA were run with the analyzed samples to
calculate the standard curve (correlation coefficient > 0.99) and the PCR efficiency. The
relative quantification of the mRNA levels of tested genes was obtained from the standard
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curve and normalized to the reference gene and control sample. Fold change was calculated
using the standard 2−∆∆CT method.

Table 1. Sequences of the primer pairs used for the real-time PCR analysis.

Gene Sequence

SUS3
5′-TCGAAATTGGAGCGTCGTGA-3′

5′-CAGTTTTCACCAAGTCGCGG-3′

SS3
5′-GGCTCGGCTTGTTCTAACCT-3′

5′-TGTGTCAGTCCACATGGCTC-3′

AMY3
5′-CAGCGGTCTTCTTCGACCAT-3′

5′-GCCCTGGTCCGATCTTCATT-3′

BMY3
5′-CAGGTACGAGGCTATCGCAG-3′

5′-TCAGGTGATTGGTGCTCGTC-3′

BGLU17
5′-GAACTCAGCCACTGAGCCAT-3′

5′-GAGTTGGACTGTAGCGGCAT-3′

ZEP
5′-GGCACAAGGGATCACGAACT-3′

5′-CCTTGGAGGAGAATCGAATGG-3′

ABF2
5′-TCGTTGACTCTGCCTCGAAC-3′

5′-CCTGAGCCACCTGAGACAAG-3′

CYP707A1
5′-CACTGAAGAGCAAGAGGCTATA-3′

5′-TTCTTGGTATCTGCCCAACTC-3′

PP2C49
5′-GATCGACGACCTATCCATGCA-3′

5′-GGTCCTCCATGGCCATCA-3′

NCED3
5′-TCGAAGCAGGGATGGTCAAC-3′

5′-CCTGAGACTTTAGGCCACGG-3′

PRX12
5′-ATTGCTTCGTTCAGGGATGTG-3′

5′-TCGATCGCTTCCTGTCTCAA-3′

APX2
5′-GGTGCCACAAGGAGCGTTCAG-3′

5′-AAGAGCCTTGTCGGTTGGTAGTTG-3′

GPX
5′-CAGCCTGAGGTTCGAGCATT-3′

5′-CACATCATTGCCACGAGCAT-3′

CAT2
5′-CCGGTGTTCAGACTCCTGTC-3′

5′-AAGAGCGTGGACCATGTCAG-3′

HSP22
5′-TGCTATCCGATCTCTGGCTAGACC-3′

5′-GGAGACAGAGCCACGCTTGTG-3′

HSP70.1
5′-TGTTGGACATTGACCTCTCTCT-3′

5′-CGTCATCGTAGCTAAACTGGT-3′

HSP70.2
5′-TCATTGGTGACCCCTTTCTCT-3′

5′-TCACATTTCTTCGAAGCTTTGTT-3′
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Table 1. Cont.

Gene Sequence

HSP90.1
5′-TGGTTCTGAAAACTTCTAATATGTCG-3′

5′-TGACACAAACCCAACCCTAGA-3′

HSP90.2
5′-GGACTCACCGTGCTGTCTTGTAAC-3′

5′-ACTTGTCGTTCTTGTCTGCGTCAG-3′

HSP101
5′-AGGCAGGACAGTCGATTTCA-3′

5′-CCACAATCTCGTCAAGCCTG-3′

HSFA2
5′-ATCATGGTGTGCTTGTAGCTGAGG-3′

5′-AACGTCATCATCTGCTGCTGTCTC-3′

HSFA6B
5′-ATCGAAGAGGCGATCAGCA-3′

5′-TGAGGATGAGGCTGCAACA-3′

GAPDH
5′-CTCAATGACGGCCACACAGA-3′

5′-ACCAGTGCTGCTGGGAATG-3′

4.7. Statistical Analysis

The data were subjected to a three-factor (Experiment 1) and one-factor (Experiment 2)
analysis of variance (ANOVA). The significance of the differences between means was
evaluated by Duncan’s test at p = 0.05.

All the gene expression data were analyzed by using the Rotor-Gene 6000 Series Software
1.7 (Corbett Research, Bath, United Kingdom). Quantitative RT-PCR data represented the
medium of at least two independent biological replications, with each performed using three
technical repetitions. Standard deviation represents the variation between the biological
repetitions. Microsoft Office 365 (Redmond, WA, USA) was used for figure construction.
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