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Abstract: Acute myeloid leukaemia (AML) is a heterogeneous disease with one of the worst survival
rates of all cancers. The bone marrow microenvironment is increasingly being recognised as an
important mediator of AML chemoresistance and relapse, supporting leukaemia stem cell survival
through interactions among stromal, haematopoietic progenitor and leukaemic cells. Traditional
therapies targeting leukaemic cells have failed to improve long term survival rates, and as such, the
bone marrow niche has become a promising new source of potential therapeutic targets, particularly
for relapsed and refractory AML. This review briefly discusses the role of the bone marrow microenvi-
ronment in AML development and progression, and as a source of novel therapeutic targets for AML.
The main focus of this review is on drugs that modulate/target this bone marrow microenvironment
and have been examined in in vivo models or clinically.

Keywords: acute myeloid leukaemia; AML; bone marrow microenvironment; drug targets; bone
marrow niche

1. Introduction

Haematopoietic stem/progenitor cells (HSPCs) are rare, self-renewing, multipotent
progenitors that produce all types of blood cells via haematopoiesis. Any disruption
in haematopoiesis can lead to haematological malignancies, including acute myeloid
leukaemia (AML). AML is the most common acute leukaemia in adults worldwide and has
the shortest 5-year survival rate of all the leukaemia subtypes [1]. AML is a heterogeneous
disease and is classified based on the cytogenetic and molecular abnormalities observed in
the cancer cells [2,3].

Although a variety of treatment options for AML have been introduced over the
past few decades, including targeted drugs based on the genetic abnormalities identified,
mortality rates have not significantly improved, particularly among elderly patients [1].
Additionally, a significant proportion of AML patients relapse, even once a complete
response has been achieved. AML relapse is due to a variety of factors, including mutations
in cell cycle control pathways, dysregulation of DNA damage response, and alterations in
autophagy and apoptosis [4–6].

Initiation and progression of myeloid malignancies were initially considered to be
primarily driven by the leukaemic cell. However, emerging evidence has highlighted
the importance of the bone marrow niche in supporting AML disease initiation and pro-
gression [7]. While current therapies are primarily leukaemia cell-focused, alternative
approaches targeting the bone marrow microenvironment are increasingly being recog-
nised. Herein, we will provide an overview of the normal bone marrow as well as the
leukaemic microenvironment and provide a summary of clinical advances in therapeutics
that specifically target the bone marrow microenvironment.
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2. The Normal Bone Marrow Microenvironment

The bone marrow is a heterogeneous environment comprised of various haematopoi-
etic and non-haematopoietic cells, including osteoblasts and osteoclasts, mesenchymal
stromal cells (MSCs), neurons, immune cells, adipocytes, sinusoidal endothelium and
perivascular stromal cells (Figure 1). HSPCs reside in haematopoietic niches of the bone
marrow, and this supportive microenvironment is essential for the long-term maintenance
of a stable pool of HSPCs. HSPC functions, including proliferation, quiescence, adhesion
and differentiation, are regulated by these non-haematopoietic cells through the release of
variety of factors [8,9].
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The haematopoietic niche is anatomically divided into two compartments: the internal
endosteal bone surface and the associated perivascular network of blood vessels (Figure 1).
These niches are closely related to the vascular structures, arterioles and sinusoids, respec-
tively, and influence HSPC function in a variety of different ways [10].

2.1. The Endosteal Niche

The endosteal niche is defined anatomically by close proximity to cortical or trabecular
bone and has a high content of osteoblasts and osteoclasts (Figure 1). In addition to their
primary functions of bone remodelling, osteoblasts and osteoclasts have been implicated
in regulating HSPC function, lodgement, and egress from the bone marrow. For exam-
ple, osteoblastic lineage cells have been shown to control HSPC regulation in vivo via
parathyroid hormone (PTH) receptor dependent signalling [11], and osteoclasts have been
implicated in stem cell mobilisation in an osteopontin (OPN), stem cell factor (SCF, also
known as KITL) and C-X-C motif chemokine 12 (CXCL12)/stromal cell derived factor
1 (SDF-1) mediated manner [12]. Additionally, components of the extracellular matrix,
including OPN, the seven-transmembrane-spanning calcium sensing receptor (CaSR) or the
sympathetic nervous system can impact HSPC function [13–16]. OPN negatively regulates
HSPC numbers, and OPN−/− mice exhibited increased numbers of stem cells, reduced
primitive haematopoietic cell apoptosis and enhanced HSPC cycling [14,15]. Addition-
ally, maintenance of HSPCs in a quiescent state is promoted by the interaction between
angiopoietin-1 on osteoblasts and the receptor tyrosine kinase Tie2 on HSPC [17]. UDGP-
galactose ceramide galactosyltransferase-deficient (Cgt−/−) mice exhibited aberrant nerve
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conduction and displayed no HSPC egress from the bone marrow following granulo-
cyte colony-stimulating factor (G-CSF) or fucoidan administration, due to downregulated
CXCL12 expression [16]. The Ca2+ content of the niche, mediated via CaSR, dictated the
localisation of HSPCs, and CaSR deficient HSPCs were normal in number, proliferative
and differentiation function migration and homing, however, they exhibited defective
localisation, due to defective adhesion to collagen [13].

Adhesion molecules are involved in HSPC retention within the bone marrow, and as
observed with CaSR deficient HSPCs, are important for directing the correct localisation
of HSPCs within the bone marrow niche. While several adhesion factors have been well
characterised in this function, the role of the cell adhesion molecule, N-cadherin, in HSPC
lodgement into endosteal niches remains controversial. Whilst initial work demonstrated
that HSPC expressed N-cadherin [18], subsequent studies have brought this into ques-
tion [19]. Conditional deletion of the N-cadherin gene from osteoblasts and haematopoietic
cells does not alter the frequency or the number of HSPC in the bone marrow, or their
long-term or serial reconstitution potential [20]. By contrast, expression of a dominant-
negative mutant of N-cadherin that inhibits both homotypic and heterotypic interactions
of N-cadherin in donor HSPC reduced endosteal lodgement and compromised long-term
engraftment, whereas overexpression of a wild-type N-cadherin increased endosteal lodge-
ment and self-renewal ability [21]. Overexpression of short hairpin RNA (shRNA) specific
for silencing N-cadherin gene expression in HSPC, increased HSPC proliferation, and
reduced long-term engraftment and HSPC lodgement to endosteal surfaces [22]. Taken
together, these studies demonstrate that the expression of N-cadherin on HSPC and its role
in HSPC lodgement and function requires further clarification.

The bone marrow niche itself provides a privileged environment that supports HSPC
self-renewal [23,24]. When bone marrow cells are injected into tissue engineered ectopic os-
sicles or in the circulation following lethal irradiation of mice to eliminate host HSPC, donor
HSPCs colonised and self-renewed within the ossicles, and reconstituted haematopoiesis.
This process was mediated by the proto-oncogene c-myc [24]. C-myc has been shown
to control the balance between HSPC self-renewal and differentiation [25]. Conditional
deletion of c-myc in haematopoietic cells enhanced HSPC self-renewal but inhibited differ-
entiation and exhibited increased expression of adhesion molecules. Further, these c-myc
deficient HSPC can home to and lodge into endosteal niches but failed to differentiate into
mature leukocytes. Conversely, overexpression of c-myc compromised HSPC reconstitution
potential following lethal BM irradiation in mouse model recipients [25]. Taken together,
these studies demonstrate the importance of c-myc in normal HSPC differentiation and
function and suggest that c-myc can mediate the interaction tween HSPCs and the bone
marrow niche. Perhaps not surprisingly, c-myc, located at 8q24, is one of the most frequently
activated genes in AML and overexpression plays an important role in leukaemogenesis.

In addition to supporting HSPC self-renewal, the bone marrow microenvironment
supports differentiation of haematopoietic progenitor cells into various lineages through
the regulation of various signalling pathways, particularly the canonical Wnt signalling
pathway. β-catenin-deficient bone marrow microenvironment maintained HSPCs, but
exhibited a decreased capacity to support primitive haematopoietic cells, correlated with
decreased osteoblasts and production of FGF, SCF, and VCAM-1 [26]. These findings
highlight the importance of the canonical Wnt signalling pathway in the bone marrow
microenvironment for the maintenance of haematopoiesis.

Osteoblasts and osteoclasts have also been shown to be required for B cell development.
Osteoblast ablation results in a rapid decrease in the numbers of pre-pro-B and pro-B
cells [27]. In contrast, inhibition of osteoclast function results in relocalisation of B cell
progenitors to the spleen [28]. Taken together, these studies suggest that the endosteal
surface is required for B lymphopoiesis.
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2.2. The Perivascular Niche

The perivascular niche is defined anatomically by close proximity to sinusoidal vascu-
lar endothelium, including surrounding supportive elements such as extracellular matrix
and stromal cells (Figure 1). The blood vessels of the bone marrow are separate from
the peripheral circulation [29]. It is well established that homing to the bone marrow
involves an initial ‘capture’ step whereby circulating HSPC directly interact with the bone
marrow endothelium. The sinusoidal endothelial cells of the bone marrow constitutively
express adhesion molecules, including P-selectin, E-selectin, and vascular cell adhesion
molecule-1 (VCAM-1) [30,31], which are believed to facilitate this ‘capture’ step. It is
therefore unsurprising that HSPCs primarily reside in the perivascular niche in the bone
marrow and spleen, however, some HSPCs are associated with endosteum [32,33]. As
such, the perivascular niche is currently believed to help maintain primitive HSPCs in an
undifferentiated state, and several studies have shown that the perivascular niche pro-
vides biomolecular signals that can influence HSPC function, implicating the perivascular
secretome in influencing the fate of HSPCs [34].

Adventitial reticular cells, which express high levels of CXCL12/SDF-1 (CAR: CXCL12
adventitial reticular cells), and are of presumed mesenchymal origin, can alter stem
cell function. Targeted deletion of CXCR4, the ligand for CXCL12/SDF-1, decreased
HSPC numbers and increased sensitivity to myelotoxic injury, without impairing expan-
sion of the more mature progenitor cells [35], highlighting that the interaction between
CXCR4 and CXCL12/SDF-1 is important for the maintenance of the HSPC quiescent pool.
CXCL12/SDF-1−/− embryos have reduced HSPC number and function, which can be
overcome by enforced CXCL12/SDF-1 expression in vascular endothelial cells [36], high-
lighting the importance of this chemokine in this process. Other growth factors have also
been implicated in HSPC function in the bone marrow. Deletion of vascular endothelial
growth factor receptor 2 (VEGFR2) in adult mice blocked regeneration of bone marrow
sinusoidal endothelial cells and prevented haematopoietic reconstitution [37]. Additionally,
VCAM-1 and VLA-4 adhesion molecules are implicated in the localisation and adhesion of
HSPCs within the bone marrow niche [38,39]. Interestingly, CXCL12 expression and HSPC
retention in the bone marrow is regulated by the sympathetic nervous system, most likely
by sympathetic nerve fibres that synapse on perivascular cells around a subset of blood
vessels, which thereby regulate CXCL12 expression and HSPC mobilisation via circadian
oscillations [16,40]. Several other signalling pathways have been implicated in the prolif-
eration and self-renewal in vivo. For example, wingless (Wnt) signalling is activated and
necessary in the bone marrow niche to limit HSPC proliferation and preserve reconstituting
capacity, and Dickkopf-1 expression in osteoblast cells reduces in vivo repopulating ability
and quiescence [41].

Several subsets of bone marrow cells have been implicated in supporting immune
cell function (reviewed in [42,43]). CAR cells have been shown to create a niche for HSPCs
and immune cells produced in the bone marrow. Structurally, CAR cells possess long
processes, and HSPCs, plasma cells, natural killer cells, plasmacytoid dendritic cells, and B
cell precursors have been identified to be in contact with these processes [44–47].

Another key niche component that maintains HSPCs and is primarily expressed by
perivascular cells throughout the bone marrow is SCF. Whilst HSPC frequency and function
were not affected by conditional deletion of Scf from haematopoietic cells or osteoblasts,
deletion from endothelial or leptin receptor-expressing (LepR) perivascular stromal cells
led to HSPC depletion [48], highlighting the importance of SCF in promoting HSPC main-
tenance in the perivascular niche. By contrast, conditional deletion of SCF from LepR+

endothelial cells led to depleted common myeloid progenitors (CMPs), common lym-
phoid progenitors (CLPs), granulocyte-macrophage progenitors (GMPs), megakaryocyte-
erythrocyte progenitors (MEPs), pre-MEPs, and colony-forming units-erythroid (CFU-E),
as well as erythroid and myeloid blood cells. Importantly, this was not a result of HSPC
depletion [49]. Taken together, this reveals cellular specialisation within the perivascular
niche that is perhaps mediated in a LepR-dependent manner.
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An additional key physiological regulator of HSPC function within the perivascular
niche are oxygen tensions. Compared to the atmospheric oxygen tension of 21%, the
HSPC niche exhibits low oxygen tensions in the range of 1–6% oxygen [50], well below
the 2–9% considered by some scientists to be cellular normoxia [51]. Hypoxia activates a
range of molecular responses that maintain HSPCs in a quiescent and pluripotent state,
while HSPCs residing in close proximity to the vascular niche actively cycle and replenish
circulating cells [52].

3. The Leukaemic Microenvironment

In concert with leukaemogeneic events in the haematopoietic system, the bone marrow
niche is converted by AML cells into an environment that favours leukaemia cell growth
and development. Cumulative evidence indicates that both leukaemic and leukaemic stem
cells (LSCs) can exploit endosteal and periventricular niche signals to remodel these niches
to support their proliferation and self-renewal capacities and disrupt haematopoiesis.

3.1. Role in Leukaemogenesis and Disease Pathophysiology

Several recent studies have provided insight into the role of aberrant signalling
within the microenvironment in contributing to haematological disease pathophysiol-
ogy (Figure 2). Conditional deletion of the retinoblastoma (Rb) [53] or retinoic acid receptor
gamma (RARγ) [54] genes within all components of the murine haematopoietic system,
led to a condition reminiscent of myeloproliferative syndromes in vivo. Similarly, Notch
pathway inhibition by the deletion of the ubiquitin E3 ligase Mind bomb 1 (Mib1) under
two independent promoters (MMTV and Mx1) resulted in a non-transplantable myelo-
proliferative neoplasm-like disease, which could be reversed by activation of Notch in the
microenvironment (MMTV-Cre;Mib1flf) [55], and deletion of Dicer1 in mesenchymal osteo-
progenitors induced disordered haematopoiesis affecting multiple lineages, recapitulating
key features of AML and myelodysplastic syndrome (MDS), and were microenvironment
dependent [56]. Additionally, phosphatase and tensin homolog (PTEN) deficiency in both
haematopoietic and non-haematopoietic cells resulted in myeloproliferation that progressed
to overt leukaemia/lymphoma. Conversely, inducible PTEN deletion in haematopoietic
cells in the presence of wild-type bone marrow microenvironment did not cause myelo-
proliferation or leukaemogenesis [57], highlighting the importance of changes within non-
haematopoietic cells within the bone marrow niche in leukaemogenesis. Whilst activation
of nuclear factor kappa B (NF-κB) in myelopoietic cells, and the absence of the inhibitor IκB
are not sufficient for hypergranulopoiesis, these changes in the non-haematopoietic com-
partment resulted in increased numbers of dysplastic haematopoietic cells with progression
into secondary AML [58]. Further, bone marrow stromal cell chromosomal abnormalities
have also been implicated in the development of AML [59]. Taken together, these findings
highlight that the interactions between leukaemic and non-haematopoietic cells within
the bone marrow microenvironment may be suitable drug targets for the treatment of
myeloproliferative disorders, including AML.

In addition to perturbations that occur within the bone marrow microenvironment,
AML cells themselves can modify the bone marrow niche to create a ‘leukaemogeneic
niche’ within the bone marrow. Further, the two-way communication between AML and
endothelial cells supports AML initiation and progression. A key player identified in this is
pro-angiogenic signalling is vascular endothelial growth factor (VEGF). VEGF expression
and secretion was increased in AML patient bone marrow blasts compared to CD34+ cells
cultured ex vivo from normal donors [60], consistent with the increased angiogenesis
observed in bone marrow biopsies from AML patients [61]. In contrast, endosteal AML
cells produce pro-inflammatory and anti-angiogenic cytokines and degrade endosteal en-
dothelium, osteoblastic and stromal cells. These remodelled endosteal niches have reduced
capacity to support non-LSCs and correlate with a loss of normal haematopoiesis [62].

Emerging evidence has demonstrated that AML cells can alter the transcriptome
of surrounding bone marrow stromal cells and provide potential mechanisms for this
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remodelling. Gene expression profiling of bone marrow mesenchymal stromal cells isolated
from mice inoculated with different human AML genotypes revealed both common and
gene specific transcriptional changes in these cells. Of note, the chemoattractant SDF-1 and
pathways associated with inflammation were upregulated by all subtypes. Differentially
expressed genes included gene sets related to the activation of myc and those associated
with mitochondria functions in mice inoculated with p53 null AML, whereas MLL/ENL
inoculated mice had BM stromal cells characterised by inhibition of myc and activation
of β-catenin [63]. As AML development, progression and therapy resistance involves the
evolution of tumour subclones, these findings suggest that the effects of these subclones on
the bone marrow microenvironment may contribute to their selection.
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Another critical component of AML progression is adhesion of AML cells to the bone
marrow niche. Several adhesion molecules, including, very late antigen 4 (VLA-4), E-
selectin and CD44, have been implicated in AML pathogenesis (Figure 2). High expression
of adhesion molecules facilitates the homing and retention of AML cells in the bone
marrow niche [64–67]. The interaction between VLA-4 and VCAM-1 activates pro-survival
and proliferative pathways in both AML and stromal cells via activation of the NF-κB
pathway [68]. Additionally, the interaction between VLA-4 on AML cells and stromal
fibronectin is crucial for the persistence of minimal residual disease in AML [65], one of the
key drivers of AML relapse. E-selectin is expressed by endothelial cells and binds to CD44
expressed on AML cells. CD44 is a key regulator of AML LSCs homing to bone marrow
niches and maintaining a primitive state [64]. CD44 mediates adhesion to extracellular
matrix in the bone marrow niche through binding to its main ligand, hyaluronan, as well
as other ligands, including OPN, fibronectin and E-selectin, all of which are involved in
cell trafficking and adhesion [67,69].
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Besides adhesion, AML cells can also be regulated by soluble factors secreted by
cells within the bone marrow microenvironment, like CCL3, transforming growth factor
beta (TGF-β) or CXCL12/SDF-1. The interaction between CXCL12/SDF-1 and its receptor
CXCR4 on LSCs contributes to their homing to the bone marrow niche. AML cells initially
migrate toward CXCL12+ vascular niches in the bone marrow [31,70]. Not surprisingly,
CXCR4 expression is increased in AML patient samples [71], and the CXCL12/CXCR4 axis
has also been implicated in AML cell survival, as AML cells cultured with SDF-1 activated
pathways that promote survival, growth and chemoresistance [72,73]. CXCR4 expression is
also associated with poor AML patient outcomes [74,75], and increased CXCR4 expression
is observed in FLT3-internal tandem duplication (ITD) AML, compared with FLT3 wild-
type AML [74], suggesting that the FLT3 axis may participate in the CXCR4-mediated
trafficking of AML cells. Taken together, these data suggest that the SDF-1/CXCR4 axis
may be a suitable therapeutic target for AML.

Emerging evidence indicates that the bone marrow microenvironment may also play
a role in determining the lineage commitment of leukaemic cells. MLL-AF9-transduced
CD34+ cord blood cells transplanted into immunodeficient mice could generate AML, acute
lymphoblastic leukaemia (ALL) or biphenotypic leukaemia, depending on the recipient
mouse strain and the presence of growth factors [76], further highlighting the influence
of microenvironmental cues in LSC function. This effect on differentiation and lineage
commitment appears to be bi-directional, as AML cells can also perturb MSC differentiation.
Consistent with natural fat accumulation within the ageing bone marrow space [77], normal
MSC exhibit signalling pathways primed toward adipocyte differentiation, in contrast to
AML derived MSC which exhibit pathways associated with osteoblastic differentiation [78].
AML cells can induce osteoblastic, but inhibit adipogenic, differentiation of normal MSCs,
by activating Smad1/5 signalling [79]. Additionally, AML development disrupts the sym-
pathetic nervous system and the quiescence of MSCs, leading to an expansion of phenotypic
mesenchymal stem and progenitor cells primed for osteoblastic differentiation, at the ex-
pense of HSPC-maintaining periarteriolar niche cells [80]. These alterations facilitate the
induction of a pre-osteoblastic niche that enhances AML expansion.

Recent studies have demonstrated that LSCs are highly dependent on the leukaemic
bone marrow microenvironment. Indeed, LSCs are immature drivers of leukaemogenesis,
and are constantly evolving during AML progression and treatment [81,82]. The cross-talk
between LSCs and the bone marrow microenvironment induce a supportive environ-
ment for leukaemogenesis, via secretion of chemokines, growth factors and cytokines [83].
Notably, LSCs impair normal HSPC proliferation, differentiation, and homing through
secretion of a variety of cytokines and chemokines [84]. For instance, LSC secretion of IL-8
bind to CXCR2 and stimulates a variety of signalling pathways that support AML pro-
gression (including PI3K/Akt, PLC/PKC, MAPK, and NF-κB). Further, the Wnt-β-catenin
pathway was required for the self-renewal of LSCs in AML mouse models in vivo [85].
Further, during leukaemogenesis, malignant clones become progressively independent of
normal niche-regulated control mechanisms, which facilitates the progression of myeloid
malignancies. Indeed, early in leukaemogenesis, bone marrow homing and localisation of
LSCs are similar to those observed for normal HSPCs and is dependent on cell intrinsic
Wnt signalling. However, as leukaemogenesis progresses, LSCs become independent of
these Wnt signals, and LSC homing becomes distinct from HSPCs and is most similar to
that of committed myeloid progenitors [86]. Thus, these LSCs have an immunopheno-
type that is more mature than HSPCs but have acquired limitless self-renewal through
oncogenic transformation. Additionally, LSCs alter the bone marrow microenvironment
by creating malignant areas that prevent healthy CD34+ cell engraftment via the release
of SCF [70]. Dynamic in vivo confocal imaging of murine BM has demonstrated that
both normal CD34+ cells as well as circulating leukaemic cells preferentially engraft into
microdomains of specialised vasculature expressing E-selectin and the chemoattractant
SDF-1 [31]. Once established, the leukaemia cells secrete high levels of SCF to attract and
outcompete native HSPC niches for engraftment of normal CD34+ cells. However, the
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CD34+ cells engrafted into the malignant niche exhibited altered behaviour, their numbers
declined compared to normal mice, and cytokine mediated mobilisation into the peripheral
circulation was reduced in a manner similar to that described for patients with residual
bone marrow disease [87].

Taken together, these studies highlight that successful treatment of leukaemia requires
not only eliminating the circulating AML blasts, but also these LSCs and AML cells that
are residing in the bone marrow niche. Elimination of these LSCs is important to not only
induce remission, but also to prevent relapse and treatment resistance.

3.2. Contribution to Chemoresistance and AML Relapse

LSCs and the bone marrow microenvironment have been implicated in chemother-
apeutic resistance and disease relapse. Indeed, LSCs have several intrinsic factors which
contribute to chemoresistance. One of the main regulators of chemoresistance is the cell cy-
cle status of the cell. LSCs normally reside in the bone marrow niche in a quiescent state [88],
which reduces the efficacy of chemotherapeutics that target dividing cells. Further, pro-
survival cell signalling pathways, including the NF-κB, Akt phosphatidylinositol-3 kinase
(PI3K), Notch and Wnt-β-catenin pathways, are constitutively activated in LSCs [69,89,90],
and have been further implicated in chemoresistance in LSCs.

In addition to these intrinsic chemoresistance factors in LSCs, there is mounting
evidence that LSCs receive important signals from the microenvironment that regulate
quiescence and chemosensitivity. Human AML CD34+/CD38− stem cells could home to
the endosteal niches of NOD/SCID/IL2rγnull mice [91]. It was observed that following the
homing of these cells to the endosteal niche, they became quiescent and resistant to Ara-C
chemotherapy. Transplanted AML cells initially localised to the surface of osteoblasts in
the epiphysial region, and 8 weeks post-transplantation, the number of leukaemia cells
increased by as much as 50%. Further, after administration of high-dose Ara-C, residual
leukaemia cells clustered and adhered to the blood vessels as well as to the endosteum [92],
suggesting that leukaemia cells receive anti-apoptotic signals from both the osteoblasts
and the vascular endothelium, and that disrupting this interaction may be a strategy
for treating AML. Additionally, the interaction between the α4β1 integrin, VLA-4, and
stromal fibronectin is associated with poor response to chemotherapy [65], indicating
that stromal cells can influence chemosensitivity. Importantly, VLA-4-specific antibodies
restored sensitivity to Ara-C.

Even though LSCs are less sensitive to chemotherapeutics than AML cells, and thereby
contribute to the development of resistance, the bone marrow microenvironment can also of-
fer a protective niche for AML cells in vivo. Co-culture of AML cells with bone marrow stro-
mal cells provides significant protection for AML cells against chemotherapeutic-induced
apoptosis [93]. This protection has been shown to be mediated through soluble factors
and not just cell–cell contact. One of the main categories of soluble factors involved in this
are cytokines. Co-culturing of bone marrow stromal and AML cells promotes chemoresis-
tance via the activation of interleukin-6 (IL-6)/signal transducer and transcription activator
3 (STAT3)/oxidative phosphorylation pathways [94]. Additionally, recent evidence had
identified that stromal IL-6 is the trigger for Jak/STAT3-mediated chemotherapeutic re-
sistance [95]. A recent study identified that the increased oxidative phosphorylation and
mitochondrial ATP synthesis observed in AML cells co-cultured with bone marrow stromal
cells promoted chemoresistance through inhibiting 5′-adenosine monophosphate activated
protein kinase (AMPK) and subsequent activation of mammalian target of rapamycin com-
plex 1 (mTORC1). Inhibition of AMPK activation in AML cells promoted AML progression
and induced chemoresistance in AML cells in vivo [96]. Further, the pro-survival factor
B-cell lymphoma 2 (Bcl-2) is upregulated in AML co-cultures with stromal cells [97], and
the activation of signals that can inhibit apoptosis, including Bcl-2, is correlated with poor
response to chemotherapy in AML [97–99]. Pharmacological inhibition of these pathways
may help to restore chemosensitivity in AML cells.
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In addition, the bone marrow microenvironment has been implicated in facilitat-
ing a multidrug resistance phenotype. For example, several members of the adenosine
triphosphate binding cassette (ABC) efflux transporters family, including the breast cancer
resistance protein (BRCP) and multi-drug resistance 1 (MDR1)/P-glycoprotein, are upreg-
ulated under hypoxic conditions [100]. Further, co-culture of leukaemia cells with bone
marrow-derived stromal cells altered the expression of ABC transporters MDR1, multidrug
resistance associated protein 1 (MRP1), MRP2, MRP3 and BRCP in myeloid leukaemia cells
in an insulin-like growth factor 1 (IGF1) signalling dependent manner [101].

AML relapse occurs as a result of persistence of these chemoresistant AML cells, as well
as quiescent LSCs, which reside in the protective bone marrow niche. Following treatment
cessation, AML cells can exit this protective environment, recirculate, and repopulate the
host, thereby driving relapse. This highlights that targeting these AML blasts and LSCs
within this niche is critical for preventing relapse. A variety of novel targets and therapeutic
strategies for targeting this niche have begun to be explored.

3.3. The Immune Microenvironment and AML

The immunological microenvironment has also been implicated in AML development
though leukaemic modifications that promote immune evasion (reviewed in [102]). AML
cells can directly adapt to hide from immune recognition, as well as modify the immune
cell compartments (including natural killer cells, dendritic cells, and effector T cells) to
evade detection. AML cells are defective in antigen presentation, and gene expression pro-
filing of AML blasts from relapsed patients after haematopoietic stem cell transplantation
has revealed a plethora of immune-escape related perturbations, including the epigenetic
downregulation of HLA class II genes, loss of HLA, and dysregulation of pathways in-
volved in adaptive and innate immunity [103–105]. AML blasts aberrantly express immune
checkpoint markers [103], which facilitates immune surveillance evasion. For example,
AML cells express the immune checkpoint programmed-cell-death ligand-1 (PD-L1), that
when recognised by the PD-1 receptor on T cells, causes T-cell exhaustion. There is a strong
association between a high frequency of PD-1 and poor AML patient prognosis [106,107],
suggesting that PD-1/PD-L1 inhibition may be a potential therapeutic strategy for AML.
In addition to aberrant expression of immune checkpoint markers, AML cells have been
shown to secrete immune inhibitory soluble factors, such as IL-10, TGF-β and indoleamine
2,3-dioxygenase 1 (IDO1) [108–110], which push T cell polarisation towards induced Tregs,
thus promoting T cell tolerance and leukaemia progression. Further, high numbers of
Tregs have been observed in patients with AML [110,111], and increased frequency of
CD4+CD25+CD127low/− Tregs are associated with poor AML patient prognosis [112]. Solu-
ble factors secreted by AML cells have also been shown to modulate the microenvironment.
For example, high levels of arginase II in the plasma of AML patients impaired T cell
proliferation and polarised monocytes towards an immunosuppressive M2-like pheno-
type [113]. Additionally, VCAM-1 expression on LSCs has been implicated in aiding cancer
cell escape of immune detection, and acts as a critical immune-checkpoint gate in the
bone marrow via modulation of major histocompatibiilty complex (MHC) presentation on
IHCs [114]. In a recent analysis of over 200,000 bone marrow cells from 40 AML patients
and 3 healthy donors, it was proposed that the metabolism (namely the allocation of energy
and oxygen) of AML cells can contribute to their immune evasion [115]. AML progenitor
cells preferentially communicate with myeloid immune cells with an immunosuppressive
phenotype. AML cells can also impact the metabolic characteristics of immune cells, and
vice versa, formulating a feedback loop in the bone marrow microenvironment. This
study suggests that a unique personalised therapy for AML may involve targeting unique
immunometabolic profiles.

3.4. The Hypoxic Microenvironment and AML

Leukaemia progression in vivo has been shown to be associated with a hypoxic en-
vironment [116]. Leukaemic cells can proliferate under hypoxic conditions [116,117], sug-
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gesting that they are able to adapt to the hypoxic environment. Indeed, key regulators of
hypoxia-related cellular responses, specifically hypoxia-inducible factor 1α (HIF-1α) and
HIF-2α, have been implicated in leukaemogenesis and AML latency [118]. However, while
HIF-1α and HIF-2α synergised to suppress AML development, they are not required for
LSC maintenance [118]. Interestingly, CXCR4 expression is increased under hypoxic con-
ditions in AML cells [119], and HIF-1α regulates CXCR4 [120]. Taken together, these data
indicate that a hypoxic bone marrow microenvironment represents a conditional stem cell
niche, where the CXCL12/CXCR4 axis can facilitate recruitment and retention of LSCs, and
strategies that are able to target this hypoxic environment may exhibit anti-AML activity.

3.5. The Senescent Microenvironment and AML

The ageing haematopoietic system results in predictable clinical manifestations; in-
cluding declining immunity, higher rates of anaemia and increased risk of AML/MDS [121].
At the cellular level, ageing is accompanied by increased cellular senescence, where senes-
cent cells have reduced capacity to self-renew and are characterised by a ‘senescent as-
sociated secretory phenotype (SASP)’. The SASP includes upregulation of anti-apoptotic,
pro-inflammatory and pro-fibrotic factors, and includes increased expression of Bcl-2, IL-6,
CDK inhibitors p16 and p21, and intracellular accumulation of lysosomal α-galactosidase,
which is commonly used as a biomarker [122]. Cell senescence can be pre-maturely induced
by DNA damaging agents, such as oxidative stress [123], and although this growth arrest
evolved to suppress cancer development [124], abnormal accumulation of such senescent
cells is believed to contribute to pathological states associated with ageing [125]. Consistent
with this theory, MSC collected from both MDS and AML patients express higher levels
of p21 and are more senescent than normal MSC as evidenced by higher α-galactosidase
staining [78,126]. Further studies have revealed that AML cells not only favour a senescent
environment, but actively promote it through induction of reactive oxygen species via
NOX2 derived superoxide [127].

Inhibition of this pathway using NOX2-knockdown AML cells resulted in less bone
marrow senescence and improved survival when compared to mice engrafted with control
cells, suggesting that interrupting this process in the early stages of disease may provide
the most therapeutic benefit. However, cytotoxic drugs commonly used for initial treat-
ment of AML (notably anthracyclines) can have off-target effects within the bone marrow
microenvironment, creating therapy induced senescent cells that persist, impeding normal
haematopoiesis and possibly contributing to disease relapse [128]. Simultaneous elimina-
tion of these cells using a new class of drugs known as ‘senolytics’, may provide a valid
therapeutic strategy.

4. Targeting the Leukaemic Microenvironment for the Treatment of AML

As the importance of the bone marrow microenvironment in supporting LSC and
AML blast growth is increasingly being recognised, it is also being regarded as a source of
anti-leukaemic drug targets. Indeed, several strategies have been employed, with varying
levels of success (Tables 1 and 2).
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Table 1. Summary of strategies for targeting the bone marrow microenvironment as a treatment for AML that have been examined experimentally in vivo.

Target Drug Treatment Design Combination
Treatments Design Model/Disease Type Results Ref.

CXCR4

TN140 14 mg/kg/day for
7 days s.c. - AML PDX

Increased mobilization of leukaemic cells,
decreased AML burden and significantly increased

OS compared to PBS control
[129]

Plerixafor
(AMD3100)

20 mg/kg/day for
7 days s.c. - AML PDX

Increased mobilisation of leukaemic cells and
decreased AML burden and non-significantly

increased OS compared to PBS control

5 mg/kg s.c. 500 mg/kg Ara-C s.c.
APL cells from spleens

of mCGPR/+

mice xenograft

Increased circulating leukaemia blast counts and
sensitised cells to Ara-C treatment, increased OS

compared to Ara-C
[130]

2.5 mg/kg s.c. 100 mg/kg Ara-C i.p. C1498 xenograft
Increased susceptibility of AML cells to Ara-C, and
decreased blast engraftment in bone marrow, liver

and spleen in vivo
[131]

2.5 mg/kg s.c. 100 mg/kg Ara-C i.p.
and/or anti-PD-L1 i.p. C1498 xenograft

Combination of plerixafor, with Ara-C and
anti-PD-L1 decreased AML blast % and prolonged

OS in vivo
[132]

5 mg/kg twice
daily for 5 days s.c. Allo-HCT

Murine primary
MLL-AF9-AML

xenograft

Posttransplant treatment with plerixafor
significantly improved graft-versus-leukaemia

effects in PDX, and promoted donor
haematopoietic engraftment following allo-HCT

[133]

BL-8040 400 µg s.c. day 1–7 AC220 10 mg/kg oral
day 1–7

MV4-11, THP-1 or
U937 xenografts

Combination increased OS and reduced minimal
residual disease [134]

LY2510924 2.5 mg/kg s.c.
day 1–21

Ara-C 50 mg/kg i.v.
day 1–5 or doxorubicin
1.5 mg/kg i.v. day 1–3

OCI-AML3 or AML PDX

LY2510924 significantly improved OS compared to
control and doxorubicin and reduced tumour

burden compared to control; combination further
enhanced OS

[135]

Ulocuplumab
(BMS-936564) 3–10 mg/kg i.p. Ara-C 20–90 mg/kg Nomo-1 and

HL-60 xenografts Decreased tumour volume compared to control [136]
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Table 1. Cont.

Target Drug Treatment Design Combination
Treatments Design Model/Disease Type Results Ref.

E-selectin Uproleselan 40 mg/kg i.p.
Ara-C 100 mg/kg i.v. 5

days + doxorubicin
1 mg/kg i.v. day 1–3

Murine MLL-AF9
AML transplant

Combination significantly increased OS compared
to chemotherapy alone [137]

VLA-4

Monoclonal antibody 1–2 mg i.p. Ara-C 20–40 mg i.p. U937 or AML PDX 100% OS was observed in the combination group [65]

FNIII14 1 mg i.v. Ara-C 20 mg i.p. U937 xenograft 100% OS was observed in the combination group [138]

AS101 0.5 mg/kg i.p.
3× weekly Ara-C 40 mg i.p. day 3, 4 AML PDX Combination increased OS in both VLA-4+ and

negative models [139]

VEGF Aflibercept
5–25 mg/kg

s.c./i.p. twice
weekly

Doxorubicin
3 mg/kg i.p.

HL60/VCR, HEL and
AML PDX

Aflibercept increased OS; combination with
doxorubicin decreased tumour burden [140]

Vascular Targeting OXi4503

10 mg/kg i.p.
3× week for

2 weeks

Bevacizumab 4 mg/kg
i.p. weekly for 2 weeks KG-1 and AML PDX

OXi4503 as a monotherapy decreased engraftment,
whereas bevacizumab did not. Combination

further decreased engraftment
[141]

2.5–75 mg/kg once
a week for 2 weeks - HL60 xenograft Decreased tumour burden and increased survival [142]

Wnt/β-catenin
signalling

BC2059
1, 5, or 10 mg/kg
i.v. 2× week for

3 wks

Panobinostat 5 mg/kg
i.v. 3× week for 3 weeks

OCI-AML3 and
AML PDX

Significantly improved survival as a monotherapy;
Combination further significantly

increased survival
[143]

PRI-724 40 mg/kg s.c.
mini pump

Sorafenib 5 or 10 mg/kg
oral daily

MOLM-13 and
AML PDX

PRI-724 as a monotherapy did not impact tumour
burden or OS; Combination significantly decreased

tumour burden and increased survival
[144]

PU-74654 0.5 mg/kg Ara-C 25 mg/kg i.p. for
5 days U937 xenograft

Combination significantly increased OS and
decreased tumour burden compared to control

and Ara-C

[145]LiCl 25 mg/kg Ara-C 25 mg/kg i.p. for
5 days U937 xenograft

Combination significantly increased OS and
decreased tumour burden compared to control

and Ara-C

Niclosamide 10 mg/kg Ara-C 25 mg/kg i.p. for
5 days U937 xenograft

Combination significantly increased OS compared
to control and Ara-C, but did not significantly

decrease tumour burden
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Table 1. Cont.

Target Drug Treatment Design Combination
Treatments Design Model/Disease Type Results Ref.

Wnt/β-catenin
signalling

ICG-001 50 mg/kg/d i.p. VS5584 5 mg/kg/d i.p. MOLM-14 or
OCI-AML2 xenografts

Combination decreased tumour burden and
prolonged OS [146]

SKLB-667 1, 3, or
10 mg/kg/d oral - MV4-11 xenograft Increased OS and decreased tumour burden [147]

Bcl-2

AT-101 50 mg/kg oral
days 1–10

Idarubicin 0.5 mg/kg i.v.
day 1–3 AML PDX Combination significantly decreased tumour

burden compared to either agent alone [148]

ABT-737

75 mg/kg i.p.
3× wk - MRP8[NRASD12/hBCL-2]

transgenic mice Significantly increased OS [149]

75 mg/kg i.p. days
1–5 and

8–12

Daunorubicin 3 or
5 mg/kg i.v. days 1, 4, 9

MLL-A49
HSPC transplant

ABT-737 as a monotherapy did not alter OS;
combination with daunorubicin significantly

increased OS
[150]

Venetoclax (ABT-199)

100 mg/kg oral
day 1–5 and

8–12

Daunorubicin 3 or
5 mg/kg i.v. days 1, 4, 9

MLL-A49
HSPC transplant

ABT-199 as a monotherapy did not alter OS;
combination with daunorubicin significantly

increased OS

85 mg/kg oral day
1–27

Gilteritinib 40 mg/kg
oral day 1–27 MV4-11 xenograft No effect on OS as a monotherapy; Combination

significantly improved OS [151]

mTOR Everolimus
(RAD001)

3 mg/kg oral
gavage every

other day

1,25(OH)2D3 0.05 mg/kg
i.p 2× week U937 xenograft Combination inhibited tumour growth [152]

NF-κB Bortezomib 1 mg/kg i.p. once
every 3 days - MLL-AF9 transformed

mice and AML PDX Decreased tumour burden and increased OS [153]

Hypoxia Evofosfamide
(TH-302)

50 mg/kg i.p.
5× week for

3 weeks
- HEL and

HL60 xenografts Decreased tumour burden and increased OS [154]

50 or 75 mg/kg i.p.
3× week for

2 weeks

Ara-C 100 mg/kg i.p.
5 days + doxorubicin
3 mg/kg i.v. 3 days or

sorafenib 5 mg/kg orally
daily for 2 weeks

Murine bone marrow
cells expressing

AML1/ETO, MOLM-13
and AML PDX

Increased OS when administered as a
monotherapy; combination with Ara-C and

doxorubicin or sorafenib decreased tumour burden
and increased OS

[155]

AML—acute myeloid leukaemia; Ara-C—cytarabine; allo-HCT—allogenic haematopoietic cell transplant; CML—chronic myeloid leukaemia; MDS—myelodysplastic syndrome;
PDX—patient derived xenografts; i.p.—intraperitoneal; s.c.—subcutaneous; ‘-‘—not examined.
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Table 2. Summary of strategies for targeting the bone marrow microenvironment as a treatment for AML that have been examined clinically in humans.

Target Drug Treatment
Design

Combination
Treatment Design

Model/
Disease Type Results Ref.

CXCR4
Plerixafor

(AMD3100)

0.08–0.24 mg/kg s.c.

Mitoxantrone
8 mg/m2/d i.v. +

etoposide 100 mg/m2/d
i.v. + Ara-C

1000 mg/m2/d i.v.

Phase I/II clinical in
Relapsed/

Refractory AML
patients;

n = 52 (NCT00512252)

CR + CRi of 46%; increased mobilisation of leukaemic
blasts into peripheral circulation; no evidence of

symptomatic hyperleukocytosis or delayed count
recovery with addition of Plerixafor

[156]

0–240 µg/kg for 4 days

G-CSF 10µg/kg s.c. +
Busulfan 130 mg/m2 i.v.

+ Fludarabine
40 mg/m2 i.v.

Phase I/II clinical in
AML

(n = 34), MDS
(n = 7), CML

(n = 4)
patients

Compared to historical data set of patients treated
with busulfan and fludarabine alone

(n = 164), study patients exhibited lower rates of graft
vs. host disease and no significant difference in

RFS or OS

[157]

320–810 µg/kg i.v. on
days 1–5

Decitabine 20 mg/m2 on
days 1–10 of each cycle

Phase I clinical in
treatment-naïve older

(≥60) AML
patients

(n = 69) (NCT01352650)

Overall response rate of 43%; most common toxicities
were myelosuppression and infection; Plerixafor did

not induce clinically significant hyperleukocytosis
[158]

240 or 340 µg/kg/d

Daunorubicin 60
mg/m2/d i.v. for 3 days
+ Ara-C 500 mg/m2/d
i.v. for 3 days + G-CSF

5 µg/kg/d on days 1–10

Phase I clinical in
first-relapsed AML

patients
(n = 10) (EudraCT
2011-000474056)

Most plerixafor-related non-haematological adverse
events were reversible grade 1 and 2 in severity;

1 patient exhibited grade 4 haematological toxicity at
the lowest dose; 9 patients achieved CR + Cri; due to

poor patient enrollment, the trials was concluded early

[159]

120–240 g/kg i.v.
day 1–4

Fludarabine 30
mg/m2/d i.v. day 1–4 +
idarubicin 10 mg/m2/d

i.v. day 1–3 + Ara-C
2 g/m2/d i.v. day 1–4 +
G-CSF 5 µg/kg/d s.c.

day 1–4

Phase I/II clinical in
relapsed/

refractory AML
(n = 57) (NCT01435343)

20/41 (49%) achieved CR + CRi; 3/41 (7%) died
during induction; 13/26 (50%) primary refractory
patients and 7/15 (47%) early relapsed patients

achieved CR + Cri; median OS and DFS were 9.9 and
13 months, respectively

[160]
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Table 2. Cont.

Target Drug Treatment
Design

Combination
Treatment Design

Model/
Disease Type Results Ref.

CXCR4

Plerixafor
(AMD3100)

240 µg/kg s.c.

Fludarabine
50 mg/m2/d for 4 days
+ bisulfan 3.2 mg/kg/d
for 4 days followed by

allo-HCT

Phase I clinical in AML
patients in first remission
(n = 12) (NCT01141543)

Adverse events potentially related to plerixafor were
transient and not severe; main adverse events were

nausea and dizziness in 4/12 (33%) patients and
fatigue in 4/12 (33%) patients; 2/12 (17%) patients

relapsed post-HCT and 6/12 (50%) were alive
at last follow-up

[161]

240 mcg/kg s.c. day 1–7

Sorafenib
400–800 mg twice-daily

oral continuously
+ 10 mcg/kg s.c. day 1–7

Phase I clinical in
relapsed/ refractory

AML
patients
(n = 28)

No DLT were encountered in the 4-wk DLT window,
but hand-foot syndrome and rash were seen beyond

the window requiring dose reductions in most
patients; 36% response rate (CR = 4/28 [14%],
complete remission with incomplete platelet

recovery = 4/28 [14%], CRi = 1/28 [4%],
partial response = 1/28 [4%])

[162]

BL-8040 0.5–2 mg/kg s.c. day 1,2 Ara-C 1.5–3 g/m2/d i.v.

Phase IIa clinical in
relapsed/

refractory AML
(n = 42) (NCT10838395)

CR + CRi observed in 12/42 (29%) patients; median
survival was 8.4 months for all patients, 10.8 months

in the 1.5 mg/kg phase and 21.8 months for
responding patients in this cohort

[163]

LY2510924 10–30 mg/d s.c. day 1–7
Idarubicin 12 mg/m2 i.v.

3 days + Ara-C
1.5 mg/m2 i.v. 4 days

Phase I clinical in
relapsed/

refractory AML
patients

(n = 11) (NCT02652871)

1/11 (9%) patients experience DLT (grade 3 rash and
myelosuppression); Overall response rate

was 4/11 (36%) patients
[164]

Ulocuplumab
(BMS-936564) 0.3–10 mg/kg

Mitoxantrone 8 mg/m2 +
etoposide 100 mg/m2 +

Ara-C 1 g/m2 i.v.
day 1–5

Phase I clinical in
relapsed/

refractory AML
(n = 66)

Ulocuplumab was escalated to 10 mg/kg without any
DLT; CR + CRi was 51%; patients with first complete

remission > 6 months had better OS (16/23 [70%])
than those with complete remission less than 6 months

or primary induction failure (6/20 [30%]); transient,
mild/moderate thrombocytopenia was the only

treatment related adverse event with
ulocuplumab monotherapy

[165]
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Table 2. Cont.

Target Drug Treatment
Design

Combination
Treatment Design

Model/
Disease Type Results Ref.

E-selectin Uproleselan 5–20 mg/kg i.v.
twice daily

Mitoxantrone 10 mg/m2

i.v. + etoposide
100 mg/m2 i.v. + Ara-C

1000 mg/m2 i.v.

Phase I/II clinical in
relapsed/

refractory AML
patients

(n = 66) (NCT02306291)

No DLT were observed in the first 19 patients; CR +
CRi of 41% was observed; median OS was 8.8 months;
addition of uproleselan was associated with low rates

of oral mucositis

[166]

VEGF Bevacizumab

10 mg/kg i.v. day 8
Ara-C 2 g/m2 i.v.

day1–3 + mitoxantrone
40 mg/m2 i.v. day 4

Phase II clinical in
relapsed/

refractory AML
patients
(n = 48)

Myelosuppression occurred in all patients; toxicities
included decreased ejection fraction (6%),

cerebrovascular bleed (4%), mortality (15%); Overall
response was 23/48 (48%) patients, with complete
response observed in 16/48 (33%). Median OS and

DFS for complete response patients were 16.2 months
and 7 months, respectively

[167]

5–10 mg/kg i.v. day 1, 15

Daunorubicin 45 mg/m2

i.v. day1–3 + Ara-C
200 mg/m2 i.v. day 1–7

for cycle 1; Ara-C
1000 mg/m2 i.v. twice

daily day 1–6 for cycle 2

Phase II clinical in older
AML patients

(n = 171) (NRT904)

Complete remission rates (65% in both) and 12-month
EFS in the 2 arms were not different (33% in standard
arm vs. 30% in bevacizumab arm); the frequencies of
severe adverse events were higher in the bevacizumab
arm compared to the control arm, but the percentages
of death or life-threatening severe adverse events were

lower in the bevacizumab arm
(60% vs. 75%, respectively)

[168]

Vascular
Targeting OXi4503 2.5–7.81 mg/m2 i.v.

day 1, 8, 15, 22
-

Phase Ia clinical in
relapsed/

refractory AML and
MDS

patients
(n = 16) (NCT01085656)

Fever occurred in 7/18 (39%) patients; other side
effects included bone pain in 5/18 (28%), flu-like
symptoms 5/18 (28%), hypertension 5/18 (28%),

thrombocytopenia 5/18 (28%); grade 3 or
4 hypertension and QT prolongation were not

observed

[169]
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Table 2. Cont.

Target Drug Treatment
Design

Combination
Treatment Design

Model/
Disease Type Results Ref.

Vascular
Targeting

OXi4503 3.75–9.76 mg/m2 i.v.,
day 1, 4

Ara-C 1 g/m2 i.v.
day 1–5

Phase Ib clinical in
relapsed/

refractory AML
(n = 29) (NCT02576301)

The most common grade 3
4 treatment-related adverse

events were febrile neutropenia (28%), hypertension
(17%), thrombocytopenia (17%) and anaemia (14%); no
grade 5 adverse events were observed; drug-related

serious adverse events, including febrile neutropenia,
pneumonia/acute respiratory failure and hypotension
developed in 4/29 (14%) patients; MTD was defined
as 9.76 mg/m2 in combination with 1 g/m2 Ara-C;

Overall response rate of 19% was observed; Median
OS for the 4 patients who achieved a CR + CRi was
528 days, which was longer than the media OS of
113 days for the remaining 22 patients who did

not achieve CR + CRi

[170]

Angiopoiten-1/
Tie2

Trebananib
(AMG 386)

15 or 30 mg/kg
i.v. weekly -

Phase Ib clinical in
relapsed/

refractory AML
patients

(n = 13) (NCT01555268,
NCI-2011-02979)

1.15 mg/kg patient had a partial response; 2 patients
(1.15 mg/kg, 1.30 mg/kg) exhibited stable

disease >1 cycle
[171]

Wnt/ β-catenin
signalling

CWP2322291
(CWP291)

4–334 mg/m2/d i.v.
day 1–7

-

Phase I clinical in
relapsed/

refractory AML
(n = 64) and MDS (n = 5)
patients (NCT01398462)

Most common adverse events were nausea (64%),
vomiting (46%), diarrhea (36%), and infusion-related

reactions (29%); grade 3 treatment-related adverse
events occurred in 5% of patients, and were

pneumonia, hypophosphatemia, leukocytosis, nausea,
cellulitis, sepsis, hypokalemia, and hypertension; DLTs

included nausea, abdominal pain, anaphylactic
reaction, myalgia, and rash; MTD was defined as
257 mg/m2; Complete response was observed in

1/54 patients; partial response
observed in 1/54 patients

[172]
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Table 2. Cont.

Target Drug Treatment
Design

Combination
Treatment Design

Model/
Disease Type Results Ref.

Myc Apto-253 20–150 mg/m2 i.v.
once weekly

Phase Ia/b Clinical in
relapsed/

refractory AML or
high-risk AML

patients
(n = 18) (NCT02267863)

No DLTs or drug-related serious adverse events have
been reported. 1 patient experienced a drug-related

adverse event of grade 3 or greater (fatigue)
[173]

Bcl-2 Venetoclax

800 mg daily oral -

Phase II clinical in
relapsed/

refractory AML
patients

(n = 32) (NCT01994837)

Overall response rate was 19%; An additional 19% of
patients exhibited partial bone marrow response and

incomplete haematological recovery; Common
adverse events included diarrhea, vomiting, nausea,

febrile neutropenia and hypokalemia (grade 3/4)

[174]

400, 800 or 1200 mg
orally daily

Decitabine 20 mg/m2

day 1–5 i.v. or
azacitidine 75 mg/m2

day 1–7 i.v. or s.c

Phase Ib clinical in
treatment-naïve

elderly AML
patients

(n = 145) (NCT02203773)

Common adverse events included constipation,
diarrhea, nausea, febrile neutropenia, hypokalemia,

fatigue, decreased white blood cell count and
decreased appetite; CR + CRi was observed in 67% of
patients, with a CR + CRi rate of 73% in the 400 mg

venetoclax + hypomethylating agent cohort; Median
duration of CR + CRi was 11.3 months, and median

OS was 17.5 months

[175]

400 mg orally daily Azacitidine 75 mg/m2

s.c. or i.v. day 1–7

Phase III Clinical in
treatment-naïve AML

patients
(n = 431) (NCT02993523)

Median OS in combination group was 14.7 months
and 9.6 months in the control group (azacitidine

alone); Incidence of complete remission was higher in
the combination cohort than in control (36.7% vs.

17.9%, respectively), as was the CR + CRi (36.7% vs.
28.3%); The most common adverse events included
nausea, thrombocytopenia, neutropenia and febrile
neutropenia; Serious adverse events occurred more

commonly in the combination cohort compared to the
control (83% vs. 73%)

[176]
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Table 2. Cont.

Target Drug Treatment
Design

Combination
Treatment Design

Model/
Disease Type Results Ref.

Bcl-2 Venetoclax

100 mg day 1, 200 mg
day 2, 400 mg

day 3–28 orally

Decitabine 20 mg/m2 i.v.
day 1–10

Phase II Clinical in
treatment-naïve elderly

AML patients
(n = 168)

(NCT034014193)

Overall response rate was 74%; the most common
adverse events included febrile neutropenia (29%) and
infections with grade 3/4 neutropenia (50%); 6 grade

5 adverse events, including infections with
therapy-related grade 3/4 neutropenia and 1 case of

renal failure unrelated to the study

[177]

Not described

Fludarabine 30 mg/m2

i.v. day 2–6 + Ara-C
1.5 g/m2 i.v. day
2–6 + idarubicin

8 mg/m2 i.v. day 4–6 +
filgrastim 5 mcg/kg s.c.

day 1–7

Phase Ib/II Clinical in
newly

diagnosed and relapsed/
refractory AML

patients
(n = 45)

Overall response rate was 44/45 (98%); 89% (40/45)
patients attained a composite complete response,

including 37/40 patients (93%) who were measurable
residual disease negative; common

non-haematological adverse events included
bacteremia, pneumonia, febrile neutropenia, and

skin/soft tissue infections; Estimated 24 months EFS
and OS were 64% and 76%, respectively

[178]

mTOR

Rapamycin 2 mg per os daily 14 days -

Clinical study in
refractory AML

patients
(n = 5)

No severe haematological or non-haematological side
effects were observed; 2 patients achieved a leukocyte
response, a prolonged response was seen in 1 patient;

In the 3 other patients, blast counts remained
stable or increased

[179]

Temsirolimus 25 mg i.v. days 1, 8, 15 Clofarabine 20 mg/m2

i.v. day 1–5

Phase II clinical in older
AML patients

(n = 53)

Overall remission rate was 21%; median DFS was
3.5 months, and median OS was 4 months overall, and

9.1 months for responders; The most common
non-haematological severe adverse events included

transaminitis (11%), infection (48%), and febrile
neutropenia (34%)

[180]
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Table 2. Cont.

Target Drug Treatment
Design

Combination
Treatment Design

Model/
Disease Type Results Ref.

NF-κB Bortezomib

1.5 mg/m2 s.c. or i.v.
days 1, 4, 8, and 11

Pegylated liposomal
doxorubicin 40 mg/m2

i.v. day 4, 21

Phase II relapsed/
refractory AML

patients
(n = 15)

10 patients completed 1 cycle of chemotherapy,
1 confirmed partial response with >50% blast

reduction, no patient had a complete response;
2 additional patients had >50% blast reductions,

including 1 achieving morphologic leukaemia free
state but without count improvement; 5 patients
exhibited progressive disease after cycle 1, in the
remaining 5 patients who commenced cycle 2, no

observed blast reductions persisted, and not patients
exhibited improvements in marrow blasts with

additional cycle

[181]

1.3 mg/m2 s.c.
days 1, 4, 8 and 11

Decitabine 20 mg/m2 i.v.
day 1–10

Phase II clinical in
treatment-naïve older

AML patients
(n = 163) (NCT01420926)

No significant differences in OS or responses between
the 2 treatment arms; CR + CRi was 39%, with median

OS of 9.3 month; most common adverse event was
febrile neutropenia

[182]

1–1.3 mg/m2/d i.v.
days 8, 15 and 22

Tipifarnib 2—mg bid
orally day 1–21

Phase I clinical in AML
and high-risk MDS

patients
(n = 11) (EudraCT

2006-004588-69;
NTR 2959)

MTD was not reached; The most frequent side effect
was myelosuppression; CR + CRi was observed in

3/11 (27%) patients, and stable disease in 3/11 (27%)
patients; median OS was 449 days, and 2 patients were
still alive at 4 and 4.3 years, including one patient with

continuing complete response

[183]

Hypoxia Evofosfamide
(TH-302)

120–550 mg/m2 i.v.
days 1–5

-

Phase I clinical in
relapsed/ refractory

AML
(n = 39) and ALL (n = 9)
patients (NCT01149915)

DLTs were grade 3 esophagitis, which was observed at
550 mg/m2 and grade 3 stomatitis and

hyperbilirubinemia observed at 460 mg/m2; MTD for
30–60 min/day infusion was 460 mg/m2 and for
continuous infusion was 300 mg/m2; combined

overall response rate was 6%, with all responses seen
in 30–60 min/day infusion arm

[184]
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Table 2. Cont.

Target Drug Treatment
Design

Combination
Treatment Design

Model/
Disease Type Results Ref.

PD-1/PD-L1

Pidilizumab
(CT-011) 0.2–6 mg/kg i.v. -

Phase I clinical in AML
(n = 8), non-hodgkins

lymphoma
(n = 4), chronic

lymphocytic leukaemia
(n = 3), hodgkins

lymphoma (n = 1), MDS
(n = 1) and multiple

myeloma (n = 1)
patients

No single MTD was defined; No change in the average
percentage of blasts in the blood of AML patients, with

the exception of 1 AML patient that exhibited a
reduction in the number of peripheral

blasts from 50% to 5%

[185]

Nivolumab 3 mg/kg i.v.
days 1, and 14

Azacitidine 75 mg/m2

i.v. or s.c. day 1–7

Phase II clinical in
relapsed/

refractory AML
patents

(n = 70) (NCT02397720)

Overall response rate was 33%, and 6 (9%) patients
had stable disease > 6 months; the overall response

rate was 58% and 22% in hypomethylating agent-naïve
and hypomethylating agent-pre-treated patients,
respectively; grade 3/4 immune-related adverse

events occurred in 11% patients

[186]

3 mg/kg on day 24

Ara-C 1.5 g/m2 daily for
4 days and idarubicin
12 mg/m2 daily for

3 days

Phase II clinical in
treatment-naïve AML
(n = 42) and high-risk

MDS (n = 2)
patients (NCT02464657)

Median RFS of responders was 18.54 months;
6 patients had grade 3/4 adverse events including

rash, colitis, transaminitis, cholecystitis
and pancreatitis

[187]

AML—acute myeloid leukaemia; Ara-C—cytarabine; allo-HCT—allogenic haematopoietic cell transplant; CML—chronic myeloid leukaemia; CR + Cri—overall complete remission and
complete remission with incomplete blood count recovery rate; DFS—disease free survival; DLT—dose limiting toxicities; MDS—myelodysplastic syndrome; OS—overall survival;
RFS—relapse free survival; s.c.—subcutaneous; ‘-‘—not examined; p.o.—per oral.
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4.1. Strategies to Dislodge LSCs and AML Blasts from the Bone Marrow Niche

As AML cells have been shown to create ‘sanctuary sites’ and be protected from
chemotherapeutics when residing in the bone marrow niche, one potential strategy for
treating AML that has been examined is disrupting the AML-bone marrow stromal cell
interaction to cause cells to begin to cycle and re-enter the circulation so that they can
become re-sensitive to chemotherapeutics (Table 1).

4.1.1. Inhibiting CXCR4: Plerixafor and Other Antagonists

Among the adhesion molecules responsible for normal and LSC homing to bone
marrow niches, CXCR4/CXCL12 axis appears to be one of the most promising potential
anti-leukaemic targets under investigation and has been the subject of numerous pre-
clinical and clinical studies (Tables 1 and 2). The principal inhibitor of the CXCR4/CXCL12
axis, plerixafor (Mozobil®, AMD3100), is a small molecule that specifically binds to CXCR4
and inhibits its interaction with CXCL12 and subsequent downstream events including
chemotaxis, which leads to rapid mobilisation of HSPCs [188]. It was originally developed
as an anti-HIV drug but was soon recognised for its ability to mobilise stem cells out of the
bone marrow and is currently approved by the FDA for autologous transplantation in non-
Hodgkins Lymphoma and multiple myeloma [189]. Plerixafor has been further exploited
for its anti-tumour properties; it increased apoptosis of AML cells in vitro, and increased
survival in pre-clinical studies of AML patient derived xenograft (PDX) mouse models
with high CXCR4 expression [129]. Additionally, treatment with this CXCR4 inhibitor
increased the number of circulating leukaemic cells in an acute promyelocytic leukaemia
(APL) mouse model, and sensitised circulating APL cells to Ara-C treatment, thereby in-
creasing overall survival (OS), compared to chemotherapy alone [130], and decreased AML
blast engraftment in bone marrow, liver and spleen in vivo [131]. Combining plerixafor
with Ara-C and an anti-PD-L1 treatment significantly decreased AML blast count and
prolonged survival in vivo [132]. Interestingly, post-transplant treatment with plerixafor
significantly improved graft-versus-leukaemia effects in AML PDX models and promoted
donor haematopoietic engraftment following allogenic haematopoietic cell transfer [133].

Due to promising pre-clinical results (Table 1), plerixafor has moved into Phase I/II
clinical trials in relapsed or refractory AML (Table 2). A phase I dose-escalation trial did
not find any dose-limiting toxicities, and plerixafor and G-CSF combined with busulfan
and fludarabine in AML and MDS patients was shown to be safe and well tolerated, and
to reduce graft versus host disease [157]. The addition of plerixafor to the myeloablative
treatment for allogenic haematopoietic stem cell transplant for AML patients in their first
complete remission is a safe and well-tolerated therapeutic procedure [161]. In addition to
a promising safety profile, combinations of plerixafor with various chemotherapeutics have
been demonstrated to exhibit clinical efficacy. For example, combination with mitoxantrone,
etoposide and Ara-C, produced an overall response rate of 46% [156]. Similarly, treatment
of relapsed/refractory FLT3-ITD-mutated AML patients with a combination of sorafenib, G-
CSF and plerixafor resulted in a 36% response rate [162], and combination with fludarabine,
idarubicin, Ara-C, and G-CSF induced a 50% response rate in primary refractory patients
and 47% response rate in early relapse patients [160]. While plerixafor combined with the
hypomethylating agent decitabine is well tolerated in older AML patients, and mobilisation
of LSCs was observed in some patients, the clinical benefit of adding plerixafor to this
regimen remains uncertain [158]. Further, due to poor patient enrollment, a Phase I clinical
trial examining plerixafor and G-CSF in conjunction with timed-sequential chemotherapy
was inconclusive [159]. In an attempt to resolve this uncertainty, a systematic review
and meta-analysis of pre-clinical and clinical studies examining plerixafor as a treatment
for AML was conducted and revealed plerixafor exhibited good pre-clinical efficacy and
decreased total blast burden and increased survival compared to control animals in vivo
and was well tolerated and safe in patients [190]. However, the majority of reported
clinical trials were single arm studies, therefore, additional studies with larger sample sizes,
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controls and longer follow-up are required to conclusively determine whether plerixafor
has any clinical benefit in AML.

Providing additional support for CXCR4 targeting being a valid AML treatment strat-
egy, the high-affinity CXCR4 antagonist BL-8040 prolonged survival and reduced minimal
residual disease when combined with FLT3 inhibitors in vivo [134], and the CXCR4 peptide
antagonist LY2510924 induced AML cell mobilisation into the circulation and decreased
tumour volume, both as a monotherapy and when combined with Ara-C and doxorubicin
in an OCI-AML3 xenograft model in vivo [135]. Similarly, a fully humanised monoclonal
anti-CXCR4 antibody, ulocuplumab (BMS-936564/MDX-1338) decreased tumour burden
in vivo [136]. Importantly, in a Phase IIa clinical trial of relapsed/refractory patients, when
BL-8040 was combined with high dose Ara-C, a composite response rate of 29% was
observed [163]. Similarly, ulocuplumab and mitoxantrone, etoposide and Ara-C treat-
ment of relapsed/refractory AML patients exhibited anti-leukaemic activity and safely
improved the historic response rate achieved with the chemotherapy regimen alone [165].
Additionally, the CXCR4 peptide antagonist LY2510924, was shown to be safe and well
tolerated in patients with relapsed or refractory AML in Phase I clinical trials [164]. Taken
together, these studies demonstrate the effectiveness of CXCR4 targeting clinically, and
suggests that the continued development of drugs targeting this axis for the treatment of
AML is warranted.

4.1.2. Targeting E-Selectin with Uproleselan

The endothelial cell adhesion molecule, E-selectin, is a key component of the bone
marrow niche, and an important regulator of HSPC function. Additionally, AML blasts
with high E-selectin expression are more likely to survive chemotherapy treatment and
become drivers of relapse. Subsequently, E-selectin inhibitors are being examined as
potential therapeutic strategies for the treatment of AML (Tables 1 and 2). Indeed, inhibition
of E-selectin with the small molecule mimetic uproleselan (GMI-1271), sensitises AML
blasts to Ara-C chemotherapy, and significantly improves survival in a mouse model of
AML compared to Ara-C alone [137]. This promising pre-clinical study highlighted that
uproleselan warranted clinical investigation.

A phase I/II clinical study examining uproleselan in combination with mitoxantrone,
etoposide and Ara-C for the treatment of AML has been conducted. The remission rate in
relapsed and refractory AML patients was 41%, however, when used as a frontline therapy
for older AML patients, the remission rate was 72% [166]. This clinical trial highlights that
the addition of uproleselan to chemotherapy is not only well tolerated, but also induces
high remission rates, and provides strong evidence for examination in further clinical trials.

4.1.3. Targeting VLA-4

The adhesion molecule VLA-4 has been implicated in AML proliferation, chemore-
sistance and relapse, and also in the localisation and adhesion of HSPCs within the bone
marrow niche [38,39,65,68], suggesting that targeting VLA-4 may be a viable anti-AML
therapeutic strategy (Table 1). Indeed, in a mouse model of minimal residual disease,
a 100% survival rate was achieved by combining VLA-4-specific antibodies or the VLA
peptide inhibitor FNIII14 and Ara-C, whereas Ara-C treatment alone only slightly increased
survival [65,138]. Another VLA-4 blocking agent in development is AS101, which blocks
the interaction between VLA-4 and stromal fibronectin. In an AML PDX model, AS101 treat-
ment abrogated drug resistance and prolonged survival in mice co-treated with Ara-C [139].
Taken together, these promising pre-clinical studies highlight that therapeutic targeting of
VLA-4 warrants further investigation, and that clinically useful inhibitors are required.

4.2. Vascular Targeting and Angiogenesis as an Anti-AML Strategy

As increased angiogenesis is observed in the bone marrow of AML patients [61], anti-
angiogenic therapy has been investigated as a clinical anti-AML strategy. To date, several
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drugs with anti-angiogenic properties have been tested in pre-clinical and clinical studies
(Tables 1 and 2).

4.2.1. Targeting VEGF/VEGFR

One of the key drivers of angiogenesis within the bone marrow microenvironment
is VEGF. VEGF mRNA is overexpressed in AML patient samples compared to normal
controls [191], and has been suggested to play a role in AML pathogenesis. Therefore,
several anti-VEGF strategies have been examined pre-clinically and clinically, with varying
levels of success (Tables 1 and 2). The anti-VEGF monoclonal antibody bevacizumab
exhibits clinical activity against a variety of cancers when administered in conjunction with
cytotoxic chemotherapy. When bevacizumab was combined with Ara-C and mitoxantrone
in a Phase II clinical trial in refractory/relapsed AML, the overall response rate was
48%, and the complete response was 33% [167], suggesting that bevacizumab warranted
additional clinical study in AML. However, additional randomised Phase II trials in elderly
AML patients of bevacizumab combined with standard chemotherapy demonstrated that
the addition of bevacizumab did not alter remission rates or event-free survival (EFS) but
led to an unfortunate increase in severe adverse events [168]. This study demonstrated that
the addition of bevacizumab to standard chemotherapy did not improve the therapeutic
outcome for older AML patients and suggests that bevacizumab may not be suitable for
the treatment of AML patients, particularly older cohorts.

Despite these disappointing clinical findings, other anti-VEGF/VEGFR strategies have
also been examined for the treatment of AML (Tables 1 and 2). One promising strategy that
has been examined is aflibercept, the decoy VEGFR moiety with stronger affinity for VEGF
than bevacizumab. Aflibercept slowed disease progression in two systemic human AML
xenograft models and reduced peripheral AML burden in a primary relapsed AML model
in vivo, and these effects were further enhanced when combined with doxorubicin [140].
Additionally, a novel vascular disrupting agent, combretastatin A1 (OXi4503), decreased
tumour burden and improved survival in HL60 xenograft models in vivo [142], and when
combined with bevacizumab, AML engraftment was reduced in both a systemic xenograft
and an AML chloroma model [141]. Following on from this demonstration of pre-clinical
efficacy, OXi4503 was examined in a Phase Ia trial in patients diagnosed with MDS or
refractory AML, and shown to be safe and feasibly administered to patients [169]. An
additional Phase Ib trial in relapsed/refractory AML patients in combination with Ara-C
exhibited only a 19% overall response rate [170]. Overall, these clinical evaluations of
VEGF/VEGFR targeting therapies have been largely disappointing, but additional studies
with novel chemotherapeutic combinations may yield improved results.

4.2.2. Blocking Angiopoietin-1/Tie2 Interactions

In addition to signaling via VEGF /VEGFR, angiopoitin-1 and -2 and their endothelial
cell receptor tyrosine kinases, Tie1 and Tie2 are also important regulators of angiogenesis
within the bone marrow microenvironment [192]. Primary human AML cells universally
and constitutively release the Tie2 agonist, Ang-1, which can be decreased in vitro by the
proteasome inhibitor bortezomib, or the IkB-kinase/NFkB inhibitor, BMS-345541 [193]. The
expression of the Tie2 antagonist, Ang-2, by patient derived AML cells is more variable [194],
with high circulating levels being an independent prognostic marker for better OS [195].
AML cells also express Tie2, and the angiopoietin-1/Tie2 interaction maintains LSCs in a
quiescent and pro-survival state in the bone marrow niche [196]. Blocking this interaction
decreases AML cell proliferation in co-cultures with microvascular endothelial cells [193].
A peptide that disrupts the angiopoietin-1/Tie2 interaction, Trebananib (AMG 386), has
been widely studied in ovarian cancer [197], and due to the effects on AML cells in vitro,
has begun to be examined as a potential treatment for AML (Table 2). A preliminary
Phase Ib clinical trial in refractory/relapsed AML patients demonstrated that Trebananib
increased plasma angiopoietin-2 levels in 7/13 patients. One AML patient exhibited a
partial response, with two patients exhibiting stable disease [171]. A second arm of this
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study (Trebananib plus low dose Ara-C) has recently been completed (NCT01555268).
In vitro results above suggest that combinations with more targeted therapies may be more
effective, but whether Trebananib proves to be clinically useful in AML remains to be seen.

4.3. Targeting Signalling Pathways Involved in LSC Remodelling of the Bone Marrow Niche

Numerous signalling pathways have been implicated in LSC remodelling of the bone
marrow microenvironment and targeting components of these niche-associated signalling
pathways may present a novel strategy for increasing therapeutic effectiveness. Small
molecule inhibitors targeting many of these signalling pathways have been examined
clinically (Tables 1 and 2).

4.3.1. Wnt/β-Catenin Signalling

Wnt signalling constitutes a group of signal transduction pathways involved in devel-
opment. Importantly, Wnt signalling is commonly upregulated in AML, and is necessary
for a variety of important AML-related processes, including the maintenance of LSCs
within the bone marrow niche [198], and Wnt-β-catenin signalling in the bone marrow
microenvironment contributes to chemoresistance in leukaemias [199]. A variety of Wnt
signalling inhibitors have been pre-clinically evaluated for the treatment of AML (Table 1).

For example, the anthraquinoneoxime-analogue BC2059 attenuates β-catenin levels,
and significantly improved survival of mice xenografted with primary AML cells in vivo.
This effect was synergistically enhanced when combined with the histone deacetylase
inhibitor panobinostat [143]. Additionally, mice treated with a combination of the β-
catenin antagonist PRI-724 and sorafenib, or the Wnt signalling inhibitors, PU-74654 or
niclosamide in combination with Ara-C exhibited reduced AML burden and improved
survival in vivo [144,145]. Treatment with the dual PI3K/mTOR inhibitor VS-5584 and
the Wnt inhibitor ICF-001 significantly reduced AML burden and prolonged survival
in vivo [146]. Similarly, oral administration of SKLB-667, a dual FLT3 and Wnt/β-catenin
signalling inhibitor, decreased tumour burden in AML xenografts in vivo [147].

Based on these promising pre-clinical studies, a Phase I study of CWP2322291 (CWP291), a
small molecule inhibitor of Wnt signalling, has been undertaken in AML and MDS patients.
This trial demonstrated that this inhibitor was safe and exhibited single agent activity [172],
highlighting that inhibitors of Wnt signalling warrant further clinical investigation.

4.3.2. Therapeutic Targeting of ‘Undruggable’ myc

C-myc has been shown to control the balance between HSPC self-renewal and dif-
ferentiation [25], and to play a pivotal role in leukaemia cell proliferation, apoptosis and
differentiation [200]. Additionally, c-myc-dependent signalling has been shown to con-
tribute to microenvironment-mediated drug resistance in AML. C-myc signalling was
activated by MSC in AML cells and promoted AML cell survival [201]. Further, inhibition
of c-myc activation overcame stroma-mediated drug resistance in both established and
primary leukaemia cells [201]. As such, an inhibitor of myc has begun to be explored as a
treatment for AML (Table 1). APTO-253 can bind to G4 structures in the nuclease hypersen-
sitive element III region of the myc promoter and downregulate myc expression to trigger
apoptosis in AML cell lines in vitro and primary AML patient samples ex vivo [202,203].
Despite only limited pre-clinical data being available, clinical trials examining APTO-253
in relapsed/refractory AML are underway and have shown that APTO-253 is safe and
well-tolerated in these patients [173], however, whether APTO-253 also displays clinical
effectiveness remains to be seen.

4.3.3. Bcl-2 Pathways

The bone marrow microenvironment offers protection against a range of cytotoxic
agents, and activation of anti-apoptotic signals in this microenvironment has been impli-
cated in enhancing cell survival and resistance to therapy. Stromal cells express adhesion
molecules and soluble factors [204] leading to activation of pro-survival pathways. Expres-
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sion of Bcl-2, a critical pro-survival factor, is upregulated in AML co-cultures with stromal
cells [97]. Importantly, Bcl-2 pathways are heterogeneously increased in AML and con-
tribute to chemoresistance of quiescent leukaemia cells [205], suggesting that targeting this
pathway may lead to the induction of apoptosis in quiescent leukaemic progenitor cells. As
such, several Bcl-2 inhibitors have begun to be explored pre-clinically and clinically in AML
(Tables 1 and 2). Although primarily developed to target tumour cells, their clinical success
may be due to unexpected off target effects within the bone marrow microenvironment
that are only just beginning to be elucidated (as discussed in the next section). Indeed,
AT-101 is a pan-Bcl-2 inhibitor and binds to the BH3 motif of the Bcl-2 family proteins to
induce apoptosis in LSCs in vitro and in AML patient blasts ex vivo [206]. Additionally,
combination with idarubicin in a FLT3-ITD AML patient derived xenograft model inhibited
tumour growth in vivo [148]. Similarly, the BH3-mimetic Bcl-2 inhibitor, ABT-737, killed
AML patient blasts and LSCs, including LSCs resistant to Ara-C and daunorubicin, ex
vivo [207], and prolonged survival in vivo [149].

To overcome toxicities associated with Bcl-xL inhibition, an orally bioavailable Bcl-2-
selective Bcl-2 mimetic, ABT-199 (venetoclax) has been developed. Whilst venetoclax alone
did not increase survival in AML xenograft models in vivo, combination with daunorubicin
or gilteritinib significantly enhanced survival [150,151]. Despite limited pre-clinical evi-
dence demonstrating efficacy as a monotherapy, venetoclax was explored as a monotherapy
in a Phase II study in relapsed and refractory AML patients [174]. Modest efficacy was
observed (an overall response rate of 19%), and venetoclax was shown to be safe and well
tolerated in these patients. Combined with the preclinical findings, this study provided
compelling evidence for examining venetoclax in combination with other chemotherapeutic
strategies in relapsed and refractory AML.

Subsequently, several clinical studies have examined venetoclax in combination with
various chemotherapeutics in AML patients. De-methylation agents have proven successful
in treating haematological malignancies with mutations in epigenetic modifiers such as
DNA methyltransferases (DNMT) and ten-eleven translocation (TET) family enzymes [208].
However, it is now recognised that these drugs may also rectify aberrant methylation and
subsequent silencing of key genes that specifically occurs within the MDS/AML bone mar-
row microenvironment [209]. A large, multicentre, Phase Ib dose-escalation and expansion
study in treatment-naïve elderly AML patients demonstrated that combining venetoclax
with decitabine or azacytidine was well-tolerated and effective, as 67% of patients achieved
complete remission or complete remission with incomplete count recovery [175]. Impor-
tantly, in a follow-up study of previously untreated AML patients ineligible for standard
induction therapy, OS was longer, and the incidence of remission was higher among pa-
tients who received venetoclax and azacytidine, when compared to azacytidine treatment
alone [176]. Similarly, combining venetoclax with the longer 10-day decitabine regimen
in elderly AML patients exhibited a manageable safety profile and high efficacy, with
an overall response rate of 74% being observed [177]. A prospective Phase Ib/II study
evaluating fludarabine, Ara-C, G-CSF, and idarubicin combined with venetoclax in patients
with newly diagnosed or relapsed/refractory AML revealed that 89% achieved a composite
complete response, including 93% who were measurable residual disease negative [178].
After a median follow-up of 20 months, median event free and overall survival was not
reached, and estimated 24-month survivals were 64% and 76%, respectively, which are
favourable compared to historical benchmarks for induction chemotherapy. A post hoc
propensity score matched analysis of 3 prospective clinical trials examining venetoclax
in combination with induction chemotherapy revealed that the addition of venetoclax
induced deep measurable residual disease negative remissions, and improved EFS [210].
Administering venetoclax dose ramp-up in combination with decitabine, azacitidine and
low-dose cytarabine appears to be safe in patients with AML and MDS [211,212], and it is
recommended for use in AML. Based on these promising studies, venetoclax in combina-
tion with azacitidine, decitabine or low-dose Ara-C has been approved for the treatment of
adults with newly diagnosed AML who are ineligible for intensive chemotherapy.
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Senolytics

AML blasts can induce a senescent phenotype in stromal cells within the bone marrow
microenvironment. Importantly, these senescent stromal cells can feedback to promote
AML blast survival and proliferation via the SASP [127]. These findings reveal the im-
portance of a senescent microenvironment for AML pathophysiology, and support using
senolytics as a valid therapeutic strategy for the treatment of AML. Indeed, many are
already being used in human clinical trials as anti-fibrotic agents and to treat age related
ailments such as macular degeneration [122]. Examples of current senolytics being tri-
alled for such conditions include dasatinib (an FDA approved tyrosine kinase inhibitor
for chronic myeloid leukaemia), the flavonoids quercetin and fistein, and importantly, the
BCL-2 inhibitors, navitoclax, A1331852, and A1155463 [213]. The latter may explain the
improved outcomes seen in AML patients treated with venetoclax in combination with
traditional chemotherapeutics. Although designed to target the leukaemia cells, venetoclax
may have the added benefit of eliminating senescent MSC cells from the bone marrow
to produce a less favourable environment for persistent leukaemic blasts, and a more
conducive milieu for the recommencement of normal haematopoiesis. Such double-edged
swords may provide the ultimate arsenal to fight this disease.

4.3.3.2. mTOR Pathway

The PI3K-Akt-mTOR pathway is among one of the most aberrantly upregulated
pathways in AML and has been implicated in leukaemogenesis [214] and bone marrow-
mediated chemoresistance [215], suggesting that it may be a suitable anti-AML therapeutic
target. Despite the evidence implicating this pathway in a variety of important AML
processes, the single agent activity of mTOR inhibitors in pre-clinical AML models has
been modest [216]. However, clinical studies of rapamycin in a small cohort of refractory
AML patients exhibited mildly cytoreductive effects [179], suggesting that higher doses
and drug combinations should be the subject of future clinical trials.

Indeed, combining the rapamycin analogue, everolimus, with 1,25-dihydroxyvitamin
D3 inhibited tumour growth in vivo [152]. Further, a clinical study investigating the
combination of another rapamaycin analogue, temsirolimus, and lower dose clofarabine in
older AML patients revealed an overall remission rate of 21% [180], suggesting that this
combination may have some clinical utility. Taken together, these clinical studies (Table 2)
indicate that m-TOR inhibitors warrant further clinical examination.

4.3.4. Targeting NF-κB

Constitutive NF-κB expression has been observed in 40% of AML cases, and this
aberrant activity has been shown to allow leukaemia cells to stimulate proliferation and
evade apoptosis within the bone marrow microenvironment [217]. Additionally, reciprocal
NF-κB activation in bone marrow MSCs and leukaemia cells promotes chemoresistance in
AML cells [68], and pharmacological inhibition of NF-κB signalling altered the expression
of genes included in a LSC signature [218], suggesting that NF-κB signalling within the
bone marrow microenvironment as well as AML cells may represent an attractive target
for the treatment of AML, including the potential elimination of LSCs. Several different
strategies for inhibiting NF-κB signalling have been examined in AML cells (Tables 1 and 2).

The reversible proteasomal inhibitor bortezomib can indirectly target constitutive NF-
κB activation [219]. Bortezomib reduced the frequency and function of LSCs and increased
OS in an MLL-AF9 AML xenograft model in vivo [153]. By contrast, when bortezomib was
tested in AML patients in combination with pegylated liposomal doxorubicin or decitabine
it did not improve patient outcomes [181,182]. However, combination with tipifarnib in
high-risk MDS and AML patients was well tolerated, and a complete response or stable
disease was observed in 6/11 (55%) of patients [183]. Additional clinical trials of bortezomib
in combination with chemotherapeutics (NCT01371981, NCT01861314, NCT01420926,
NCT00510939) are still ongoing, and whether these strategies exhibit clinical efficacy remain
to be seen.
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Another strategy for inhibiting NF-κB activity that has been examined in AML are
phosphorothioate oligonucleotides that mimic the NF-κB consensus binding site. Whilst
these oligonucleotides did not inhibit AML cell survival in vitro or ex vivo, they induced
chemosensitivity to etoposide and Ara-C [220,221], and their effects on tumour burden or
survival in vivo have not been examined.

4.4. Hypoxia

The bone marrow niche is a hypoxic environment where leukaemic cells preferentially
reside, and hypoxia regulates AML cell proliferation and chemosensitivity [222]. This novel
feature of leukemia can be exploited by an emerging group of drugs, known as hypoxia
activated pro-drugs that are currently being evaluated for the treatment of AML (Table 1).
These bioreductive drugs are harmless until they are selectively reduced under hypoxic
conditions to form cytotoxic agents. Although developed as a means to target the hypoxic
regions of solid tumours, their use is limited by clinical toxicities of thrombocytopenia and
neutropenia, suggesting they may be more potent at targeting cancer cells within the bone
marrow microenvironment [223].

The pro-drug Evofosfamide (TH-302), which under hypoxic conditions releases the
DNA alkylating agent bromoisophosphoramide mustard, has begun to be explored as a po-
tential AML treatment. In systemic human AML xenografts (HEL, HL60), TH-302 inhibited
disease progression and increased OS, and both early and late treatment regimens were
equally effective [154]. Additionally, combination with the kinase inhibitor, sorafenib, in a
MOLM-13 xenograft model, synergistically enhanced the anti-leukaemic effects compared
to either agent alone and prolonged survival in vivo [155].

Based on these pre-clinical findings, Evofosfamide was examined in a small Phase I
study in patients with relapsed/refractory AML. Despite the promising pre-clinical results,
the combined overall response rate in these patients was only 6% [184], thus suggesting
that Evofosfamide may have only limited activity in these patients.

4.5. Immune Checkpoint Inhibitors

As AML cells can modulate the immunological microenvironment to favour leukae-
mogenesis [224], and the immune system has been shown to effectively target leukaemic
blasts in the context of the graft-versus-leukaemia effect [225], immunomodulating agents,
particularly immune checkpoint inhibitors, have been explored for the treatment of AML
(Table 2). Of particular interest is the PD-L1/PD-1 interaction, as this inhibits immune
responses in murine AML models, suggesting that the PD-1/PD-L1 pathway is involved
in immune evasion by AML cells [226]. Further, high expression of PD-1, PD-L1 and
PD-L2 in AML patients was associated with poor OS [106], providing further evidence that
immune checkpoint inhibitors may be useful in the treatment of AML. Subsequently, the
efficacy of several monoclonal antibodies targeting PD-1/PD-L1 have been examined as
monotherapies or in combination with chemotherapeutics and hypomethylating agents.

Pidilizumab was the first PD-1 inhibitor examined in AML/MDS, and pidilizumab
was shown to be relatively safe in a phase I trial in patients with advanced haematological
malignancies [185]. The response in AML patients was disappointing, with only 1/8 AML
patients exhibited a reduction in the number of peripheral blasts. Subsequently, no further
clinical studies examining pidilizumab in the treatment of AML have been performed.

The expression of PD-L1, PD-L2, PD-1 and CTLA4 is enhanced in MDS by treatment
with the DNA hypomethylating agent decitabine [227], suggesting that combining immune
checkpoint inhibitors with this or similar agents may enhance efficacy. A non-randomised
open-label phase II study examining the combination of the hypomethylating agent, azac-
itidine, and another PD-1/PD-L1 inhibitor, nivolumab, in relapsed and refractory AML
patients produced an encouraging response rate and OS in these patients [186]. Addi-
tional studies of nivolumab combined with induction chemotherapy demonstrated that
this regimen was feasible and safe in younger AML patients, however no significant im-
provement compared to a contemporary cohort examining Ara-C plus idarubicin was
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observed [187,228]. This disappointing outcome underscores the heterogeneity of the dis-
ease and absolute requirement for more suitable biomarkers to predict response to targeted
treatments. Clinical trials examining other immune checkpoint inhibitors in combination
with other chemotherapeutics or hypomethylating agents are nevertheless still being ex-
amined [229]. Whether any of these novel combinatorial strategies demonstrates clinical
efficacy remains to be seen.

5. Conclusions

The bone marrow microenvironment is highly complex and is critical for supporting
leukaemogenesis and AML progression and is a key player in the development of resis-
tance as well as AML relapse. A variety of approaches for targeting the bone marrow
microenvironment are being explored for the treatment of AML, with varying levels of
success. Whilst promising results have been obtained using strategies that inhibit AML cell
adhesion and homing, such as targeting the CXCR4/CXCL12 axis, VLA-4 and E-selectin
(Tables 1 and 2), with several of these agents, particularly the CXCR4 antagonists plerixafor
and ulocuplumab, and the E-selectin inhibitor uproleselan, demonstrating clinical efficacy
that warrants further investigation, other potential approaches targeting the bone marrow
microenvironment have not yielded as encouraging results. For example, targeting an-
giogenesis and exploiting hypoxia with pro-drugs have all yielded disappointing results
for the treatment of AML. Pre-clinical and early evidence of Wnt/β-catenin inhibitors are
encouraging, and whether targeting myc will be a viable clinical option remains to be seen.

Taken together, these studies indicate that targeting aspects of the bone marrow
microenvironment are a potentially novel therapeutic strategy for the treatment of AML,
particularly for AML that is relapsed and refractory, which has traditionally poor patient
outcomes. The recent approval of venetoclax acts as a proof of principle for this approach
and highlights that this niche is a promising and emerging new area of focus for the
identification of novel treatments for AML.
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