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Abstract: Caffeic acid belongs to the polyphenol compounds we consume daily, often in the form
of coffee. Even though it is less explored than caffeic acid phenethyl ester, it still has many positive
effects on human health. Caffeic acid can affect cancer, diabetes, atherosclerosis, Alzheimer’s disease,
or bacterial and viral infections. This review focuses on the molecular mechanisms of how caffeic
acid achieves its effects.
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1. Introduction

When we drink coffee (even the one without caffeine) or red wine, we consume a
molecule with highly diverse and interesting effects on our health: a natural polyphenolic
compound called caffeic acid. A heavy coffee drinker can consume up to 500 mg of caffeic
acid per day; people who do not drink coffee consume up to 25 mg of caffeic acid [1].
However, coffees (and red wine) are not the only sources of caffeic acid in our diet. Many
other plant products contain caffeic acid, including apples, plums, lingonberries, black
chokeberries, and many herbs of the mint family, e.g., sage, thyme, oregano, marjoram,
oregano, or spearmint [1]. Black chokeberries seem to be the most potent source of caffeic
acid (645 mg/100 g of dry weight). In comparison, the caffeic acid content in coffee ranges
from 9 to 14 mg/100 g [2] or up to 87 mg/100 g, according to [1]. Other sources of caffeic
acid are its naturally occurring esters: chlorogenic acid [3], rosmarinic acid [4], and caffeic
acid phenethyl ester [5].

Unlike the information about caffeic acid content in various food, data about caffeic
acid plasma levels in humans are scarce. It seems that both caffeic acid absorption and
metabolism are fast [6], and 1 h after consuming 300 mL of red wine, the caffeic acid level
reached a concentration of 28 nM [7].

The structure of caffeic acid (aromatic core, conjugated double bond, and hydroxyl
groups) allows it to function as an antioxidant, but its effects are far from limited only to
that. The published data show effects on various types of cancers, diabetes, obesity, and
neurodegenerative diseases like Alzheimer’s or Parkinson’s. This review focuses on the
mechanisms of those caffeic acid effects.

2. Caffeic Acid as an Antioxidant

The antioxidant effects of caffeic acid play an essential role in many beneficial effects
on human health. Khan and coworkers summarized the antioxidant effects of caffeic
acid against various types of free radicals supremely [8]. Therefore, we will mention the
antioxidant (and prooxidant) effects of caffeic acid only briefly.

Caffeic acid consists of an aromatic core substituted in position 1 with an unsaturated
three-carbon chain containing a carboxylic group and in positions 4 and 5 with two hydroxyl
groups. It belongs to the so-called hydroxycinnamic acid group: aromatic acids with a
C6–C3 skeleton. Caffeic acid’s structure represents an effective trap for radicals; the
combination of an aromatic core with a conjugated side chain (Figure 1) allows for an easy
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delocalization of unpaired electrons. By giving hydrogen to quench the radicals, caffeic acid
serves as a primary antioxidant [9]. The hydroxyl group in the paraposition towards the
side chain stabilizes free electrons even better. Another way how caffeic acid works as an
antioxidant is by chelating the metals with its two hydroxyl groups. Metal ions decompose
peroxide into free radicals. By preventing them from doing it, caffeic acid functions as a
secondary antioxidant [9].
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Nevertheless, the chelating ability of caffeic acid is also responsible for its occasional
pro-oxidant ability. After chelating Cu2+, the Cu2+ can be reduced to Cu+. That leads to
a cascade of reactions, which produce, among others, superoxide radicals and hydroxyl
radicals [10]. A large amount of endogenous copper in the human body occurs in, e.g.,
lymphocytes. Therefore, the combination of caffeic acid and endogenous copper ions can
result in oxidative damage, e.g., DNA breaks [11].

Caffeic acid also prevents the formation of reactive oxygen species (ROS) by inhibiting
5-lipoxygenase. This enzyme turns arachidonic acid into leukotrienes and participates in
forming ROS [12].

3. Caffeic Acid and Cancer

Multiple studies exist that describe the antiproliferative effect of caffeic acid against
various types of cancer cells. Caffeic acid can affect cancer cells alone or in combination
with anticancer drugs, which could decrease the anticancer drug dose or help prevent or
overcome resistance against those drugs.

3.1. Cancer Prevention

Cooking meat, especially well-done meat, forms heterocyclic amines [13], compounds
that act as mutagens and carcinogens [14]. Caffeic acid can inhibit the synthesis of some
of them, e.g., PhIP (2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine), which occurs in
heated protein-rich food [15]. Caffeic acid probably reacts with phenylacetaldehyde, an
intermediate product in PhIP synthesis [16]. Caffeic acid also increased the efflux of PhIP
into the intestine lumen by upregulation of ABC transporters p-glycoprotein and breast
cancer resistance protein (BCRP) in the apical membrane of the intestine cells [17].

3.2. Liver Cancer

Liver cancer is the sixth most common cancer in the world [18], and hepatocellular
carcinoma represents the most-diagnosed type among liver cancer cases [19]. Besides
chronic hepatitis B and hepatitis C virus infection, its risk factors also include obesity,
tobacco, and alcohol usage, and its incidence is generally increasing [19]. One reason for
this cancer type’s relatively high morality is that hepatocellular carcinoma responds poorly
to treatment due to its high vascularization [20]. The key molecule responsible for angiogen-
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esis in hepatocellular carcinoma cells is a vascular endothelial growth factor (VEGF);both
hypoxia-inducible factor 1α (HIF-1α) and pro-inflammatory NF-κB upregulate the expres-
sion of VEGF [21,22]. In hepatocellular carcinoma HepG2 and HCC97Hcells, caffeic acid
(20 µM) reducedJNK-1-mediated stabilization of HIF-1α and, in this way, decreased the
level of active HIF-1α available [21]. In HepG2 cells, caffeic acid (100 µM) inhibited the
activity of NF-κB/IL-6/STAT3 signaling, which decreased the expression of VEGF [23]. It
also inhibited another downstream product of NF-κB: matrix metalloproteinase 9 (MM-9),
which promotes tumor invasiveness and metastases [20,24]. By reducing the expression
of both VEGF and MM-9, caffeic acid acted as a potent anti-tumor agent against hepato-
cellular carcinoma cells. According to Yang and coworkers [25], caffeic acid (20 µM) also
decreased the expression of mortalin(mitochondrial 70 kDa heat shock protein), which
is an upstream inducer of PI3kB, NF-kB, and VEGF signaling. They observed those ef-
fects in three hepatocellular cell lines (HepG2 cells, Hep3Bcells, and sorafenib-resistant
HuH7 cells). In hepatocellular carcinoma WCH-17A cells, a higher concentration of caffeic
acid(1 mM) blocked proliferation and induced apoptosis by disrupting mitochondrial
potential [26]. In rat hepatoma N1-S1 cells, caffeic acid (1 mM) inhibited lactate efflux
and, in this way, decreased the effectiveness of anaerobic metabolism [27]. Concerning
in vivo experiments, in rats with hepatocellular carcinoma induced by diethylnitrosamine,
caffeic acid (100 mg/kg) reduced the histopathological changes and normalized levels
of alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase
(ALP), total bile acid, total cholesterol, HDL and LDL [28]. To summarize, the primary way
how caffeic acid affects hepatocellular carcinoma in vitro is inhibiting VEGF expression
and upstream pathways (Table 1); in vivo it positively affects hepatic function and reduces
histopathological changes.

Table 1. Altered protein and mRNA expression in various types of cancer cells when exposed to
caffeic acid.

Caffeic Acid

hepatocellular carcinoma

HepG2, HCC97H 20 µM ↓HIF-1α

HepG2 100 µM ↓NF-κB/IL-6/STAT3

↓VEGF, MM-9

HepG2, Hep3B,
sorafenib-resistant HuH7 20 µM ↓mortalin

breast cancer

MCF7 50 µM ↓ER, PKB/Akt

↓IGF-1R

MCF7 171 µg/mL ↑p21 mRNA

↑MCL1 mRNA

skin cancer

human dermal fibroblasts and
mouse skin 40 µM ↑XPC, XPA, PTEN

↑TFIIH-p44, ERCC1

squamous cell carcinoma 15 mg/kg ↓iNOS, VEGF

↑p53

A431, SK-MEL-5, SK-MEL-28 40 µM ↓ERK1/2

HaCaT 100 µM ↓NF-kB/Snail

lung cancer
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Table 1. Cont.

Caffeic Acid

H1299 cells and
H1299-xenografts 100 µM ↑Bid, Bax

(with paclitaxel) ↑ cas-3/7, cas-9

↑p-JNK, p-ERK1/2

A549 100 µM ↑survivin, Bcl-2

LA-795 60 µM ↓p-MEK1/2, p-ERK1/2

↓cyclin D, vimentin

↓beta-catenin

↓TMEM16A

oral cancer

CAL-27 65 µg/mL ↑p53

↑PRODH

cervical cancer

HTB-34 (ATCC-CRL1550) 100 µM ↑AMPK, GLUT1

↓ACLY, SCD1, ELOVL6

SiHa 100 µM ↑AMPK

↓ACC1, SREPB1c

↑ACLY, ELOVL6

C-4I 100 µM ↑E-cadherin

↓vimentin

↑TIMP-1 and -2 mRNA

3.3. Breast Cancer

The effects of caffeic acid on breast cancer cells are less described than those of caffeic
acid phenethyl ester, and the information about their mechanism is scarce. Breast cancer
is the most commonly diagnosed cancer in women [29] and the most common cancer
overall [30,31]. The presence or absence of estrogen receptors, progesterone receptors, and
receptors for an endothelial growth factor (HER2) plays a significant role in breast cancer
therapy and survival [32].

In ER-positive breast cancer cell line MCF7, caffeic acid acted as an antiestrogen [33];
it downregulated the expression of estrogen receptor (ER), insulin-like growth factor 1
(IGF-1) receptor, and the level of activated PKB/Akt kinase, as well as suppressed the
growth of cells. ER, IGF1 receptor and PKB/Akt participate in growth regulation pathways
in estrogen-sensitive breast cancer cells [33]. In the ER-negative breast cancer cell line
MDA-MB-231, the effect of caffeic acid was less prominent [33]. The same study also
associated a moderate to high consumption of coffee with a lower breast cancer invasiveness
in vivo [33]. In another study using ER-positive MCF7 cells, caffeic acid (171 µg/mL)
stimulated the expression of the p21 gene (CDKN1A) [34]; the protein product of this
gene arrests the cell cycle. Nevertheless, caffeic acid also stimulated the gene expression
of a gene encoding anti-apoptotic protein MCL1 (myeloid leukemia cell differentiation
protein) [34], which is not desirable when treating cancer cells. In a triple-negative MDA-
MB-231 breast adenocarcinoma line, caffeic acid (50 µM)decreased the migration ability of
cancer cells [35,36].

To summarize, caffeic acid inhibits estrogen receptor expression and PKB/Akt signal-
ing in ER-positive cell lines (Table 1); in ER-negative cell lines, the antiproliferative effect is
less prominent.
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3.4. Skin Cancer

The major risk for skin cancer development is the skin’s exposure to UV light. Besides
melanomas, skin cancers include non-melanoma skin cancers, e.g., basal cell carcinoma or
squamous cell carcinoma.

Caffeic acid protects the skin against cancer on multiple fronts (Figure 2). In the
skin, UV light forms ROS that can break the sugar–phosphate spine of DNA [29]. By
scavenging ROS, caffeic acid protects DNA against breakage [37]. UV light also forms
thymidine dimers in the DNA strand; to repair thymidine dimers, the cell employs a
repairing mechanism called nuclear excision repair [29]. In human dermal fibroblasts
and mouse skin, caffeic acid (40 µM) prevented the UVB-induced the loss of proteins
necessary for nuclear excision repair: xeroderma pigmentosum protein C (XPC), general
transcription factor IIH subunit (TFIIH-p44), xeroderma pigmentosum protein A (XPA), and
excision repair cross-complementation group 1 (ERCC1), as well as the loss of PTEN [37].
PTEN inhibits the PI3K/Akt signaling pathway, which is often constitutively active in
skin cancer cells due to mutations. Additionally, PTEN is necessary for nuclear excision
repair [38]. In Swiss albino mice, the pretreatment with caffeic acid (15 mg/kg) prevented
UVB light-induced inflammation. Caffeic acid decreased tumor necrosis factor alpha (TNF-
α), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), and NF-κB levels in the exposed mice,
possibly by inhibiting the expression of peroxisome proliferator-activated receptor gamma
(PPARγ) [39].
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Figure 2. Protective effect of caffeic acid against skin cancer. ROS means reactive oxygen species,
PTEN means phosphatase and tensin homolog, PI3K means phosphoinositide 3-kinase, PPARγ
means peroxisome proliferator-activated receptor gamma, TNFα means tumor necrosis factor alpha,
NF-κB means nuclear factor kappa B, iNO synthase means inducible nitric oxide synthase, and VEGF
means vascular endothelial growth factor.

In squamous cell carcinoma induced in mice by chronic UVB irradiation, caffeic
acid (15 mg/kg) downregulated the expression of inducible nitric oxide synthase (iNOS)
and vascular endothelial growth factor (VEGF), upregulated p53expression, and reduced
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tumor growth [39]. In A431 skin cancer cells, SK-MEL-5 melanoma cells, and SK-MEL-28
melanoma cells, caffeic acid (40 µM directly inhibited ERK1/2 activity and, in this way,
disrupted the MAP kinase signaling pathway that promotes tumor growth [40]. Caffeic acid
significantly decreased the cell viability of cutaneous melanoma cell line SK-Mel-28 in the
same doses that significantly increased the viability of the non-cancer cell line [41]. Caffeic
acid also prevented the endothelial growth factor (EGF)-induced neoplastic transformation
of human keratinocyte HaCat cells [40].

In transformed human keratinocyte HaCaT cells, caffeic acid decreased the activity
of the NF-kB/Snail signaling pathway [42]. Snail inhibits E-cadherin; therefore, Snail
inhibition promotes the migratory ability of cancer cells, i.e., metastases [43].

To summarize, caffeic acid can inhibit the PI3K/Akt, MAPK, and NF-kB signaling
pathways in skin cancer cells (Table 1), decrease inflammation and oxidative stress and
keep nuclear excision repair functional due to stimulation of PTEN expression.

3.5. Lung Cancer

Lung cancer is the most common cancer in men and the second-most common cancer
in women [44]. Lung cancers include two main groups: non-small cell lung carcinoma
and small cell lung carcinoma, which is more aggressive. The data concerning the effect of
caffeic acid on lung cancer is controversial. Caffeic acid (600 µM) decreased the viability
of human non-small-cell lung cancer H1229 cells but not control cells (human bronchial
epithelium non-cancer cells) [45]. In H1299 cells, co-exposure to caffeic acid (100 µM) and
cytostatic paclitaxel (10 µM) inhibited cell proliferation more than paclitaxel alone [45]. The
co-exposure increased the expression of the pro-apoptotic proteins Bid and Bax, caspase-3/7
and 9 activity, and the expression of 6hosphor-JNK and 6hosphor-ERK1/2 in both H1299
cells and H1299-xenografts in nude mice [45]. Increased levels of phosphorylated p-JNK
and p-ERK1/2 would typically represent bad news because the MAPK pathway canonically
stimulates cell proliferation. Nevertheless, in some cancer types, activated JNK inhibits
aerobic glycolysis and supports apoptosis [46]. According to Lin and coworkers [47], the
co-treatment of H1299 cells with paclitaxel and 100 µM caffeic acid increased the viability
of H1299 cells (paclitaxel concentration was not disclosed). The caffeic acid exposure also
increased the expression of the anti-apoptotic proteins survivin and Bcl-2 in another non-
small cell lung cancer cell line, A549 [47]. Nevertheless, in mouse lung adenocarcinoma
LA-795 cells, caffeic acid (60 µM) decreased the cell viability to approximately 50%. It
also decreased the protein expression of phospho-MEK1/2, phospho-ERK1/2 (members of
MAPKinase pathway), cyclin D, beta-catenin (promoters of cell proliferation), and vimentin
(a marker of epithelial-mesenchymal transition) [48]. The authors identified the inhibition
of the calcium-activated chloride channel TMEM16A, a channel with multiple roles in
cancer [49], as the primary mechanism behind those changes. In the mouse xenograft,
caffeic acid (5.4 mg/kg) combined with doxorubicin (4.1 mg/kg) significantly decreased
the size of tumors [48].

To summarize, most (but not all) data described the antiproliferative effect of caffeic
acid against lung cancer; the mechanism often includes an alteration of the MAPK signaling
pathway (Table 1).

3.6. Oral Cancer

Alcohol and tobacco consumption represents the major risk factors for this less preva-
lent type of cancer. The most common cancers of the oral cavity and pharynx are head and
neck squamous cell carcinomas (HNSCC) [29,50].

Low concentrations of ethanol (2.5–10 mM) increased the growth and migration
activity of oral squamous cell carcinoma cells [51]; caffeic acid (50 and 100 µM) reversed
the effect. The same authors [52] described that caffeic acid (50 and 100 µM) decreased the
viability of the human head and neck squamous carcinoma cells (HNSCC) line (Detroit
562) due to cell cycle arrest in G0/G1 phase. In human tongue squamous cell carcinoma
cells (CAL-27), caffeic acid (65 µg/mL) decreased the cell viability while increasing the
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protein expression of p53, a protein able to promote cell cycle arrest and apoptosis [53]. It
also increased the protein expression of proline dehydrogenase/proline oxidase (Table 1), a
major enzyme that degrades proline in cells [53]. An increased proline level in cancer cells
is connected with a poorer prognosis [54].

3.7. Cervical Cancer

Cervical cancer is the fourth most common cancer in the world for women, with the
incidence higher in countries with lower incomes [55]. The primary cause of this type
of cancer is infection with human papillomavirus (HPV) [55]. Several publications have
described a positive effect of caffeic acid against this type of cancer cells.

A combination of cisplatin (11 µM) and caffeic acid (300 µM) significantly increased
apoptosis in cervical cancer cell lines HeLa (HPV-18-positive), SiHa, and CaSki (HPV-
16-positive), and C33A (HPV-negative) when compared to cisplatin itself [56]. In the
non-cancerous VERO cell line, neither cisplatin nor caffeic acid nor their combination
significantly increased the number of apoptotic cells [56]. Tyszka-Czochara and coworkers
published three articles describing the effects of caffeic acid (and a combination of caffeic
acid and metformin) on cervical cancer cell lines. The first article [57] showed that, in
the aggressive metastatic human cervical HTB-34 (ATCC-CRL1550) cancer cell line, the
exposure to caffeic acid (100 µM) activated AMP-kinase (AMPK), a metabolic sensor with
an anti-tumor effect [58,59]. Activated AMPK decreased protein expression of ATP citrate
lyase (ACLY), stearoyl-CoA desaturase 1 (SCD1), and fatty acyl-CoA elongase-6 (ELOVL6),
enzymes necessary for fatty acid synthesis. The combination of caffeic acid (100 µM) and
metformin (10 mM) potentiated these effects [57]. The level of unsaturated fatty acids
in HTB-34 cells dropped significantly after exposure. Cancer cells need fatty acids to
form new membranes when cells grow. Therefore, fatty acid deprivation in cancer cells
inhibits their proliferation. Caffeic acid (100 µM) exposure also decreased the expression
of the glucose transporter GLUT1 and increased the activity of mitochondrial pyruvate
dehydrogenase, oxidative decarboxylation, and oxidative stress in HTB-34 cells [57]. In the
second article [60], caffeic acid (100 µM) decreased the cell viability of metastatic cervical
cancer cells (SiHa) but not normal human fibroblasts (FB). Caffeic acid also increased
oxidative stress in SiHa cells but not FB cells.

Caffeic acid activates AMPK, which then inhibits acetyl-CoA carboxylase-1 (ACC1)
activity and the expression of SREPB1c [57]. Unlike in HTB-34 cells, the exposure increases
the protein expression of ATP citrate lyase and fatty acyl-CoA elongase and fails to change
the level of lipids in cells [57]. The third article [61] focused on the effect of caffeic acid
on epithelial–mesenchyme transition. Losing markers of epithelial cells, e.g., E-cadherin,
and gaining mesenchymal phenotype with markers such as vimentin, makes carcinoma
cells more aggressive. A typical signaling molecule that promotes epithelial–mesenchyme
transition is transforming growth factor beta (TGF-β). Caffeic acid (100 µM) increased the
E-cadherin expression and decreased vimentin expression in the human cervical squamous
cell line C-4I exposed to TGF-β, and, in this way, it effectively reversed the epithelial–
mesenchyme transition. (TGF-β stimulates the epithelial–mesenchyme transition). Caffeic
acid also increased mRNA levels of TIMP-1 and TIMP2 (tissue inhibitors of metallopro-
teinases 1 and 2), and decreased mRNA levels of VEGFA (vascular endothelial growth
factor A), metalloproteinases MMP-2, and MMP-9 [57], essential for aggressive tumor
growth and metastases [62].

To summarize, in cervical cancer cells, caffeic acid increases the expression of AMPK
(Table 1), which then deregulates the expression of enzymes involved in the fatty acid
synthesis (Figure 3). Caffeic acid also prevents the epithelial–mesenchyme transition by
increasing the expression of E-cadherin and decreasing the expression of vimentin and
metalloproteinases (Table 1) (Figure 3).
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4. Caffeic Acid and Diabetes, Obesity, and Metabolic Syndrome

The Mayo Clinic website describes metabolic syndrome as “a cluster of conditions
that occur together, increasing your risk of heart disease, stroke, and type 2 diabetes. These
conditions include increased blood pressure, high blood sugar, excess body fat around
the waist, and abnormal cholesterol or triglyceride levels”(https://www.mayoclinic.org/
diseases-conditions/metabolic-syndrome/symptoms-causes/syc-20351916 accessed on
8 August 2022). Published data show that caffeic acid has a wide range of effects against
these conditions.

4.1. Diabetes

Castro and coworkers [63] showed that caffeic acid (50 mg/kg) reduced blood glucose
levels in streptozocin-induced diabetic mice. They attributed this effect to the ability of
caffeic acid to modulate purinergic signaling and, in this way, reduce oxidative stress
and act in an anti-inflammatory way. In a similar diabetic model, caffeic acid (35 mg/kg)
normalized blood insulin levels and antioxidant parameters: superoxide dismutase (SOD),
CAD protein, and glutathione [64]. In alloxan-induced diabetic mice, caffeic acid (50 mg/kg)
decreased blood glucose levels, increased hepatic glucokinase (GCK) levels, normalized
body weight, and reduced LDL blood levels [65]. Caffeic acid also lowered serum levels
of liver enzymes such as alanine transaminase (ALT), aspartate aminotransferase (AST),
alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and blood urea, and showed
protective and regenerative effects on the kidney and liver. In streptozotocin-induced
gestational diabetes in rats, caffeic acid (in a dose-dependent manner) normalized fetus
weight, blood lipids, and antioxidant enzymes superoxide dismutase (SOD), glutathione
peroxidase (GPX), catalase (CAT), and glutathione negatively altered by diabetes [66]. In
insulin-resistant neural cells of high fat diet-induced diabetic rats, caffeic acid increased
the expression of the leptin receptor, phospho-JAK2, GLUT3, Akt, and PI3K, and in this
way, sensitized cells to insulin signaling [67]. It also increased glucose intake in neural cells.
These effects lead authors to suggest that caffeic acid can ameliorate memory function.

https://www.mayoclinic.org/diseases-conditions/metabolic-syndrome/symptoms-causes/syc-20351916
https://www.mayoclinic.org/diseases-conditions/metabolic-syndrome/symptoms-causes/syc-20351916
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In human umbilical vein endothelial cells, HUVECs, caffeic acid (100 µM) inhibited
the formation of advanced glycosylation end products, decreased the expression of inflam-
matory factors interleukin-1β (IL-1β), interleukin-18 (IL-18), and caspase-1, and decreased
the production of reactive oxygen species [68]. In the same type of cells, a much lower
concentration of caffeic acid (10 nM) improved intracellular redox status and decreased
pro-inflammatory NF-κB signaling [69]. In the human stabilized endothelial cell line
Ea.hy926, 10 nM caffeic acid showed a similar effect [70]. Additionally, 10 nM caffeic acid
decreased apoptosis in Ea.hy926 cells exposed to high glucose. In the context of published
data describing the various effects of caffeic acid, the biological activity of caffeic acid at
a concentration of 10 nM is remarkable. A higher concentration of caffeic acid (10 µM)
also decreased the expression of the receptor for advanced glycation end-products (RAGE)
and inflammatory stress marker C-reactive protein (CRP), as well as vascular cell adhe-
sion molecule-1 (VCAM-1), and monocyte chemoattractant protein-1 (MCP-1), in cultured
human endothelial cells (HEC) [71].

In mice with chronic stress-induced insulin resistance, caffeic acid (5 and 10 mg/kg)decreased
serum levels of glycosylated hemoglobin, tumor necrosis factor-α (TNF-α), and interleukin-
1β (IL-1β) [72]. Caffeic acid (various concentrations) also improved oxidative stress in Fe2+-
induced pancreatic injury: it normalized the level of glutathione, superoxide dismutase
(SOD), and catalase (CAT) activity [73].

Approximately 75% of glucose in the blood is cleared by skeletal muscle. To make this
possible, glucose transporter GLUT4 must reach the cell membrane. Both insulin signaling
and exercise activate the GLUT4 transport while using different signaling pathways. An es-
sential step in the exercise-activated pathway is activating AMPkinase (AMPK). Caffeic acid
(100 µM and 1 mM) activated AMPK and its downstream target acetyl-CoA-carboxylase
(ACC) in rat skeletal muscle [74]. In this way, caffeic acid helps decrease hyperglycemia if
combined with physical exercise.

To summarize, in subjects with diabetes, caffeic acid decreases oxidative stress and
inflammation, stimulates insulin sensitivity by inducing PI3K/Akt signaling, prevents
damage caused by advanced glycation end-products, and increases the presence of GLUT4
in muscles by activating AMPK.

4.2. Obesity

Caffeic acid can also influence fat tissue. Two basic types of adipocytes exist in our
bodies: white and brown. The brown adipocytes are more prone to start lipolysis (which
leads to losing weight). The reason for this is a higher number of mitochondria in brown
adipocytes [75]. Both β3-adrenergic stimulation and cold exposure can activate brown
adipocytes and make them start lipolysis to gain energy, while white adipocytes serve
more like a passive depot of energy storage. Nevertheless, it is possible to transform white
adipocytes into brown ones [75].

Caffeic acid (5 µM, 10 µM, and 50 µM) decreased the expression of key genes of
white adipogenic differentiation, including adiponectin, CAAT/enhancer-binding protein
alpha (CEBPA), and fatty acid-binding protein 4 (FABP4), and increased the expression of
brown adipocyte markers: cell death activator CIDE-A (CIDEA), and uncoupling protein 1
(UCP1) in human Simpson-Golabi-Behmel syndrome (SGB) adipocytes [76]. Caffeic acid
also decreased protein expression of PPARγ and lipid accumulation and increased glycerol
release [76]. Such results suggest a positive effect of caffeic acid on the “browning” of white
adipocytes. Interestingly, a more robust effect was achieved by combining caffeic acid with
its derivative chlorogenic acid [76]. In AML12 cells (mouse liver cells), caffeic acid (50 µM)
decreased the lipid accumulation and the expression of endoplasmic reticulum stress
markers induced by palmitate (250 µM) [77]. It also increased the expression of autophagy
markers: microtubule-associated protein 1A/1B light chain 3B (LC3) and autophagy-related
7 (ATG7) [77]. In the differentiated pre-adipocyte cell line 3T3-L1, caffeic acid (31.25 µM
and 62.5 µM) significantly reduced lipid content and inhibited intracytoplasmic reactive
oxygen species [78]. Caffeic acid (50 µM) also significantly decreased PPARγ protein ex-
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pression and lipid accumulation in primary-cultured rainbow trout adipocytes [79]. PPARγ
represents a major regulator of adipogenesis, especially adipocyte differentiation and lipid
accumulation [80]. When the adipocytes were co-exposed to obesitogen rosiglitazone,
caffeic acid reversed its effect [79].

To summarize, caffeic acid decreased lipid accumulation and promoted the white-to-
brown transition of adipocytes.

4.3. Atherosclerosis

One of the major diseases connected with obesity is atherosclerosis. During atheroscle-
rosis development, vascular inflammation plays a significant role. [81].

Caffeic acid (20 µM) showed a significant anti-atherosclerotic effect on human umbil-
ical vein endothelial cells: it decreased interleukin-8 (IL-8) production, toll-like receptor
4 (TLR4) protein expression, and NF-κB signaling induced by the adipokine resistin [82].
In the same type of cells, caffeic acid (25 µM) also inhibited NF-κB-induced expression
of adhesion molecules: intracellular adhesion molecule 1 (ICAM-1), vascular adhesion
molecule 1 (VCAM-1), and E-selectin [83]. Once expressed on the cell surface, these ad-
hesion molecules are responsible for interactions between blood components and vein
endothelial cells [83]. Among others, they facilitate leukocyte adhesion to the endothelium,
which represents one of the first steps in atherosclerosis development [84]. In male Wistar
rats, caffeic acid (50 mg/kg, p.o.) improved the lipid profile and significantly reduced
atherosclerotic lesions [85]. Oxidized LDL represents one of the major risk factors for
atherosclerosis, as it causes endothelial dysfunction, an early event in the pathogenesis of
cardiovascular diseases [84]. Caffeic acid (100 µM) decreased the activation of endothelial
growth factor receptor (EGFR) stimulated by oxidized LDL in ECV-304 endothelial cells
and GM-08133A smooth muscle cells [86].

To summarize, caffeic acid decreased pro-inflammatory NF-κB signaling and the expres-
sion of adhesive molecules ICAM-1, VCAM-1, and E-selectin in vascular endothelial cells.

5. Effects of Caffeic Acid on Brain-Related Diseases

Another pool of published data about caffeic acid describes its effect on brain-related
diseases, with most data focusing on counteracting the symptoms of Alzheimer’s disease;
a few others describe the effect of caffeic acid on depression or Parkinson’s disease.

5.1. Alzheimer’s Disease

The main components of plaques found in the brains of patients with Alzheimer’s
disease consist of β-amyloid peptides and tau proteins. The essential step for tau protein
aggregation is tau phosphorylation which may also play a role in initiating β-amyloid
toxicity. One of the kinases that phosphorylate tau protein is glycogen synthase kinase-3
beta (GSK3β); insulin signaling inhibits the activity of this kinase. Therefore, a hypothesis
suggests that GSK3β deregulation in neurons may be a key point in developing Alzheimer’s
disease [87].

Feeding hyperinsulinemic rats with caffeic acid (30 mg/kg b.w./day) for 30 weeks
significantly improved their memory and learning impairments caused by a high-fat
diet [88]. In the brain of hyperinsulinemic rats, caffeic acid normalized superoxide dismu-
tase (SOD) activity and glutathione levels, inhibited glycogen synthase kinase 3β (GSK3β)
activity, and decreased the level of β-amyloid and phosphorylated tau protein [88]. Sul and
coworkers [89] found similar effects in vitro: the pretreatment with caffeic acid (10 µg/mL)
decreased the level of phosphorylated tau protein and GSK3β stimulated by the exposure to
10 µM amyloid-β25-35 in rat pheochromocytoma cells PC12. In vitro, caffeic acid (800 µM)
prevented the β-amyloid1-42 aggregation [90]. It also promoted the disaggregating of
mature fibrils in an aqueous solution in the presence of liposomes, which simulated the
presence of cell membranes [90]. In the rat model of Alzheimer’s disease established by
injection of amyloid-β1-40 into the rats, caffeic acid (100 mg/kg for two weeks) significantly
improved learning deficits and increased cognitive function (demonstrated by the Morris
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water maze task). Caffeic acid (100 mg/kg for two weeks) also suppressed oxidative stress,
inflammation, NF-κB-p65 protein expression, and caspase-3 activity [91]. In a rat model
of Alzheimer’s disease established by intracerebroventricularly administered streptozo-
tocin, caffeic acid (40 mg/kg/day p.o.) showed a similar effect [92]. In an aluminum
chloride-induced dementia in rats, caffeic acid (100 mg/kg, p.o.) improved cognitive
ability and normalized acetylcholine esterase activity, nitrite and glutathione levels, as
well as the protein expression of catalase (CAT) and glutathione-S-transferase (GST) in
the brain [93]. In an amyloid-β25-35-injected Alzheimer’s disease mouse model, caffeic
acid (50 mg/kg/day) improved cognitive functions and inhibited lipid peroxidation and
nitric oxide formation in the brain [94]. The majority of people with Alzheimer’s disease
suffer from decreased acetylcholine esterase activity and increased butyrylcholine esterase
activity [95], and acetylcholinesterase and butyrylesterase inhibitors represent an effective
treatment for the disease [96,97]. Caffeic acid (12 µg/mL) inhibited acetylcholinesterase and
butyrylcholinesterase activity in the brain of untreated rats in vitro [98]. In acrolein-induced
oxidative stress, a situation connected with Alzheimer’s disease [99], caffeic acid (25 µM)
protected HT22 mouse hippocampal cells against ROS and glutathione depletion [100].
It also counteracted the disruptive effects of acrolein on p-ERK1/2, p-p38, and p-JNK1
expression [100].

To summarize, in subjects with Alzheimer’s disease, caffeic acid decreases oxidative
stress and improves cognitive functions, probably by inhibiting NF-κB and GSK3β signal-
ing and acetylcholinesterase and butyrylcholinesterase activity (Figure 4). Additionally,
even though the authors failed to mention it in their papers, we consider the inhibitory
effect of caffeic acid on 5-lipoxygenase as another factor in protecting the brain against
damage [101–104].
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5.2. Depression

In depressed rats, caffeic acid (10 and 30 mg/kg) normalized noradrenalin and trypto-
phan levels in a dose-dependent manner [105]. Caffeic acid also increased the expression
of brain-derived neurotrophic factor (BDNF) in stressed mice; the effect was mediated by
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5-lipoxygenase inhibition [106]. BDNF, a neurotrophin that modulates neuroplasticity in
the brain, is regularly decreased in depressed patients [107].

5.3. Parkinson’s Disease

Protein α-synuclein controls vesicle trafficking in neurons [108]. Its A53T mutated
form plays a significant role in developing Parkinson’s disease as its aggregates damage
synaptic vesicles, mitochondria, and other cell structures [109]. In A53T α-synuclein
transgenic mice, caffeic acid (10 mg/kg) activated the JNK/Bcl-2-mediated autophagy
pathway and, in this way, reduced the level of A53T α-synuclein in the substantia nigra of
the brain [110].

6. Antibacterial and Antiviral Activity of Caffeic Acid
6.1. Antibacterial Activity

The antibacterial activity of caffeic acid was tested mostly using Staphylococcus aureus,
a Gram-positive pathogen able to form biofilms [111]. It is often resistant to antibiotics and
disinfectants and, therefore, more difficult to treat [112].

Kwon and coworkers described that caffeic acid (1.0 mg/mL) inhibited the growth
of Staphylococcus aureus [113]. They hypothesized that caffeic acid inhibited proline de-
hydrogenase (PRODH), an enzyme necessary for providing energy and managing the
redox potential in cells [114]. Caffeic acid (10 mg/mL) also inhibited the secretion of
α-hemolysin [115]. Staphylococcus aureus secretes α-hemolysin to promote the hemolysis
of erythrocytes. α-hemolysin represents one of the major virulence factors of Staphylo-
coccus aureus [115]. In the RN-4220 and –1199B resistant strains of Staphylococcus aureus,
caffeic acid (1024 µg/mL) inhibited the MrsA and NorA efflux pumps responsible for the
resistance [112]. Caffeic acid also showed promising inhibitory activity against tetR and
tetM efflux pumps in silico, which could help fight tet efflux-based tetracycline-resistant
bacteria [116]. Caffeic acid (1 mg/mL) inhibited the growth of four clinically significant
bacteria: Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, and Staphylococ-
cus aureus [117]. Caffeic acid inhibited their replication alone and when combined with
Gentamycin, Ciprofloxacin, and Streptomycin [117]. Pinho and coworkers [118] confirmed
the effectiveness of caffeic acid (5 mg/mL) against Staphylococcus aureus, Staphylococcus
epidermidis, and a bit less against Klebsiella pneumoniae.

6.2. Antiviral Activity

Performing experiments withinfluenza virus A (IFV-A),poliovirus type 1 virus (PV1),
and herpes simplex virus 1 (HSV1), Utsunomiya and coworkers [119] showed that caffeic
acid (6 mM) inhibited the growth of both DNA and RNA viruses, with RNA viruses being
possibly more sensitive. Additionally, the inhibitive effect depended on receiving caffeic
acid up to three hours after infection; after that, the effect decreased [119]. Caffeic acid
(400 µM) notably inhibited hepatitis C virus (HCV) replication, increased heme oxygenase-
1 (HO-1) expression (HO-1 can trigger interferon α antiviral response), and erythroid
2-related factor 2 (Nrf2) expression [120]. In HepG2.2.15 cells, caffeic acid (40 µM) inhibited
herpes B virus (HBV) DNA replication; in duck HBV-infected ducklings, caffeic acid
(100 mg/kg/day) significantly decreased the level of HBV DNA in serum [121]. In HEp-
2 and Vero cells, caffeic acid (8 mM) inhibited the multiplication of HSV1, but only if
added early after infection; the addition of caffeic acid six hours after infection showed no
effect [122]. Those results suggest that caffeic acid can inhibitHSV-1 multiplication only at
the beginning of the process. Langland and coworkers [123] tested the effect of chelates
consisting of caffeic acid and metal and non-metal ions against herpes simplex virus 1
(HSV1), herpes simplex virus 2 (HSV2), vaccinia virus (VACV), and a VSV-Ebola pseudo-
typed virus. The antiviral activity of caffeic acid increased 100-fold with the addition of
Fe3+, molybdate and phosphate [123]. Caffeic acid (1mM) also inhibited the growth of
severe fever with thrombocytopenia syndrome virus (SFTSV); specifically, it inhibited the
binding of the virus to the host cells [124]. In their later work, Ogawa and coworkers
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showed that the effect against SFTSV depends on the o-dihydroxybenzene backbone of
caffeic acid [125].

7. Summary

Caffeic acid has shown a wide range of effects beneficial to human health. Its in-
hibitive effects on cancer cell growth are mediated mainly by inhibiting the PI3K/Akt
pathway, MAPK pathway and NF-kB signaling with the consequent inhibition of VEGF.
In diabetic rodents, caffeic acid also decreased NF-kB signaling, decreased glucose blood
levels, normalized hepatic enzyme levels, improved redox status, and decreased advanced
glycation end-products signaling. In adipose tissue, caffeic acid promoted the shift from
white adipocytes into brown adipocytes by affecting their differentiation markers. In
vein endothelial cells, caffeic acid decreased NF-kB signaling and the expression of ad-
hesive molecules that participates in forming of atherosclerotic plaques. In rodents with
Alzheimer’s disease, caffeic acid improved cognitive skills and redox status and decreased
the formation of beta-amyloid plaques; the mechanism of these changes correlated with
decreased GSK3β levels. In rodents with induced depression, caffeic acid normalized tryp-
tophan and noradrenalin levels; in rodents with Parkinson’s disease, caffeic acid decreased
levels of mutated α-synuclein by inducing autophagy. Caffeic also demonstrated antibac-
terial and antiviral effects: it successfully inhibited the growth of resistant Staphyloccocus
aureus strains, mostly by inhibiting their efflux pumps. It also inhibited DNA and RNA
viruses’ growth as long as it was added at the beginning of the infection.

All these beneficial effects will undoubtedly please coffee lovers. Nevertheless, the
question remains whether daily consumption of various beverages suffices to build up
caffeic acid blood levels high enough to affect cells.
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