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Abstract: Colorectal cancer represents a leading cause of cancer-related morbidity and mortality.
Despite improvements, chemotherapy remains the backbone of colorectal cancer treatment. The
aim of this study is to investigate the variation of circulating microRNA expression profiles and
the response to irinotecan-based treatment in metastatic colorectal cancer and to identify relevant
target genes and molecular functions. Serum samples from 95 metastatic colorectal cancer patients
were analyzed. The microRNA expression was tested with a NucleoSpin miRNA kit (Machnery-
Nagel, Germany), and a machine learning approach was subsequently applied for microRNA pro-
filing. The top 10 upregulated microRNAs in the non-responders group were hsa-miR-181b-5p,
hsa-miR-10b-5p, hsa-let-7f-5p, hsa-miR-181a-5p, hsa-miR-181d-5p, hsa-miR-301a-3p, hsa-miR-92a-3p,
hsa-miR-155-5p, hsa-miR-30c-5p, and hsa-let-7i-5p. Similarly, the top 10 downregulated microRNAs
were hsa-let-7d-5p, hsa-let-7c-5p, hsa-miR-215-5p, hsa-miR-143-3p, hsa-let-7a-5p, hsa-miR-10a-5p,
hsa-miR-142-5p, hsa-miR-148a-3p, hsa-miR-122-5p, and hsa-miR-17-5p. The upregulation of microR-
NAs in the miR-181 family and the downregulation of those in the let-7 family appear to be mostly
involved with non-responsiveness to irinotecan-based treatment.

Keywords: microRNAs; colorectal cancer; machine learning; artificial intelligence; irinotecan; resistance

1. Introduction

According to the latest data, colorectal cancer (CRC) ranks third among the most
common diagnosed malignancies worldwide [1]. De novo metastatic CRC (mCRC) has
been linked with poorer prognosis compared to metachronous occurrences of metas-
tases [2]. However, despite the discovery and addition of novel therapeutic approaches,
treatment failure and drug resistance remain major obstacles in the battle against mCRC.
The backbone of the regimens that are traditionally used for the treatment of mCRC are
fluoropyrimidine-based schemes, including irinotecan and oxaliplatin. More specifically,
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these are the combinations that are more frequently used in day-to-day clinical practice:
FOLFIRI (5-fluorouracil, leucovorin and irinotecan), CAPIRI (capecitabine and irinotecan),
FOLFOX (5-fluorouracil, leucovorin and oxaliplatin), CAPOX (capecitabine and oxaliplatin)
and FOLFOXIRI (5-FU, leucovorin, oxaliplatin and irinotecan). Additionally, targeted ther-
apies such as anti-vascular epithelial growth factor (anti-VEGF) and anti-epidermal growth
factor receptor (anti-EGFR) agents have further improved Response Rates (RR), Progression
Free Survival (PFS) and Overall Survival (OS) in patients suffering from mCRC [3].

MicroRNAs (miRNAs) represent a non-coding RNA subtype that inhibits gene ex-
pression on a post-transcriptional level. Several remarkably stable forms of circulating
miRNAs exist and can be isolated from body fluids and other extracellular environments
such as blood, urine and saliva. Despite the fact that miRNA biogenesis is a highly con-
trolled process, miRNA dysregulation has been directly associated with tumorigenesis
and multiple cancer types, including CRC [4]. The differential expression of miRNAs
has also been correlated with the molecular profile of CRC, tumor size and location (left
versus right colon), presence of microsatellite instability (MSI) and response to cancer
therapy [5]. Furthermore, their role in cancer drug resistance/response has been widely
studied in several malignancies, including CRC [6–8]. Interestingly, alterations in the tumor
microenvironment that result from the cell-to-cell transfer of miRNAs have been reported
as one of the major causes of irinotecan resistance in human CRC [9]. Kannathasan et al.
found that specific miRNA expression profiles have been associated with the activation
of the G protein nucleolar 3-like (GNL3L)/NF-κB pathway [10]. Similarly, hsa-miR-155
was significantly associated with irinotecan resistance via targeting differentially expressed
genes such as GPT2, NOB1 and KRCC1 [11]. Therefore, the current research supports
the idea that circulating miRNAs are attractive candidates for the detection of novel drug
resistance/response biomarkers, promising a wide spectrum of clinical applications in
precision oncology.

Moreover, the growing progress of the field and the increasing amount of scientific and
clinical data in experimental biology that have entered the mainstream of clinical practice
warrant new molecular tools for individualized treatments. However, the unprecedented
volume of large-scale miRNA expression profiling involves potential pitfalls in terms of
extracting clinically significant results. To overcome this challenge, bioinformatics were
developed and applied; this discipline basically combines computer technology tools
in order to accurately capture, analyze and interpret massive and complicated sets of
biological data and information [12]. Machine learning (ML) refers to a sub-category of
artificial intelligence (AI) which uses computer algorithms in order to populate predictive
models that derive from training data, while also being able to repeatedly self-adapt in order
to improve its performance. Currently, machine learning has gained extensive scientific
interest in oncology research and practice [13], and there is evidence that ML methods
have been linked to favorable predictive patterns, especially when dealing with extensive
data sets and large numbers of input variables. Indeed, classical statistical approaches
may be affected by the complexity of the extended data, whereas ML may offer more
suitable options, allowing for the analysis of large sets of data of RNA and microRNA
sequencing. Additionally, ML combined with gene-ontology analysis provides valuable
biological insights that are associated with the phenotype under investigation [14,15].

Acquired resistance is directly associated with cancer types as well as the adminis-
tered regimens. Thus, the specific resistance mechanism may be unique, depending on
the individual, the cancer subtype and the applied treatment. Unfortunately, until now,
there were no tools that could accurately predict drug responses and support more of
a precision oncology approach. However, as mentioned before, technological advances
combining ML and biomedicine have been a promising field for the early cancer detection
and treatment optimization. Indeed, several studies have investigated the role of ML in
cancer drug response [16–19]. Moreover, despite the fact that several predictive models
for both monotherapy and combination therapy have been developed, clinically relevant
predictive models are still challenging to make significant in everyday clinical practice [20].
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In light of the above, in the present work, we aimed to elucidate the expression profiles
of circulating miRNAs, in association with the response to irinotecan-based treatment,
in a cohort study including 95 Caucasian patients with mCRC. Moreover, we used ML
approaches to identify the miRNAs that could serve as predictors of the response to
irinotecan-based therapy in mCRC and offer an initial evaluation for future precision
medicine applications in the clinical setting. Finally, we identified key molecular pathways
relating to target genes through gene ontology analysis in order to better understand the
mechanisms involved between the differential expression of circulating miRNAs and the
response to irinotecan-based treatment.

2. Results
2.1. miRNA Differential Expression

Out of the 84 miRNAs of our array, 35 in total showed an expression dysregulation
of statistical importance, with an adjusted -p < 0.05 and fold regulation of ±2 (Table 1).
Of those, 17 were upregulated and 18 were downregulated in non-responders. Upregu-
lation of miRNAs in the family miR-181 and downregulation of those in the let-7 family
appear to be mostly involved with non-responsiveness to therapy, along with others. The
miRNA hsa-let-7f-5p appears to be contrary to this trend. The top 10 upregulated miR-
NAs (hsa-miR-181b-5p, hsa-miR-10b-5p, hsa-let-7f-5p, hsa-miR-181a-5p, hsa-miR-181d-5p,
hsa-miR-301a-3p, hsa-miR-92a-3p, hsa-miR-155-5p, hsa-miR-30c-5p, and hsa-let-7i-5p)
were used as input for the identification of their target genes and the subsequent in-
vestigation of the pathways those enrich. In total, 9517 unique genes were identified,
enriching 258 GO:MF terms (Supplementary go_enrich_up). In a similar fashion, the top
10 downregulated miRNAS (hsa-let-7d-5p, hsa-let-7c-5p, hsa-miR-215-5p, hsa-miR-143-3p,
hsa-let-7a-5p, hsa-miR-10a-5p, hsa-miR-142-5p, hsa-miR-148a-3p, hsa-miR-122-5p, and hsa-
miR-17-5p) identified 8676 unique genes which enriched 197 GO:MF terms (Supplementary
go_enrich_down). Figure 1 depicts the top 20 GO:MF terms enriched by the up- and down-
regulated miRNAs of our analysis. This analysis highlights biologically important/tumor-
related molecular functions like “cadherin binding,” “transcription coregulator activity,”
“ubiquitin protein ligase binding,” “ubiquitin-like ligase binding,” “transcription coactiva-
tor activity,” “protein serine/threonine kinase activity,” “DNA-binding transcription factor
binding” and “RNA polymerase II-specific DNA-binding transcription factor binding.”

Table 1. Differentially expressed miRNAs of ±2 fold regulation and p.adjust < 0.05 for non-responders
vs. responders comparison.

miRNA Fold Regulation p-Value p-Adjusted Fold Change 95% CI

hsa-miR-181b-5p 116.66 0.00000 0.00000 116.66 (40.84, 192.47)
hsa-miR-10b-5p 47.20 0.00000 0.00000 47.20 (16.08, 78.31)
hsa-let-7f-5p 24.32 0.00188 0.00295 24.32 (9.28, 39.36)
hsa-miR-181a-5p 24.03 0.00000 0.00000 24.03 (13.52, 34.53)
hsa-miR-181d-5p 23.33 0.00000 0.00000 23.33 (12.72, 33.94)
hsa-miR-301a-3p 23.21 0.00000 0.00000 23.21 (14.58, 31.83)
hsa-miR-92a-3p 6.11 0.00000 0.00000 6.11 (3.00, 9.22)
hsa-miR-155-5p 6.11 0.00000 0.00000 6.11 (3.00, 9.22)
hsa-miR-30c-5p 4.06 0.00000 0.00000 4.06 (2.19, 5.94)
hsa-let-7i-5p 3.78 0.03537 0.04421 3.78 (1.51, 6.04)
hsa-miR-29a-3p 3.77 0.00009 0.00019 3.77 (2.17, 5.37)
hsa-miR-138-5p 3.70 0.00000 0.00000 3.70 (2.46, 4.95)
hsa-miR-193b-3p 3.51 0.00083 0.00143 3.51 (1.70, 5.32)
hsa-miR-133b 2.52 0.00010 0.00020 2.52 (0.99, 4.05)
hsa-miR-218-5p 2.28 0.00059 0.00112 2.28 (1.45, 3.11)
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Table 1. Cont.

miRNA Fold Regulation p-Value p-Adjusted Fold Change 95% CI

hsa-miR-150-5p 2.10 0.01732 0.02215 2.10 (1.29, 2.91)
hsa-miR-196a-5p −2.18 0.00797 0.01124 0.46 (0.17, 0.74)
hsa-miR-20a-5p −2.85 0.00004 0.00009 0.35 (0.22, 0.49)
hsa-miR-27b-3p −4.10 0.00075 0.00133 0.24 (0.14, 0.35)
hsa-miR-200c-3p −4.28 0.00000 0.00000 0.23 (0.14, 0.32)
hsa-miR-193a-5p −6.74 0.00000 0.00000 0.15 (0.10, 0.20)
hsa-miR-134-5p −7.02 0.00000 0.00000 0.14 (0.09, 0.20)
hsa-miR-20b-5p −7.34 0.00000 0.00000 0.14 (0.07, 0.20)
hsa-miR-124-3p −7.56 0.00000 0.00000 0.13 (0.09, 0.18)
hsa-miR-17-5p −8.35 0.00000 0.00000 0.12 (0.07, 0.17)
hsa-miR-122-5p −8.71 0.00000 0.00000 0.11 (0.06, 0.17)
hsa-miR-148a-3p −14.62 0.00000 0.00000 0.07 (0.03, 0.11)
hsa-miR-142-5p −16.53 0.00001 0.00003 0.06 (0.03, 0.09)
hsa-miR-10a-5p −17.65 0.00006 0.00013 0.06 (0.04, 0.08)
hsa-let-7a-5p −19.54 0.00000 0.00000 0.05 (0.03, 0.07)
hsa-miR-143-3p −23.44 0.00001 0.00003 0.04 (0.02, 0.07)
hsa-miR-215-5p −26.06 0.00002 0.00005 0.04 (0.02, 0.05)
hsa-let-7c-5p −36.94 0.00000 0.00000 0.03 (0.01, 0.04)
hsa-let-7d-5p −54.23 0.00000 0.00000 0.02 (0.01, 0.03)

 
Figure 1. (A) Top 20 GO:MF terms enriched by our top 10 upregulated miRNAs; (B) Top 20 GO:MF terms enriched by our top 10 downregulated miRNAs. 

Figure 1. (A) Top 20 GO:MF terms enriched by our top 10 upregulated miRNAs; (B) Top 20 GO:MF
terms enriched by our top 10 downregulated miRNAs.

2.2. miRNA Machine Learning Model

From the 50 models trained by our data automatically via h2o, the one which proved to be
the most accurate was a Gradient Boosting Machine (GBM_4_AutoML_7_20221005_201041).
The model exhibited an AUC of 1 with a logloss of 0.0021 and a median Root-mean-
square error (RMSE) of 0.046867. Unfortunately, due to the insufficient number of samples
(more than 200 required, we had 95), this model defaulted to using cross-validation for
its training, resulting in a more “generous” approximation of its statistics. Nonetheless,
when we analyzed the importance of the variables, the top 10 of those validated the
differential expression results and highlighted the mir-181 and let-7 families’ importance to
our prediction model (Figure 2).
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3. Discussion

The aberrant miRNA expression and function have been previously correlated with a
variety of diverse tumor types [21,22]. In fact, miRNA-coding sequences are often found
within or close to cancer-associated genomic regions, resulting in the abnormal activation
or inactivation of miRNAs in different cancer types [23]. Moreover, a single miRNA may
have multiple targets with important differences in functions; this leads to the perception
that miRNAs may exhibit opposite effects within the cell [24]. Thus, the effect of a single
miRNA within a transcriptome may vary significantly, depending on the environment in
which it is expressed [25]. Consequently, since the effects of miRNAs on phenotypes are
context-dependent, the transcriptomes should be comparable in terms of the target-genes
under consideration. For instance, a recent pan-cancer analysis concluded that miRNA
behaviors are highly dependent on the complex tumor phenotypes and vice versa. The
authors also suggested that members of the miR-17 and let-7 families have exhibited
antagonistic behaviors in different tumor types [26]. Another pan-cancer characterization
of miRNA profiles conducted by Moradi et al. identified miR-181 and miR-155, among
others, to be overexpressed in the majority of cancer types included in their analysis. Of
note, their work included data from the TCGA pan-cancer project, without incorporating
CRC [27].

Over the last decade, the differential expression of miRNAs with regard to treatment
response has been widely studied in CRC [8,28,29]. In the current work, we investigated
the expression of 84 tumor-related miRNAs and used ML in order to identify miRNA
signatures that seem to be associated with the response to irinotecan-based treatment in
mCRC patients. Out of the top 20 miRNAs that were found to be differentially expressed
in our samples, several of them have previously been linked with CRC [30–32]. Therefore,
in line with previous observations, hsa-miR-155-5p [33,34], hsa-let-7i-5p [35], hsa-miR-92a-
3p [36], hsa-miR-181d-5p [37], hsa-miR181b-5p [38], hsa-miR-10b-5p [39], hsa-let-7f-5p [40],
and hsa-miR-181a-5p [41] were found to be upregulated in our cohort, whereas hsa-miR-
215-5p [36,42], hsa-miR-143-3p [43,44], hsa-miR-148a-3p [45], hsa-miR-17-5p [46], hsa-
miR-10a-5p [43], and hsa-let-7a-5p [47] were found to be downregulated. These miRNAs
directly target critical genes in colorectal carcinogenesis and prognosis, such as PTEN [39],
TUSC3 [38], PAI-1, AXIN2, CTFR [42], and predominant biological pathways such as the
TGF-β signaling pathway, as well as microsatellite instability [33].

The miRNAs that were found to be dysregulated served as the basis for developing
an ML classifier approach in order to detect those that could be independently related to
the irinotecan-based chemotherapy response in mCRC patients. Our predictive model
demonstrated that mir-181 upregulation and let-7 families’ downregulation appear to be
mostly associated with non-responsiveness. Several studies have demonstrated the role
of hsa-miR-181b-5p in cell proliferation, invasion and chemoresistance. For example, Li
et al., reported that miR-181b-5p regulates TGF-β1-induced epithelial-to-mesenchymal
transition (EMT) by targeting E-cadherin in non-small cell lung cancer stem-like cells [47].
The oncogenic potential of miR-181b in CRC was also associated with the programmed cell
death 4 (PDCD4) gene, whose modulation takes place at a posttranscriptional level [48].
Similarly, the TGF-β1 signaling pathway was found to regulate the EMT of gastric cancer
cells via miRNA-181b overexpression; the latest resulted in targeting the Tissue Inhibitor of
Metalloproteinases 3 (TIMP3) gene through the Smad2/3/4-dependent pathway [49].

MiR-181b-5p downregulation has also been associated with the inhibition of the
growth, migration and glycolysis of gallbladder cancer via the pyruvate dehydrogenase
complex, under hypoxia conditions [50]. Another study found that the oncogenic role of
miR-181b-5p is linked to malignancy promotion in acute lymphoblastic leukemia cells,
working by decreasing the percentage of cells in the G0/G1 phase [51]. Furthermore,
miR-181b downregulation has been correlated with the inhibition of colon cancer cell pro-
liferation through the negative regulation of the NF-κB signaling pathway [52]. Moreover,
miR-181b has been shown to be involved in the regulation of factors that are involved in
the mitogen-activated protein kinase 1 (MAPK1) signaling pathway [53]. There are also a
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few studies that have investigated miR-181b in association with the response to treatment.
Zhang et al. found that miR-181b-5p overexpression may play a role in sensitizing glioma
cells to temozolomide by directly targeting Bcl-2 [54]. Similarly, miR-181b was found to
enhance the sensitivity to gemcitabine in pancreatic ductal adenocarcinoma cells in vitro
by binding to BCL-2 mRNA 3’UTR [55].

Recently, Hosseini et al. linked miR-181b downregulation to the increased sensitivity
of osteosarcoma cells to cisplatin following the addition of melatonin to the treatment [56].
Consistent with this observation, our findings indicate that miR-181b-3p is overexpressed
in the non-responders group, indicating that this may be attributed to drug resistance.

Hsa-miR-10b-5p has not been extensively studied in terms of the response to treatment
in CRC. Schlick et al. found that there was no significant association between its expression
and response to FOLFIRINOX (5-fluorouracil/leucovorin, irinotecan and oxaliplatin) in
advanced pancreatic cancer patients [57]. Furthermore, another study suggested that
miR-10b-5p was downregulated in triple negative breast cancer [58]. Our results indicate
that its overexpression may be associated with non-responsiveness to irinotecan-based
treatment in CRC patients, thus there is room for the further investigation of its role
in future studies. In agreement with our findings, miR-181a-5p overexpression in CRC
cell lines has already been correlated with chemoresistance [59]. More specifically, the
authors proposed that the long non-coding RNA CRNDE could increase miR-181a-5p
expression and regulate chemoresistance via the Wnt/β-catenin signaling pathway. Pop-
Bica et al. showed that miR-181a overexpression in CRC inhibits the WIF-1 gene, resulting
in the enhanced invasiveness of the malignant cells [60]. Similarly, exosomal miR-181d-5p
overexpression has been associated with resistance to 5-FU by directly targeting neurocalcin
δ (NCALD) [37]. Interestingly, miR-181d-5p has also been correlated with a genome
instability-related competing endogenous (ceRNA) network that includes four axes; this
network has been identified as a crucial modulator of the tumor microenvironment, cancer
stemness and resistance to immunotherapy [61]. Regarding miR-301a-3p, our findings
coincide with those that associate its upregulation with cell proliferation, invasion and
migration and the inhibition of cell apoptosis in CRC [62]. Despite the fact that its role
in CRC drug resistance/response has not been investigated yet, it has been reported that
the overexpression of miR-301a-3p promoted gemcitabine resistance in pancreatic cancer
cells, in vitro, by regulating the expression of PTEN [63]. Moreover, consistent with our
results, miR-92a-3p has been linked with 5-FU/oxaliplatin resistance in CRC [64]. The
authors suggested that the increased expression of miR-92a-3p activates the Wnt/β-catenin
signaling pathway and suppresses mitochondrial apoptosis by directly inhibiting FBXW7
and MOAP1. There are few studies investigating the role of miR-155-5p in CRC drug
resistance/response. For example, in contrast to our findings, Yin et al. found that miR-
155-5p expression was frequently decreased in tumor-associated macrophages (TAMs),
resulting in C/EBPβ overexpression and IL-6 activation. Subsequently, TAM-secreted IL-6
led to chemoresistance through the activation of the IL6R/STAT3/miR-204-5p pathway [65].
In line with this observation, another work suggested that the elevated expression of
miR-155-5p suppresses MDR1 expression, which blocks the efflux of 5-FU, enhancing
the sensitivity of CRC to 5-FU [66]. On the other hand, there are studies showing that
miR-155-5p contributes to drug resistance in other cancer types [67,68]. Another miRNA
that we found to be upregulated in non-responders is hsa-miR-30c-5p. Little is known
about its role in cancer drug resistance. In opposition to our expectations and results, the
high expression of miR-30c has been previously associated with better survival in CRC [69].
Moreover, Guo et al. suggested that circ3823 could act as a ceRNA for hsa-miR-30c-5p
and reverse the restrictive effect on its target gene TCF7, which subsequently promotes
CRC progression [70]. Taken together, further research is needed in order to derive valid
conclusions about the role of hsa-miR-30c-5p in CRC chemoresistance.

On the other hand, let-7 family members, namely hsa-let-7c-5p, hsa-let-7d-5p, and hsa-
let 7a-5p, exhibited significantly lower expression levels in non-responders compared to the
control group in our study. Members of the let-7 family are known tumor suppressors [71]
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that modulate oncogenes such as HMGA2 [72], MYC [73] and RAS [74]. Danac et al. sug-
gested that circPVT1 upregulates NRAS by inhibiting let-7 and thus promotes oncogenic
phenotypes in CRC cells [75]. The role of let-7c-5p has not been extensively investigated in
CRC. Pidikova et al. reported that let-7c-5p has been found to be downregulated in CRC
compared to normal tissues, indicating its potential as a tumor suppressor [76]. However,
it is known that it acts as a tumor suppressor in miRNA. Indeed, the downregulation of
let-7c-5p has been linked with oncogenic potential in CRC tissues, whereas its upregulation
has been associated with the inhibition of cell growth through targeting MMP11 (matrix
metallopeptidase 11) and PBX3 (PBX homeobox 3 gene [77]. Its similar action has been
reported in hepatocellular carcinoma, since sponging let-7c-5p has been associated with
tumor proliferation and invasion [78]. In agreement with our results, let-7c-5p overexpres-
sion has been correlated with (i) a good prognosis in other gastrointestinal cancers, such
as oesophageal carcinoma, as well as (ii) sensitivity to anticancer therapy [79]. Although
hsa-let-7d-5p has not been studied so far in colorectal cancer drug response, its overex-
pression has been linked with sensitivity to tivantinib in breast cancer cell lines [80]. The
authors suggested that hsa-let-7d-5p targets NKIRAS2, an inhibitor of the transcription
factor NF-κB. Moreover, it is known that irinotecan activates the NF-κB pathway in order to
impair chemotherapy-induced apoptosis. Therefore, the negative regulation of the NF-κB
signaling pathway by hsa-let-7d-5p downregulation may be proposed as a potential mech-
anism of drug resistance. Similarly, hsa-let-7a-5p has not been investigated in association
with CRC response so far. Genes encoding ubiquitin, such as UHRF2 (Ubiquitin Like With
PHD And Ring Finger Domains 2) [81], RTKN (Rhotekin) [82] and MYC [83], have been
identified as target genes for let-7a-5p. This results in cell cycle arrest and the inhibition
of cell growth. Of note, our prediction model showcased that hsa-let-7d-5p resulted sixth
among the 10 most differentially expressed miRNAs in non-responders to irinotecan-based
therapies. Therefore, its potential role in CRC resistance could be further elucidated in
future studies.

Contrary to this trend, other members of the let-7 family, such as hsa-let-7f-5p and
hsa-let-7i-5p, were found upregulated in the non-responders group. Niculae et al. have
also reported that both of these miRNAs were also found downregulated in 25 tumoral
tissues compared with the corresponding adjacent peritumoral tissues, suggesting that they
may possibly be associated with perineural invasion in CRC by targeting the insulin-like
growth factor (IGF) signaling system [71]. As stated before, the horizontal hypothesis that
miRNA families exhibit a common fashion in different phenotypic cancer environments
has already been challenged by Dhawan et al., underlining the autonomous behavior of a
single miRNA, regardless of its grouping by family [26].

Among the rest of the miRNAs that appear to be involved with non-responsiveness in our
work, most of them have not been extensively investigated in CRC drug response/resistance.
For example, Sakatani et al. found that the addition of melatonin resulted in enhanced 5-FU
cytotoxicity; mechanistically, melatonin increased the expression of miR-215-5p, which
led to thymidylate synthase gene (TYMS) downregulation [84]. Our investigation also
revealed miR-215-5p downregulation in the non-responders group; given that the great
majority of the administered regimens include fluoropyrimidines, we could assume that
the decreased expression of miR-215-5p may have resulted in TYMS overexpression and
thus chemotherapy failure [85]. Moreover, in line with previous observations, miR-143-3p
downregulation has been associated with poorer responses in CRC patients [34]. In addition,
the authors found that miR-10a-5p was overexpressed in non-responders, which is the
opposite of our findings. This discrepancy may be attributed to the fact that the patient
population in their work was receiving chemotherapy plus bevacizumab, whereas our
pool of patients included several therapeutic schemes. The role of miR-142-5p has not
been investigated in CRC drug resistance so far. However, similarly to our results, its
overexpression has already been correlated with the promotion of chemosensitivity in
other cancer types [86,87]. On the other hand, miR-148a-3p has been identified as a
miRNA which promotes anti-tumoral immune responses as well as chemosensitivity in
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CRC cells [88]. This is in agreement with our finding that its downregulation relates to
non-responsiveness. Similarly, miR-122-5p has been implicated in angiogenesis promotion,
via its downregulation by a long non-coding RNA (CRAFT16) which upregulates the target
oncogene FOS; subsequently, FOS overexpression upregulates Vascular Endothelial Growth
Factor D (VEGFD) [89]. Finally, the last one of the top 10 significantly downregulated
miRNAs in our experimental setting was miR-17-5p. In contradiction to our results, which
support the observation that this miRNA is downregulated in non-responders, a few recent
papers show that miR-17-5p is upregulated in many different chemo/radio-resistant cancer
types, including CRC [90,91]. Of note, Despotovic et al. suggested that miR-17-5p could
serve as a candidate biomarker via the regulation of the TGF-β Signaling pathway for
monitoring the response to FOLFIRI in mCRC patients [46].

Interestingly, a recent integrated analysis for miRNA expression revealed miR-129-5p
as a potential predictive biomarker for OS in stage IV CRC patients. However, as the
authors also mentioned in their work, a solo miRNA signature is unlikely to provide an
accurate, sensitive and specific prognostic tool. Besides, their analysis included a small
number of patients (below 30). Furthermore, another interesting point that they addressed
refers to the assumption that different miRNAs may be associated with the prognosis of
a specific CRC stage [92]. In addition, Zhu et al. used bioinformatic methods to identify
nine key miRNAs (namely, miR-217, miR-144, miR-129, miR-125a, miR-125b, miR-375,
miR-328, miR-486, and miR-194) as potential prognostic biomarkers in CRC. However,
none of the reported miRNAs were consistent with our results. It should also be noted
that their findings were never associated with a prognostic value in CRC. Moreover, their
analysis was based on the TCGA database, whereas our data came from an actual clinical
population of mCRC patients [93].

The gene ontology analysis in our study identified molecular functions such as cad-
herin binding, the modulation of cell adhesion molecules (CAMs) and transcription coreg-
ulation. Indeed, our results are in accordance with the existing literature supporting the
observation that the aberration of the epigenetic machinery is associated with drug resis-
tance to conventional drugs used for CRC treatment, such as 5-fluorouracil, oxaliplatin, and
irinotecan [94]. On the other hand, regarding CAMs, our results differ from those reported
in the literature. For example, our results showed that cadherin under-expression may be
linked to non-responsiveness to irinotecan-based treatment, whereas other authors have
reported that decreased E-cadherin expression resulted in increased sensitivity to irinotecan
and oxaliplatin [95,96]. Moreover, our results highlight the importance of ubiquitination, a
post-translational modification which seems to be associated with non-responders. Indeed,
the deregulation of anaphase-promoting complex (a specific ubiquitin ligase)-dependent
proteolysis has been previously associated with the genomic instability of cancer cells [97].
Consistent with previous observations, our findings indicate that the loss of ubiquitin ligase
correlates with a poor prognosis in patients receiving fluoropyrimidine-based chemother-
apy. The mechanism proposed by Wang et al. suggests that the overexpression of a novel
E3 ubiquitin ligase enhanced chemosensitivity to fluoropyrimidine-based chemotherapy by
suppressing the activation of the c-Myc signaling pathway [98]. Furthermore, it has been
proposed that an acquired resistance to irinotecan has been linked with the expression of the
inhibitors of apoptosis (IAP) family members (such as c-IAP1, c-IAP2, etc.). The proposal
of chemosensitivity to irinotecan was also investigated recently [99]. The authors proposed
that IAP antagonists can activate E3 ubiquitin ligase activity in IAPs, which ubiquitinate
themselves and regulate both the canonical and non-canonical NF-κB signaling pathways.
Therefore, miRNA expression may have a direct impact on the response to treatment in
mCRC patients via regulating essential pathways that are related to tumor promotion.

In the current work, we used a hybrid ML method in an attempt to provide predictive
value to our results, as previously reported [14]. Differential expression (DE) analysis
can accurately distinguish and characterize two conditions (in our case, responders vs.
non-responders) based on inferences made using the current data, while ML is more
robust, can take under consideration more factors and can provide a working model for
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predicting whether a patient will fall under one of the groups under investigation based
on their transcriptome. Moreover, ML approaches work better when there are multiple
factors to consider. Additionally, Abbas et al. provide another example of ML being
more suitable for expression data. More specifically, the authors conducted an assessment
combining DE analysis, supervised feature selection for the identification of the DEGs
that exhibit the optimum relevance, and ML methods in order to determine the biased
power of the genes under investigation [15]. Similarly, our approach leverages (i) statistical
DE analysis for identifying tumor-related miRNAs using gene expression profiles from
blood samples derived from 95 mCRC patients, (ii) supervised ML methods used to further
assess and refine the expression results and identify the most important miRNAs that
have a predictive value for response to therapy and (iii) gene ontology analysis for the
identification of clinically significant DEGs and the corresponding functional pathways.

Though we conducted an extensive ML and bioinformatics analysis and confirmed the
classification by cross-validation, our work has some limitations. As mentioned before, the
model that we used required more than 200 samples and our sample pool was only from one
oncology clinic. The route toward discovering the predictive biomarkers of drug response,
especially in cases of combination therapies, requires both effective computational tools
and a considerable number of samples. In addition to that, the dysregulation of miRNA
expression during multi-drug treatment cannot be accurately attributed to one agent, and
this may explain any inconsistencies between our results and previously published ones.
Finally, cross-validation resulted in a more generous approximation of our accuracy scores.
Therefore, our results need to be verified by future studies with larger datasets that can
efficiently perform the treatment using different training and validation sets.

However, despite these limitations, our work included an actual clinical population,
compared to other in vitro studies of CRC cell lines or in silico experiments. Furthermore,
this is the first study to investigate the differential miRNA expression profiles and the
response to irinotecan-based treatment in mCRC patients, based on experimental data, ML
and gene ontology analysis.

4. Materials and Methods
4.1. Patients and Blood Samples

Blood samples from 95 patients with histologically confirmed mCRC were included in
our study. The inclusion criteria were (1) no previous exposure to chemotherapy, (2) adequate
bone marrow, renal and hepatic function and (3) performance status 0–2 (ECOG scale). All
participants received irinotecan-based chemotherapy combined with fluoropyrimidines (5-FU
or capecitabine) and/or biologic agents (aflibercept, bevacizumab, cetuximab or panitumumab).
Chemotherapy was administered for a maximum of 12 cycles, until progressive disease or until
unacceptable toxicity. Treatment regimens were in accordance with the therapeutic protocols
recommended by the Hellenic Society of Medical Oncology [100]. Response to treatment was
assessed using the Response Evaluation Criteria in Solid Tumors (RECIST v. 1.1) [101]. All
cases were recruited in the Second Department of Medical Oncology of the General Oncology
Hospital of Kifissia “Agioi Anargiroi,” Attica, Greece, between 2017 and 2021. This case-control
study was conducted in accordance with the Declaration of Helsinki and approval was obtained
by the Hospital’s Scientific Review Board. All study participants signed an informed consent
form. Table 2 summarizes the clinicopathological data of the patients.

4.2. MiRNA Expression

MiRNA isolation was carried out with the NucleoSpin miRNA kit (Machnery-Nagel,
Düren, Germany). 500 ng of RNA were reverse-transcribed with the miScript II RT Kit (Qiagen,
Hilden, Germany) and loaded in the miScript™ miRNA PCR Array Human Cancer Path-
wayFinder (MIHS-102Z, Qiagen), which tests samples for the expression of 84 miRNAs. These
miRNAs have been previously associated with the diagnosis and staging of various tumors.
In addition to the 84 tumor-related miRNAs, the array also provides 12 housekeeping genes
for normalization. Samples were grouped into 2 categories of responders and non-responders
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to therapeutic intervention with irinotecan-based chemotherapy in patients suffering from
mCRC. The 2−∆Ct method was employed to calculate individual within-sample miRNA
expression, normalized using the geometric mean of all controls, while, the 2−∆∆Ct approach
was used to calculate the fold regulation between the groups (responders were considered
the control group). For the fold regulation, FDR corrected (Benjamini-Hochberg) p-values
(Student’s t-test) and 95% Confidence Interval values, were calculated.

Table 2. Clinicopathological characteristics of the study population.

Characteristics Number of Patients

Gender Male 58
Female 37

Surgery on primary Yes 83
No 12

Primary Location Cecum 9
Ascending colon 5
Ascending/Transverse colon 1
Transverse colon 3
Splenic Flexure 3
Descending colon 3
Descending colon/Rectum 1
Sigmoid 26
Rectosigmoid 21
Rectum 23

Metastasis site Lung 23
Liver 37
Peritoneum 7
Adrenal gland 1
Multiple sites 20
Local Recurrence 7

Therapeutics Panitumumab, irinotecan and
5-FU 10

Panitumumab, irinotecan and
capecitabine 8

Bevacizumab, irinotecan and
5-FU 21

Bevacizumab, irinotecan and
capecitabine 27

Aflibercept, irinotecan and
5-FU 3

Cetuximab, irinotecan and
5-FU 4

Bevacizumab, irinotecan, 5-FU
and oxaliplatin 1

Bevacizumab, irinotecan,
capecitabine and oxaliplatin 1

Bevacizumab, irinotecan and
oxaliplatin 1

Capecitabine and irinotecan 10
Oxaliplatin and irinotecan 3
Irinotecan and 5-FU 5
Panitumumab and irinotecan 1

Response status Stable Disease (SD) 47
Progressive Disease (PD) 48
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4.3. Machine Learning Model

To further assess and refine the expression results and identify the most important miR-
NAs that have a predictive value for response to therapy, we used the h2o R package [102].
∆Ct values (Supplementary Table for_ml.csv), calculated previously for all miRNAs of the
array, were provided as input for this process. The automl function of h2o allowed for the
evaluation of 50 ML models to identify the one that performs better in terms of accuracy
and sensitivity. Area Under the Curve (AUC), logloss and confusion matrices were used to
assess the models. Deep Learning and Ensemble models were excluded from this process.
All models used the same random 70–30% partitioning of the samples for training and
testing accordingly.

4.4. miRNA Target Genes and Molecular Function Analysis

The top 10 miRNAs reported as important variables (h2o.varimp function) for the
selected ML model were used as input for the multimir R package [103] to gather all
genes whose transcription is known to be affected by them, using validated miRNA-target
interactions from 3 databases (“mirecords” [104], “mirtarbase” [105] and “tarbase” [106]).
The same process was duplicated for the top 10 upregulated and downregulated miRNAs
highlighted from the differential expression analysis. Finally, the clusterprofiler pack-
age [107] was used on the genes resulting from the previous step for both approaches to
identify enriched Gene Ontology Molecular Function Terms (GO-MF) [108]. The p-values
for the GO-MF terms were calculated using one-sided Fisher’s exact test and were adjusted
and sorted by FDR value. Only those of p.adjust (q-value) < 0.05 were considered in
our analyses.

5. Conclusions

A machine learning approach may be accurate in predicting the response to irinotecan-
based treatment in mCRC patients. Furthermore, a panel of miRNAs, with miR-181 and let
families as a focus, may serve as strong predictors of non-responsiveness to treatment.
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