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Abstract: Sucrose nonfermenting 2 (Snf2) family proteins, as the catalytic core of ATP-dependent
chromatin remodeling complexes, play important roles in nuclear processes as diverse as DNA
replication, transcriptional regulation, and DNA repair and recombination. The Snf2 gene family
has been characterized in several plant species; some of its members regulate flower development in
Arabidopsis. However, little is known about the members of the family in barley (Hordeum vulgare).
Here, 38 Snf2 genes unevenly distributed among seven chromosomes were identified from the
barley (cv. Morex) genome. Phylogenetic analysis categorized them into 18 subfamilies. They
contained combinations of 21 domains and consisted of 3 to 34 exons. Evolution analysis revealed
that segmental duplication contributed predominantly to the expansion of the family in barley, and
the duplicated gene pairs have undergone purifying selection. About eight hundred Snf2 family
genes were identified from 20 barley accessions, ranging from 38 to 41 genes in each. Most of these
genes were subjected to purification selection during barley domestication. Most were expressed
abundantly during spike development. This study provides a comprehensive characterization of
barley Snf2 family members, which should help to improve our understanding of their potential
regulatory roles in barley spike development.

Keywords: Hordeum vulgare; ATP-dependent chromatin remodeling; evolution; expression analysis;
spike development

1. Introduction

In eukaryotes, genetic information is packaged into nucleosomes, which are repetitive
structures consisting of 147-bp DNA segments wrapped around a central histone octamer
composed of two copies each of the core histones H2A, H2B, H3, and H4 [1]. Nucleosomes
are further compacted to form the fundamental unit of higher order organization, called
chromatin, to fit into the nucleus. Such compaction of nucleosomes in chromatin restricts
accessibility of the wrapped DNA to regulatory proteins such as transcription factors [2].
Two chromatin-remodeling enzymes have been implicated in making the packaged DNA
accessible. One alters the contact between the histone octamer and the DNA by utilizing
the energy derived from ATP hydrolysis [3,4]. The other modulates the specific residues of
DNA and histones through adding or removing covalent modifications such as methylation,
acetylation, phosphorylation, and ubiquitylation [5]. Proteins involved in the two processes
are referred to as chromatin remodelers and modifiers, respectively. Both types are usually
associated with other proteins in different multi-subunit complexes, but also are frequently
involved in the same multi-subunit complexes. These multi-subunit complexes are also
called chromatin remodeling complexes [6].
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Sucrose nonfermenting 2 (Snf2) family proteins harbor a catalytic ATPase region, and
are homologous to the Snf2 protein that was first identified from yeast ATP-dependent
chromatin remodeling complexes [7]. Snf2 family members are classified into six groups
on the basis of the similarity within the ATPase region, namely Snf2-like, Swr1-like, Rad54-
like, Rad5/16-like, SSO1653-like, and SMARCAL1-like [8,9]. Each group can be further
subdivided into several subfamilies that are conserved from yeasts to animals and plants [4].
More than 1300 proteins in the Snf2 family from bacteria, yeast, Drosophila, mouse, human,
and Arabidopsis thaliana are divided into 24 distinct subfamilies [8]. The Arabidopsis genome
has 41 Snf2 family genes, rice has 40, and tomato has 45 [9–11].

Snf2 proteins play vital roles in plant growth and development [12–15], as well as in
biotic and abiotic stresses [16]. Flower development is a complex process that is crucial for
reproduction and grain yield. Several Arabidopsis Snf2 proteins are involved in flowering
time [17,18], inflorescence architecture [19,20], and floral organ identity [21]. Rice Snf2 fam-
ily members have been identified [10]. Little is known, however, about the family in other
grass species, and the role of Snf2 proteins in grass flower development remains obscure.

Barely (Hordeum vulgare) is one of the earliest cultivated crops; it is widely adapted
to diverse environments and plays an essential role in global food production. Cultivated
barley (H. vulgare subsp. vulgare) was domesticated from wild barley (H. vulgare subsp.
spontaneum) approximately 10,000 years ago in the Fertile Crescent region [22,23]. Barley
is an annual diploid inbreeding species, able to generate fully fertile progeny without
reproductive barriers [22]. It is an ideal genomic model for the Triticeae tribe owing to
its relatively simple genome and has been well studied in genomics over the past decade.
The chromosome-scale genome assembly of barley cultivar Morex has been published [24]
and subsequently updated to generate several versions by means of high-throughput
sequencing and assembly technologies [25,26]. A pan-genome assembly with genetic
variations among wild and cultivated barley accessions was released recently [27]. Wild
barley is a rich resource for genetic diversity. Several genome assemblies from wild barley
are now publicly available [28,29]. These data enable the identification of gene families at
the genome-wide level in barley. However, the Snf2 gene family remains largely unknown
in the Triticeae. The objectives of this study were to identify the Snf2 family members in
barley and to explore potential regulatory roles in barley spike development.

2. Results
2.1. Identification of Snf2 Family Genes in Barley

The hidden Markov model (HMM)-based approach retrieved 39 high-confidence genes
encoding putative proteins with conserved SNF2_N and Helicase_C domains from the Morex
reference genome [26], of which 38 were identified as members of the barley Snf2 family
(Table 1). The nucleotide sequence of HORVU.MOREX.r3.7HG0646770 is identical to that
of HORVU.MOREX.r3.UnG0786740, which was assigned to chromosome unknown (chrUn)
in the Morex genome, and was therefore removed. A phylogenetic tree was constructed
from Snf2 proteins from barley, Arabidopsis (AtCHR) [9], and rice (OsCHR) [10] to reveal
the family in barley (Figure 1). The barley Snf2 proteins were clustered into 6 groups and
18 subfamilies (Figure 1). They were distributed in all subfamilies, with varying numbers of
proteins in each. Most were enriched within the Lsh, Snf2, Mi-2, Iswi, DRD1, ERRC6, Ris1,
and Rad5/16 subfamilies, of which DRD1 is the largest cluster, with 6 members. In contrast,
ALC1, Chd1, Ino80, Swr1, Etl1, Rad54, ATRX, Mot1, SMARCAL1, and SHPRH had 1 member
each. Phylogenetic analysis identified 18 orthologous groups in 14 subfamilies across the
three species, suggesting that these proteins originated from a common ancestor before the
divergence of the dicots and monocots. In addition, three pairs of paralogous proteins were
found in the Lsh (HORVU.MOREX.r3.4HG0338270 and HORVU.MOREX.r3.7HG0646770),
DRD1 (HORVU.MOREX.r3.2HG0128530 and HORVU.MOREX.r3.5HG0501840), and ERRC6
(HORVU.MOREX.r3.2HG0217790 and HORVU.MOREX.r3.6HG0559010) subfamilies (Figure 1),
indicating that the Snf2 family underwent gene duplication events after barley’s divergence
from rice.
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Table 1. Snf2 family genes in Arabidopsis, rice, and barley.

Group Subfamily Arabidopsis thaliana Oryza sativa Hordeum vulgare

Snf2-like Snf2 AtCHR3 (SYD, AT2G28290) OsCHR720 (Os06g0255200) HORVU.MOREX.r3.7HG0669610
AtCHR2 (BRM, AT2G46020) OsCHR707 (Os02g0114000, Os02g0114033) HORVU.MOREX.r3.6HG0543700

AtCHR12 (AT3G06010) OsCHR719 (Os05g0144300) HORVU.MOREX.r3.1HG0019730
AtCHR23 (AT5G19310)

Lsh AtCHR1 (DDM1, AT5G66750) OsCHR741 (Os03g0722400 HORVU.MOREX.r3.2HG0184370
OsCHR746 (Os09g0442700) HORVU.MOREX.r3.4HG0338270

HORVU.MOREX.r3.7HG0646770
Iswi AtCHR11 (AT3G06400) OsCHR727 (Os05g0150300) HORVU.MOREX.r3.1HG0022440

AtCHR17 (AT5G18620) OsCHR728 (Os01g0367900) HORVU.MOREX.r3.3HG0230070
ALC1 AtCHR10 (AT2G44980) OsCHR711 (Os03g0101700) HORVU.MOREX.r3.4HG0416240
Chd1 AtCHR5 (AT2G13370) OsCHR705 (Os07g0660200) HORVU.MOREX.r3.2HG0116700
Mi-2 AtCHR6 (PICKLE, AT2G25170) OsCHR702 (Os06g0183800) HORVU.MOREX.r3.7HG0658830

AtCHR7 (AT4G31900) OsCHR703 (Os01g0881000) HORVU.MOREX.r3.3HG0307470
AtCHR4 (AT5G44800) OsCHR729 (Os07g0497100) HORVU.MOREX.r3.2HG0143700

Swr1-like Swr1 AtCHR13 (PIE1, AT3G12810) OsCHR709 (Os02g0689800) HORVU.MOREX.r3.7HG0748860
Ino80 AtCHR21 (INO80, AT3G57300) OsCHR732 (Os03g0352450, Os03g0352500) HORVU.MOREX.r3.4HG0375120
Etl1 AtCHR19 (AT2G02090) OsCHR714 (Os04g0566100) HORVU.MOREX.r3.2HG0187800

Rad54-like Rad54 AtCHR25 (RAD54, AT3G19210) OsCHR733 (Os02g0762800) HORVU.MOREX.r3.6HG0617770
ATRX AtCHR20 (AT1G08600) OsCHR717 (Os10g0457700) HORVU.MOREX.r3.1HG0040050
DRD1 AtCHR35 (DRD1, AT2G16390) OsCHR722 (Os07g0692600) HORVU.MOREX.r3.2HG0108640

AtCHR34 (AT2G21450) OsCHR730 (Os03g0165200, Os03g0165266) HORVU.MOREX.r3.4HG0402720
AtCHR31 (AT1G05490) OsCHR740 (Os02g0650800) HORVU.MOREX.r3.3HG0271560
AtCHR40 (AT3G24340) OsCHR742 (Os05g0392400) HORVU.MOREX.r3.1HG0064430
AtCHR38 (AT3G42670) OsCHR736 (Os07g0434500) HORVU.MOREX.r3.2HG0128530
AtCHR42 (AT5G20420) OsCHR737 (Os06g0255700) HORVU.MOREX.r3.5HG0501840

OsCHR743 (Os08g0243833, Os08g0243866)
Rad5/16-like Rad5/16 AtCHR22 (AT5G05130) OsCHR724 (Os07g0642400) HORVU.MOREX.r3.2HG0119710

AtCHR29 (AT5G22750) OsCHR710 (Os02g0527100) HORVU.MOREX.r3.6HG0559070
AtCHR32 (AT5G43530) OsCHR735 (Os04g0177300) HORVU.MOREX.r3.2HG0103780
AtCHR37 (AT1G05120) OsCHR731 (Os07g0511500) HORVU.MOREX.r3.2HG0141740
AtCHR41 (AT1G02670)

Ris1 AtCHR26 (AT3G16600) OsCHR706 (Os01g0779400) HORVU.MOREX.r3.3HG0293510
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Table 1. Cont.

Group Subfamily Arabidopsis thaliana Oryza sativa Hordeum vulgare

AtCHR27 (AT3G20010) OsCHR715 (Os04g0629300) HORVU.MOREX.r3.2HG0199060
AtCHR28 (AT1G50410) OsCHR725 (Os08g0180300) HORVU.MOREX.r3.7HG0696030
AtCHR30 (AT1G11100)
AtCHR33 (AT1G61140)

SHPRH AtCHR39 (AT3G54460) OsCHR708 (Os01g0952200) HORVU.MOREX.r3.3HG0320710
AtCHR36 (AT2G40770) OsCHR739 (Os07g0680500)

SSO1653-like Mot1 AtCHR16 (AT3G54280) OsCHR701 (Os02g0161400) HORVU.MOREX.r3.1HG0094930
ERCC6 AtCHR8 (AT2G18760) OsCHR704 (Os01g0102800) HORVU.MOREX.r3.3HG0231890

AtCHR9 (AT1G03750) OsCHR713 (Os05g0247900) HORVU.MOREX.r3.2HG0132190
AtCHR24 (AT5G63950) OsCHR712 (Os04g0692700) HORVU.MOREX.r3.2HG0217790

OsCHR745 (Os01g0636700) HORVU.MOREX.r3.6HG0559010
SMARCAL1-like SMARCAL1 AtCHR14 (AT5G07810) OsCHR726 (Os07g0598300) HORVU.MOREX.r3.2HG0128410

AtCHR18 (AT1G48310) OsCHR721 (Os07g0636200)

Snf2, sucrose nonfermenting 2; Lsh, lymphoid-specific helicase; Iswi, imitation switch; ALC1, amplified in liver cancer 1; Chd1, chromodomain helicase DNA-binding 1; Mi-2,
multi-subunit chromatin remodeling protein 2; Swr1, SWI2/SNF2-related 1, Ino80, inositol requiring 80; Etl1, enhancer trap locus 1; Rad54, recombination and DNA repair protein
54; ATRX, X-linked mental retardation with alpha-thalassemia; DRD1, defective in RNA-directed DNA methylation 1; Rad5/16, recombination and DNA repair protein 5/16; Ris1,
role in silencing protein 1; SHPRH, Snf2 histone linker PHD RING helicase; Mot1, modifier of transcription 1; ERCC6, excision repair chromatin remodeling factor 6; SMARCAL1,
SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily A like 1.
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Figure 1. Phylogenetic tree of Snf2 proteins from barley, Arabidopsis, and rice. The maximum
likelihood tree was constructed in IQ-TREE2 software with 1000 bootstrap replications. Numbers
at each branch node indicate bootstrap probabilities of >80%. Different groups of proteins are
highlighted with different colors. The grouping of the Snf2 family is based on the classification cited
from [9].

2.2. Barley Snf2 Protein Properties and Domain Organization

The amino acid length ranged between 681 and 3440 residues (Table S1). The molecular
weights varied from 77 to 371 kDa, and the theoretical isoelectric point (pI) value ranged
from 4.83 to 8.88. All proteins had negative grand average of hydrophobicity (GRAVY)
values, varying from −0.89 to −0.22, indicating their hydrophilic nature. Prediction of
subcellular localization revealed that all barley Snf2 proteins were localized in the nucleus
(Table S1). There were 21 domains (Figure 2). The Chromo domain was present in the Chd1
and Mi-2 subfamilies of Snf2-like, and the RING domain was found in all subfamilies of
Rad5/16. By contrast, several domains were unique to a subfamily: the HAND, SANT, and
SLIDE domains were found only in Iswi, the PHD domain only in Mi-2, and the HIRAN
domain only in Rad5/16.
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Figure 2. Domain architecture of barley Snf2 family proteins. Different domains are represented
by bars with different colors. The scale represents the length of deduced protein sequences, all
in proportion.

2.3. Gene Structure of Barley Snf2 Family

The barley Snf2 family genes had 2 to 33 introns (Figure 3). The 41 AtCHR genes had 2
to 33 introns, and 45 tomato CHR genes (SlCHR) had 1 to 37 [11]. The Snf2 subfamily had the
most exons (34), and 3 genes in the DRD1 and Rad5/16 subfamilies had the fewest (3). The
exon and intron lengths varied among genes, even in the same subfamily. Seventeen of the
38 barley Snf2 genes spanned >10 kb from start to stop codons, possibly attributable introns
longer than 5 kb (Figure 3). Three genes in the Snf2, Ris1 and SMARCAL1 subfamilies had
genomic sequences of >20 kb, with 33, 9, and 23 introns, respectively.
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2.4. Chromosomal Distribution and Duplication Analysis of Barley Snf2 Gene Family

Chromosome localization results showed that the 38 Snf2 genes were unevenly dis-
tributed across the 7 chromosomes of the Morex genome (Figure 4). Chromosome 2H had
the most genes (13), followed by chromosome 3H (6). Chromosomes 1H and 7H both
had 5 genes, 4H and 6H had 4, and 5H had only 1 gene. Most Snf2 genes were located
in the terminal regions of the chromosomes, with few in the central regions. Five pairs
composed of 7 genes were predicted to have undergone segmental duplication, but no
tandem duplication was found (Figure 4). Likewise, only segmental duplication events
were found in Snf2 family genes of Arabidopsis and rice (Table S2). Selection pressure
determined divergence of barley Snf2 genes after duplication. All 5 segmental-duplication
gene pairs had ratios of non-synonymous (Ka) to synonymous (Ks) substitutions (Ka/Ks)
lower than 1 (Table S3), suggesting that purifying selection pressure followed duplication.
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2.5. Genetic Variation and Evolutionary Analysis of Snf2 Genes in Barley Populations

We investigated copy-number variations of Snf2 genes within subfamilies among
20 barley accessions (Table 2). About eight hundred Snf2 family genes were identified from
cultivated and wild accessions, with 38 to 41 genes in each. All cultivated accessions had
38 to 41 genes, and 2 wild accessions had 40 genes. Multiple alignment analysis of Snf2
family members revealed that there are no reliable variations in copy number of this gene
family across different barley accessions (Table S4). Members missing in some accessions
may result from genome assembly and gene annotation since all of them without gene IDs
were validated to have alignments in genomes.

To evaluate the genetic diversity of barley Snf2 genes, we also analyzed the single
nucleotide polymorphisms (SNPs) in barley accessions. A total of 1342 SNPs were found in
coding sequences of genes from 18 subfamilies (Table S5). Among them, 594 SNPs were
detected in ERRC6 subfamily, followed by DRD1 (106) and Snf2 (105) subfamilies. By con-
trast, Ino80 subfamily exhibited the lowest variation with only one SNP. Further, 367 SNPs
were predicted as missense variants and one was a stop lost and splice region variant
(Table S6), which may affect the protein functions. In addition, phylogeny and population
structure analysis of SNPs revealed distinct evolutionary divergence among different barley
accessions (Figure S1). We further investigated the effect of domestication on Snf2 family
evolution in the wild barley accession OUH602 and Morex, and found 38 orthologous gene
pairs between the two (Figure S2). Pairwise Ka/Ks ratios of orthologous genes showed
that 27 pairs were purified-selection pairs and 2 were positive-selection pairs (Table S7).
These results indicate that most Snf2 genes had gone through purification selection during
barley domestication.
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Table 2. Distribution of Snf2 genes within 18 subfamilies among cultivated and wild barley genome assemblies.

Accession Total Snf2 Lsh Iswi ALC1 Chd1 Mi-2 Swr1 Ino80 Etl1 Rad54 ATRX DRD1 Rad5/16 Ris1 SHPRH Mot1 ERCC6 SMARCAL1

Akashinriki a 41 3 3 2 1 1 3 1 1 1 1 1 7 4 3 1 1 5 2
Barke a 41 3 3 2 1 1 3 1 1 1 1 1 7 4 3 1 1 5 2

Golden_Promise a 40 3 3 2 0 1 3 1 1 1 1 1 7 4 3 1 1 5 2
Hockett a 39 3 2 2 1 1 2 1 1 1 1 1 7 4 3 1 1 5 2

HOR_10350 a 40 3 3 2 1 1 3 1 1 1 1 1 7 4 3 1 1 4 2
HOR_13821 a 39 3 3 2 1 1 2 1 1 1 1 1 7 4 3 1 1 4 2
HOR_13942 a 40 3 3 2 1 1 3 1 1 1 1 1 6 4 3 1 1 5 2
HOR_21599 a 39 3 3 2 1 1 3 1 1 1 1 1 7 4 3 1 1 3 2
HOR_3081 a 41 3 3 2 1 1 3 1 1 1 1 1 7 4 3 1 1 5 2
HOR_3365 a 38 3 2 2 1 1 3 1 1 1 1 1 7 4 3 1 1 3 2
HOR_7552 a 39 3 3 2 1 1 3 1 1 1 1 1 7 4 3 1 1 3 2
HOR_8148 a 41 3 3 2 1 1 3 1 1 1 1 1 7 4 3 1 1 5 2
HOR_9043 a 40 3 2 2 1 1 3 1 1 1 1 1 7 4 3 1 1 5 2

Igri a 41 3 3 2 1 1 3 1 1 1 1 1 7 4 3 1 1 5 2
OUN333 a 41 3 3 2 1 1 3 1 1 1 1 1 7 4 3 1 1 5 2

RGT_Planet a 41 3 3 2 1 1 3 1 1 1 1 1 7 4 3 1 1 5 2
ZDM01467 a 39 3 3 2 1 1 3 1 1 1 1 1 7 4 2 1 1 4 2
ZDM02064 a 39 2 2 2 1 1 3 1 1 1 1 1 7 4 3 1 1 5 2
B1K-04-12 b 40 3 3 2 1 1 3 1 1 1 1 1 7 4 3 1 1 4 2
OUH602 b 40 3 3 2 1 1 3 1 1 1 1 1 7 4 3 1 1 4 2

a Cultivated barley. b Wild barley.
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2.6. Expression Analysis of Barley Snf2 Genes in Various Tissues and Different Stresses

Expression patterns of barley Snf2 genes were analyzed by using 14 public transcrip-
tomes from diverse tissues at different developmental stages (Figure 5A); 37 of the 38 genes
were expressed with an average FPKM > 1 in at least one organ, but 1 had no data because
its corresponding gene is absent in the Morex genome [25] (Table S8). Most Snf2 genes
were expressed more strongly in developing inflorescences (INF1 and INF2) than in the
other organs. These expressed genes were classified into I, II, and III groups based on their
expression patterns among all organs. The expression level of the Group I genes was mod-
erate or higher than that of the Group II and III genes, most of which was moderate in only
INF1, INF2, and developing grain (CAR5), and low in the other organs. Several genes were
expressed predominantly in developing floral organs. HORVU.MOREX.r3.3HG0293510
from the Ris1 subfamily was highly expressed in lemma (LEM) and lodicule tissues. The
expression of 2 genes from the Iswi subfamily—HORVU.MOREX.r3.1HG0022440 and
HORVU.MOREX.r3.3HG0230070—was abundant in lodicule.
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Figure 5. Expression analysis of barley Snf2 genes. (A) Transcriptional profiles of Snf2 genes expressed
in different tissues at different developmental stages in Morex. Gene expression level is shown on
a graded color scale based on log2(FPKM + 1) values. ROO1, roots from seedlings at 17 days after
planting (dap); LEA, leaves from seedlings at 17 dap; INF1, developing inflorescences of 5 mm at
30 dap; INF2, developing inflorescences of 1.0–1.5 cm at 50 dap; NOD, third stem internodes at 42 dap;
CAR5, developing grains at 5 days after anthesis; CAR15, developing grains at 15 days after anthesis;
ETI, etiolated leaves at 10 dap; LEM, lemma isolated from inflorescences at 42 dap; LOD, lodicule
isolated from inflorescences at 42 dap; EPI, epidermal strips isolated from leaves at 28 dap; RAC,
rachis isolated from inflorescences at 35 dap; ROO2, roots at 28 dap; SEN, senescing leaves at 56 dap.
(B) Transcriptional profiles of Snf2 genes in response to biotic and abiotic stresses. Transcript levels
of each gene were detected in spike under Fusarium infection, young inflorescence under drought
treatment, roots under salt treatment and leaves under cold treatment. Expression is presented as
log2 fold change (log2 FC) of the mean FPKM between treatment and control. Multiple timepoints
and tissue zones in each dataset were presented as mean FPKM values. Genes are in the same orders
as in the hierarchical clustering of tissue expression patterns in panel (A).

We also analyzed the expression profiles of barley Snf2 genes responding to biotic and
abiotic stresses based on public RNA-seq datasets (Table S9). Results showed that the vast
majority of genes exhibited expression changes under at least one of four stress treatments
(Figure 5B). Most Snf2 genes were induced in spike in response to Fusarium infection, as well
as in young inflorescence under drought stress. In contrast, more genes were suppressed by
salt or cold stresses. Remarkably, almost all the Snf2 genes were repressed in root under high-
salinity treatment. Furthermore, several genes showed multiple stresses-responsive changes in
their expression. For example, HORVU.MOREX.r3.3HG0230070 was suppressed by Fusarium
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disease, drought, and salt stresses and induced by cold stress. HORVU.MOREX.r3.4HG0375120
was induced by Fusarium and drought stresses and repressed by salt and cold stresses.
HORVU.MOREX.r3.7HG0669610 was induced only by drought stress and repressed by the
other three stresses. HORVU.MOREX.r3.2HG0217790 showed decreased expression under
both drought and salt stresses and HORVU.MOREX.r3.3HG0271560 was induced in response
to Fusarium, drought, and cold stresses.

3. Discussion
3.1. Snf2 Gene Family Shows Evolutionary Conservation in Plants

Snf2 proteins, as the core ‘motor’, have been characterized at the genome-wide level
in Arabidopsis [9], tomato [11], rice [10], and sorghum [30]. Here, we identified 38 genes
encoding Snf2 proteins in barley, the same as the number identified in sorghum, but fewer
than in Arabidopsis (41), tomato (45), and rice (40), indicating that species and genome size
differences are not directly related to the number of Snf2 family genes.

Phylogenetic analysis using the Snf2 proteins from barley, Arabidopsis, and rice
divided the 38 barley Snf2 family genes into 18 subfamilies, highly consistent with the
classification in Arabidopsis [9] and rice [10]. Intriguingly, the Snf2 genes in 14 subfamilies
displayed a 1:1:1 orthologous pattern across these species, implying that genes in these
subfamilies are more highly conserved than the genes in the other subfamilies. Gene
duplication is crucial in genome evolution [31,32]. We identified only five barley gene pairs
that were involved in segment duplication events, as seen similarly in Arabidopsis and
rice. Notably, CHR11 and CHR17, in the Iswi subfamily of Arabidopsis, were identified as
a segmental duplication pair here. Previous studies showed that these two genes function
redundantly [33,34]. Their barley homologs were also subjected to segmental duplication,
which implies that they might also function redundantly in barley, as reported in rice [10].
Moreover, the other Arabidopsis segmental duplication pair, CHR12 and CHR23, has also
been reported to have functional redundancy [35]. We note that these two genes correspond
to a single gene in barley and rice, respectively. This implies that functional redundancy
of the two Arabidopsis genes may be largely due to a segmental duplication event after
dicots diverged from monocots. Two rice genes—CHR741 and CHR746, which experienced
segmental duplication—have three homologs in barley that also experienced segmental
duplication, demonstrating that segmental duplication driving Snf2 family expansion
continued after barley diverged from rice. These results indicate that segmental duplication
was the main evolutionary contributor to expansion and functional diversification of the
Snf2 gene family after the divergence of dicots and monocots.

Evolution of novel gene functions is a consequence of the interaction between dupli-
cation and selection. Our analysis of the barley Snf2 family showed that all segmental
duplication pairs underwent purifying selection, which reduces genetic diversity [36],
implying that the functional divergence of these duplicated genes might tend to be con-
servative. A recent study reported that purifying selection contributed to the functional
redundancy of the auxin response factor (ARF) family in Setaria italica [37]. Therefore, we
hypothesize that purifying selection restricts differentiation of Snf2 gene functions. Our
results support this hypothesis since a duplicated barley gene pair is likely to function
redundantly and subsequently undergoes purifying selection. Furthermore, most Snf2
genes have also experienced purifying selection during barley domestication. This indicates
that the Snf2 family is highly conserved in barley evolution. Taken together, these results
show that the barley Snf2 gene family shows evolutionary conservation.

3.2. Characteristics of Barley Snf2 Family Genes

ATP-dependent chromatin remodeling in yeast and humans is involved in nuclear
processes as diverse as DNA replication [38], transcriptional regulation [39,40], DNA
repair [41], and homologous recombination [42]. Here, all barley Snf2 members were
predicted to localize to the nucleus, which corresponds to the reported roles of Snf2 proteins
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in various DNA events. This implies that several functions of Snf2 proteins are conserved
between barley and other species.

Catalytic ATPase is essential for the chromatin-remodeling activity of Snf2 proteins.
Catalytic ATPase is composed of SNF2_N and Helicase_C domains, which are conserved
in plants [8,9]. Both domains contain ATP-binding sites: SNF2_N mediates ATP hydrolysis
and Helicase_C contributes to ATP-dependent DNA or RNA unwinding. Here, barley Snf2
family members had combinations of 21 domains, in addition to two typical domains, and
had diverse domains in different subfamilies. One Snf2 subfamily member carries a bro-
modomain, which is suggested to recognize acetyl-lysine residues on histone tails [43]. Two
Iswi subfamily members harbor HAND, SANT, and SLIDE domains, which are responsible
for regulation of nucleosome spacing via interacting with the linker DNA [44]. Additionally,
the Chromo domain (CHROMO) has binding activity for DNA and histone [45,46]. One
Chd1 subfamily member and three Mi-2 subfamily members had a Chromo domain. The
implication is that functions of barley Snf2 genes are diverse among subfamilies.

3.3. Snf2 Family Genes May Play Regulatory Roles in Barley Spike Development

Gene expression profiles provide hints to the elucidation of potential functions. The
expression patterns of barley Snf2 family members in different tissues and developmental
stages revealed that most genes were abundantly expressed in developing spikes, sug-
gesting that Snf2 family genes activate cell division. Several Snf2 genes in Arabidopsis
regulate flower development processes involved in floral transition [17,18], inflorescence ar-
chitecture [19,20], and floral organ identity [21]. Seven barley genes were highly expressed
during spike development and had diverse expression profiles in spike developmental
stages in wild barley OUH602, implying multiple roles in regulating spike development.
For instance, a barley Lsh gene (HORVU.MOREX.r3.4HG0338270) had extremely high ex-
pression during spike development, indicating that it may contribute to the differentiation
of barley spikes. A barley Mi-2 gene (HORVU.MOREX.r3.7HG0658830) was consistently
expressed during spike development. Its Arabidopsis ortholog CHR6/PICKLE (PKL) is
involved in developmental phase transition and meristem maintenance [47,48], with the
implication that it is required for floral meristem induction in barley. A barley ortholog
of Arabidopsis BRM (HORVU.MOREX.r3.6HG0543700) was gradually increased during
spike development. BRM has been implicated in the regulation of flowering time [17,49],
inflorescence architecture [19], and floral organ development [21], indicating that its barley
ortholog may participate in regulation of floral phase transition and of inflorescence and
floral meristem development. Two other barley genes from the Iswi subfamily, which were
generated by a segmental duplication identified here, had highly similar expression profiles
during spike development. Their Arabidopsis homologs—CHR11 and CHR17—have re-
dundant roles in flowering induction and floral organ identity [33,34,50]. A barley Iswi gene
(HORVU.MOREX.r3.3HG0230070) had higher expression levels during spike development
than another Iswi gene (HORVU.MOREX.r3.1HG0022440). We suggest therefore that both
barley genes may be sub-functionalized for regulation of spike development. Overall, these
results give insight into potential regulatory roles of Snf2 family genes involved in barley
spike development. Moreover, the present study revealed that a subset of barley Snf2 genes
displayed stresses-responsive changes in expression. The mutant of Arabidopsis PKL, pkl,
is hypersensitive to cold stress [51], its barley homolog HORVU.MOREX.r3.7HG0658830
was induced by cold stress. OsCHR710, a Rad5/16 subfamily gene, was upregulated under
drought stress [52]. The barley ortholog of OsCHR710 (HORVU.MOREX.r3.6HG0559070)
was induced by drought stress. Thus, Snf2 genes may also play key roles on stress responses
in barley.

4. Materials and Methods
4.1. Identification of Snf2 Gene Family in Barley

High-confidence protein sequences of the barley Morex genome assembly [26] were
download from GrainGenes (https://wheat.pw.usda.gov/GG3/ (accessed on 25 May
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2022)) and used as a local protein database. Sequences of SNF2_N (Pfam accession number
PF00176) and Helicase_C (PF00271), as typical domains of Snf2 family proteins, were
downloaded from the Pfam database (https://pfam.xfam.org/ (accessed on 14 July 2022)).
The Hidden Markov model (HMM) profiles of these two domains were used as queries
against the barley local protein database by the hmmsearch tool provided in HMMER v.
3.3.2 software [53] with an E-value threshold of 1e-5. After removal of short and redundant
sequences, the candidate protein sequences were further examined and validated in Pfam v.
33.1 with SNF2_N (pfam00176; cl37620) and Helicase_C (pfam00271) domains in the NCBI’s
Conserved Domain Database (CDD) platform (http://www.ncbi.nlm.nih.gov/Structure/
cdd/wrpsb.cgi/ (accessed on 26 July 2022); [54]). Only proteins having both SNF2_N and
Helicase_C domains were selected. The Snf2 family members were also identified as above
from the barley pan-genome [27] and the wild barley OUH602 genome [29].

4.2. Characterization of Snf2 Family Proteins and Gene Structure

Physical and chemical properties of barley Snf2 proteins—theoretical isoelectric point
(pI), molecular weight (MW), and grand average of hydropathicity (GRAVY)—were an-
alyzed in the online ProParam software on the ExPASy server (https://web.expasy.org/
protparam/ (accessed on 11 August 2022)). Subcellular localization was predicted on the
Plant-mPloc server (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/ (accessed on 11
August 2022)). For domain organization analysis, all polypeptide sequences of identified
barley Snf2 proteins were submitted to NCBI’s CDD platform to predict conserved domains.
The exon–intron structure of barley Snf2 family genes was analyzed on the Gene Structure
Display Server (GSDS; http://gsds.gao-lab.org/ (accessed on 26 July 2022)) in a General
Feature Format (GFF) file (Hv_Morex.pgsb.Jul2020.HC.gff3; [26]).

4.3. Chromosome Localization, Duplication, and Evolution of Snf2 Genes

The chromosome distribution of all identified Snf2 family genes was determined on
the Morex genome sequence from a GFF file (Hv_Morex.pgsb.Jul2020.HC.gff3; [26]). A
Circos plot [55] was used to visualize the physical position of each gene. Gene duplication
analysis was performed by using local BLAST comparisons with coding sequences. The
coding sequences of Arabidopsis and rice Snf2 genes were obtained as above for protein
sequences. Gene duplication events were defined by following the criteria of [56]: the
alignment sequence should cover >70% of the longer gene in length; the aligned region
should have an identity of >70%; and only 1 duplication event is counted for tightly linked
genes. The linked gene pairs were also displayed in a Circos diagram. The ratio of Ka
(non-synonymous substitution) to Ks (synonymous substitution) of Snf2 family genes was
calculated in the KaKs_Calculator package v. 2.0 by using the YN method [57]; Ka/Ks < 1
indicates purifying selection, Ka/Ks = 1 indicates neutral selection, and Ka/Ks > 1 indicates
positive selection. The genomic protein sequences of the wild barley OUH602 assembly
were download from the Barley Bioresource Database (http://viewer.shigen.info/barley/
download.php (accessed on 12 July 2021)). The pairwise Ka/Ks ratio of each orthologous
pair between OUH602 and Morex was also computed in KaKs_Calculator by using the
YN method. For these calculations, the coding sequences were aligned in MAFFT v. 7.475
software [58] with the guidance of the corresponding alignment of protein sequences.
Multiple alignment files of coding and protein sequences were constructed in PALNAL v.
14 software [59] and then imported into KaKs_Calculator.

4.4. Phylogenetic Reconstruction

The protein sequences of Arabidopsis and rice Snf2 family members used for phy-
logenetic analysis were collected from The Arabidopsis Information Resource (TAIR,
http://www.arabidopsis.org/ (accessed on 6 May 2021)) and Rice Genome Annotation
Project (RGAP; http://rice.uga.edu/ (accessed on 25 September 2021)), respectively. The
full-length sequences of Snf2 proteins acquired from barley (Morex), Arabidopsis, and rice
were aligned by the ClustalW algorithm with default parameters [60], as implemented
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in MEGA7 software [61]. The phylogenetic tree was reconstructed by the maximum like-
lihood algorithm with 1000 bootstrap replicates from the multiple sequence alignment
file in IQ-TREE2 v. 2.1.3 software [62]. The best-fit model for tree construction was de-
termined by ModelFinder [63] as selected automatically in IQ-TREE2. To validate the
search results among barley accessions, we generated the phylogenetic tree by the neighbor-
joining (NJ) method in the Clustal Omega (CLUSTALO) alignment program [64], including
the Arabidopsis and rice Snf2 family members to confirm the subfamily to which barley
proteins belong.

4.5. Population Genetics Analysis

The coding sequences of each Snf2 genes across twenty-one barley accessions were
aligned using ClustalW in CLC sequence viewer v7.8.1 (www.qiagenbioinformatics.com
(accessed on 11 December 2022)), respectively. The single nucleotide polymorphisms (SNPs)
in Snf2 genes among barley accessions were identified according to multiple alignment
files and extracted by using SNP-sites software [65]. SnpEff software was employed to
assess effects on protein function resulting from nucleotide variations and outputs the
VCF file [66]. To determine the evolutionary divergence, SNPs located within barley
Snf2 genes were used for principal component analysis (PCA) and population structure
analysis. Phylogenetic tree for Snf2 gene-associated SNPs were constructed based on
the PCA result, and population structure was evaluated using STRUCTURE software
(http://pritch.bsd.uchicago.edu/structure.html (accessed on 12 December 2022); [67]) with
predefined K values (the putative number of genetic groups) ranging from 1 to 8. The
most likely value of K was indicated by log probability of the data (LnP(D)) and an ad hoc
statistic ∆K through the change rate of LnP(D) between successive K value [68].

4.6. Expression Profile Analysis

The public RNA-seq datasets of 14 tissue samples provided by the IPK barley BARLEX
server (http://barlex.barleysequence.org (accessed on 29 October 2021); [25]) were used
to explore the expression patterns of barley Snf2 genes in different tissues and at different
development stages, namely root tissues (ROO), seedling shoots (LEA), etiolated seedlings
(ETI), epidermal strips (EPI), developing inflorescence tissues (INF), rachis (RAC), third in-
ternode of tillers (NOD), lemma (LEM), and lodicule (LOD) dissected from inflorescence, as
well as developing grains at 5 and 15 days after anthesis (CAR), and senescing leaves (SEN).
Gene expression levels were estimated in terms of fragments per kilobase of transcript
per million fragments mapped reads (FPKM) and were averaged where replicated sam-
ples were available. In addition, several biotic and abiotic stress expression datasets were
downloaded from the NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra
(accessed on 12 December 2022)) database to investigate the expression profiles of these
genes. All reads from above datasets were mapped to the Morex v3 genome and processed
into FPKM values [26]. A heatmap for gene expression data was constructed in the R
package pheatmap v. 1.0.12 from log2-transformed mean FPKM values, and genes were
clustered according to their expression patterns in the heatmap.
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