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Abstract: Salt stress is a worldwide agronomic issue that limits crop yield and quality. Improving
salt stress tolerance via genetic modification is the most efficient method to conquer soil salinization
problems in crops. Crop miRNAs have been declared to be tightly associated with responding and
adapting to salt stress and are advantageous for salt tolerance modification. However, very few
studies have validated vital salt tolerance miRNAs and coupled potent target genes in Medicago
species, the most economically important forage legume species. In this study, Mtr-miR319a, a
miRNA that was identified from the previous next-generation sequencing assay of salt-treated
Medicago truncatula, was overexpressed in M. truncatula and Arabidopsis thaliana, inducing the curly
leaves and salt stress tolerance phenotypes. Combining the elevated expression level of Mtr-miR319a
in the M. truncatula overexpression lines under normal and salt-treatment conditions, the regulatory
roles of Mtr-miR319a in leaf development and salt stress adaptation were demonstrated. Several
predicted target genes of Mtr-miR319a were also regulated by Mtr-miR319a and were associated
with the aforementioned phenotypes in M. truncatula plants, most notably MtTCP4. Our study
clarified the functional role of Mtr-miR319a and its target genes in regulating leaf development and
defending salt stress, which can help to inform crop breeding efforts for improving salt tolerance via
genetic engineering.

Keywords: Medicago truncatula; miR319; salt tolerance; TCP; leaf curl

1. Introduction

Soil salinization is a worldwide issue affecting crop yield, quality, and distribution [1,2].
When plants are exposed to a salt circumstance, various biological processes are negatively
impacted by osmotic stress, ion toxicity, and oxidative damage due to the salinity [3,4]. It
is calculated that more than half of the arable land in the world will suffer from salinity
in 30 years [5]. Hence, studying salt stress adaptation mechanisms and enhancing the salt
tolerance of plants are important and imperative for crop productivity and agricultural
sustainable development around the world.

MicroRNAs (miRNAs), which are widely distributed in diverse plant species, are
endogenous non-coding RNA transcripts with a small length of 19–24 nt [6,7]. miRNAs
have a vital role in the regulation of gene transcription, cell proliferation, and protein
translation [6,8]. Under salt stress, miRNAs function by activating rapid and synchronized
changes at post-transcriptional levels for responding to the detrimental circumstance [9,10].
Currently, there are significant efforts to identify stress-inducible miRNAs and miRNA
target genes via high-throughput sequencing approaches [6,9,11,12]. For instance, several
salt stress-related miRNAs, which could have a broad range of target mRNAs and per-
form important roles in salt stress regulation, were documented in alfalfa (M. sativa) and
M. truncatula [6,9], whereas the overexpression of miR393 can enhance salt stress adaptation
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and ABA insensitivity in A. thaliana [10]. Accordingly, understanding and modifying the
expression level of critical miRNAs coupled with their potential targets is an efficient way
to improve the salinity tolerance of important crops [12].

MicroRNA319 (miR319) is one of the most original and conserved miRNA families
and is a crucial regulator of leaf development and growth [13,14]. Enhanced expression
levels of miR319 can downregulate teosinte-branched/Cycloidea/proliferating (TCP) cell factor
genes, which leads to changes in leaf morphogenesis in A. thaliana [13,15]. In Chinese
cabbage (Brassica rapa), overexpressing BrpMIR319a2 decreases the expression of BrpTCP4,
leading to the excessive expansion of both the topmost and interveinal regions and the
enlargement of cylindrical cabbage heads [16,17]. By inhibiting the function of targeted
TCP genes, the overexpression of miR319 also positively regulates the expression of cup-
shaped cotyledon (CUC) genes, which are also active in the sinuses of the leaf margin and are
required for leaf serration [18,19]. Furthermore, miR319 was also found to be enhanced in A.
thaliana [20], wheat (Triticum aestivum L.) [21], and switchgrass (Panicum virgatum L.) [22]
and downregulated in maize (Zea mays L.) [23] and Solanum linnaeanum [12] under high
salt stress conditions, indicating a diverse regulatory role for miR319 in different develop-
mental stages, tissues, and species during salt stress responses in plants. Moreover, the
myeloblastosis (MYB) transcription genes in switchgrass (Panicum virgatum L.) [24] and
watermelon (Citrullus lanatus) [25], TCP transcription factor genes in creeping bentgrass
(Agrostis stolonifera) [26], and the lipoxygenase (LOX) gene [27], which miR319 targets, are
reported to regulate salt tolerance. Therefore, miR319 is an essential candidate for genetic
modification for the improvement of the growth and development of crops grown under
high salt conditions.

Medicago species, the most important legume crop species around the world, play a
significant agronomic and ecologic role due to the fact of its high protein and nutritional
value and symbiotic nitrogen fixation [28]. Being a universal Medicago model plant with
salt-sensitive properties, M. truncatula can be advantageous for the molecular investigation
of the salt stress mechanism and salt tolerance modification of Medicago species. Notably, in
our previous studies on M. truncatula, miR319 was demonstrated to participate in respond-
ing to salt stress, using high-throughput deep-sequencing approaches [6,9], indicating the
possible role that miR319 could have in the Medicago species. However, knowledge on
the further administrative roles of miR319 in adapting to salinity is very inadequate in
Medicago species.

The hypothesis of this work was that miR319 could contribute to salt stress adaptation
and tolerance via targeting several potential genes such as TCP4 in Medicago species.
Accordingly, in this study, Mtr-miR319a (miR319a from M. truncatula) was overexpressed
in A. thaliana and M. truncatula plants, which was followed by assays on the growth and
physiology for metrics evaluation, targets prediction, and expression detection of Mtr-
miR319a and its targets under control and salt-treated conditions. The objective was to
analyze the specific role of Mtr-miR319a and its potential targets during development and
salt stress and to test whether heightening the expression of Mtr-miR319a can modify salt
tolerance abilities in M. truncatula. The study manifested the leaf margin formation and
salt tolerance function of Mtr-miR319a in M. truncatula and verified its crucial target gene,
MtTCP4, which would help to promote the genetic engineering and modification of the salt
tolerance ability in Medicago and other plant species.

2. Results
2.1. Sequence Analysis of Mtr-miR319a

To explore the sequence conservation and variation of miR319 in A. thaliana and
M. truncatula, multiple sequence alignment of the mature sequences and the secondary
structure prediction of the precursors were analyzed. The results of the multiple sequence
alignment showed that the mature sequences of miR319 in A. thaliana and M. truncatula
were conserved (Figure 1A), indicating that the overexpression of Mtr-miR319a in A. thaliana
might work normally. However, the results also showed that there were differences among
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the sequences as well as the secondary structures of Mtr-miR319 precursors in M. truncatula
(Figure 1B).
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which could also be found in the Mtr-miR319a-overexpressed M. truncatula seedlings 

Figure 1. Sequence analysis of miR319 and precursor secondary structure prediction: multiple se-
quence alignment of miR319 in A. thaliana and M. truncatula (A), A. thaliana sequences of Ath-miR319a,
Ath-miR319b and Ath-miR319c, and M. truncatula sequences of Mtr-miR319a, Mtr-miR319b, Mtr-
miR319c and Mtr-miR319d were aligned; secondary structure prediction of the precursors of Mtr-
miR319a (B), Mtr-miR319b (C), Mtr-miR319c (D), and Mtr-miR319d (E). The mature sequences of
Mtr-miR319s are marked in red.

2.2. Leaf Curl Phenotypes in Mtr-miR319a-Overexpressed A. thaliana and M. truncatula Plants

The Mtr-miR319a-overexpressed A. thaliana lines of At-OE-7 and At-OE-17 and
M. truncatula lines of Mt-OE-22 and Mt-OE-32 were used for further functional clarifi-
cation (Figure 2). In the Mtr-miR319a-overexpressed A. thaliana seedlings, both young and
mature leaves were curled with an impaired cotyledon boundary and serration forma-
tion, which could also be found in the Mtr-miR319a-overexpressed M. truncatula seedlings
(Figure 2). Except for this leaf curl phenotype, no other growth or developmental differ-
ences were found in comparison to the WT plants in both A. thaliana and M. truncatula.
The leaf development performance in the overexpression plants might be caused by the
overexpression of Mtr-miR319a.
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Figure 2. Phenotypes of leaf curl after overexpressing Mtr-miR319a: phenotypes in the leaves of
A. thaliana (A) and M. truncatula (B) of the WT and Mtr-miR319a-overexpressing plants. Mature WT
A. thaliana plants and Mtr-miR319a-overexpressing plants of At-OE-7 and At-OE-17, as well as mature
WT M. truncatula plants and Mtr-miR319a-overexpressing plants of Mt-OE-22 and Mt-OE-32 are
shown. Bar = 1 cm.

2.3. Overexpression of Mtr-miR319a and Its Impacts on Salt Tolerance in A. thaliana and
M. truncatula

To test the salt tolerance ability of the Mtr-miR319a-overexpressing plants, growth
and physiological assays were conducted in A. thaliana and M. truncatula plants under
salt stress (Figures 3 and 4). After exposure to high salt conditions for 24 and 35 d in
A. thaliana and M. truncatula, respectively, the growth status of all of the overexpressed
plants was better than their corresponding WT plants (Figures 3A and 4A). The original
plant status before salt treatment at 0 d is shown in Figure 2. Specifically, in A. thaliana, the
water content of At-OE-7 and At-OE-17 was significantly higher than that of the WT plants
under salt stress, which showed no difference under the control conditions (Figure 3B). The
relative proline content was higher in the At-OE-7 and At-OE-17 plants compared to the WT
plants under salinity (Figure 3C). In M. truncatula, the MDA content in the overexpression
lines did not change after salt stress, whereas it was significantly higher in the WT plant
(Figure 4B), and the relative proline content was significantly increased after salt stress
while the two overexpression plants had higher levels than the WT plants (Figure 4C). The
growth and physiological performances of the WT and Mtr-miR319a overexpression plants
after salt stress demonstrated that overexpressing Mtr-miR319a is beneficial for improving
salt tolerance in A. thaliana and M. truncatula.
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Figure 3. Growth and physiological differences of Mtr-miR319a overexpressing Arabidopsis plants
after salt stress: Phenotype (A), physiology indicators of water content (B), and relative proline
content (C) of Arabidopsis plants overexpressing Mtr-miR319a after salt stress. The WT Arabidopsis
plants, Mtr-miR319a-overexpressing plants of At-OE-7 and At-OE-17 were exposed to salt stress of
200 mM NaCl for 10 d (A) and 24 d (A–C). The values are shown as mean ± standard error (SE); n = 3
for all groups. The bars represent the SE. Bars with different lowercase letters indicate statistically
significant differences at p < 0.05 based on ANOVA. Bar = 1 cm.
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Figure 4. Growth and physiological differences of Mtr-miR319a-overexpressed M. truncatula plants
after salt stress: phenotype (A); physiological indicators of MDA content (B); relative proline content
(C) of M. truncatula plants overexpressing Mtr-miR319a after salt stress. The WT M. truncatula plants
and Mtr-miR319a-overexpressing lines of Mtr-OE-22 and Mtr-OE-32 were exposed to salt stress of
200 mM NaCl for 25 d (A) and 35 d (A–C). The values are shown as the mean ± standard error
(SE); n = 3 for the groups. The bars represent the SE. Bars with different lowercase letters indicate
statistically significant differences at p < 0.05 based on ANOVA. Bar = 10 cm.
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2.4. High Expression of Mtr-miR319a Was Maintained before and after Salt Stress in
Mtr-miR319a-Overexpressed M. truncatula Plants

To explore the expression pattern of Mtr-miR319a after salt circumstance, the expres-
sion level of Mtr-miR319a in M. truncatula WT and Mtr-miR319a-overexpressing plants
was determined after exposure to a time course of salt treatment (Figure 5). The results
showed that the expressions of Mtr-miR319a in Mt-OE-22 and Mt-OE-32 were significantly
higher than that of the WT seedlings at 0 h, showing five-fold differences. The expression
of Mtr-miR319a in the WT plants increased five-fold after 2 h of salt treatment, which
showed no difference compared to the overexpression plants. However, the expression of
Mtr-miR319a in the WT plants increased two-fold after 12 h of salt treatment and did not
show significant changes at 48 h compared to its value at 0 h, whereas the overexpression
plants did not significantly change during the 48 h. The rapid induction of Mtr-miR319a in
the WT indicates that the salt-responsive role of Mtr-miR319a in M. truncatula and the con-
stantly high expression (compared to the WT plants in 0 h) over the 48 h could contribute
to salt tolerance in the Mtr-miR319a M. truncatula overexpression plants.
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Figure 5. Transcriptional expression profile of Mtr-miR319a in M. truncatula plants after salt stress.
The M. truncatula plants of the WT and the Mtr-miR319a overexpression lines of Mtr-OE-22 and
Mtr-OE-32 were exposed to 150 mM NaCl for 0, 2, 12, and 48 h. The values are shown as the
mean ± standard error (SE); n = 3 for all groups. The bars represent the SE. Bars with different
lowercase letters indicate statistically significant differences at p < 0.05 based on ANOVA.

2.5. Mtr-miR319 Acts on the Target Genes Involved in Leaf Development and Salt-Responsive
Roles in M. truncatula

To examine the transcriptional expression of the possible targets for verifying the
functional roles of Mtr-miR319, eleven genes, including MYBs, CUC, TCPs, and LOXs,
which are involved in leaf development and salt stress adaptation, were determined before
and after salt stress in M. truncatula plants (Figure 6). Specifically, the expression of MYB2
and TCP3 did not show a significant difference between the WT and the overexpression lines
under both control and salinity circumstances. Under normal conditions, the expression
of LOX13 in Mt-OE-22 and MYB1, TCP4, and LOX9 in the overexpression lines were
significantly suppressed by Mtr-miR319, while TCP10 in the overexpression lines and
LOX13 in Mt-OE-32 did not change. In addition, the CUC2 levels in Mt-OE-32 significantly
increased. However, after 2 h of salt treatment, the expression of TCP4 and TCP10 in the
overexpression lines sharply declined, MYB1 and CUC2 in the two overexpression lines
did not show any difference with the WT, and LOX9 in Mt-OE-22 and LOX13 in the two
overexpression lines were significantly higher than in the WT plants. According to the
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expression changes, it can be found that MYB1, TCP4, TCP10, and LOX9 were suppressed
under normal or salt stress conditions, indicating the inhibitory role that Mtr-miR319a plays
on these target genes.
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2.6. Prediction and Verification of the Target Genes of Mtr-miR319a

MtTCP was found to be a primary target gene of miR319 by using the psRNATar-
get miRNA target gene analysis server (http://plantgrn.noble.org/psRNATarget/home,
accessed on 22 January 2021) [29]. Specifically, MtTCP4 (MTR_8g463380) was strongly
conserved with the predicted binding region, whereas the combination of Mtr-miR319a
and MtTCP4 (MTR_8g463380) completely matched. The results of 5′ RLM-RACE showed
that the cleavage sites occurred at the 9th to 10th base sites of Mtr-miR319a in MtTCP4
(Figure 7A). Furthermore, the Western blot assay showed that the protein translation
of MtTCP4 was suppressed by Mtr-miR319a (Figure 7B). Thus, this work predicted and
verified the target gene MtTCP4 of Mtr-miR319a.

http://plantgrn.noble.org/psRNATarget/home
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3. Discussion

Salinity is a widespread problem that threatens the yield and production of crops
across the world [30]. Exploring salt response and tolerance mechanisms can lay the theo-
retical foundation for salt tolerance genetic improvement and modification of economically
important crops. MicroRNAs have been shown to play an essential role in the regulation of
gene transcription, protein translation, and cell proliferation [6,8]. Herein, our study firstly
verified that the overexpression of Mtr-miR319a can regulate leaf development and salt
tolerance via targeting several critical genes (Figure 8), such as TCP, MYB, CUC, and LOX,
in M. truncatula plants, which is discussed below.
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In plants, leaves are the most essential plant organs for energy acquisition and carbo-
hydrate generation. Crinkled and curly phenotypes were found in the leaves of the Mtr-
miR319a-overexpressing A. thaliana and M. truncatula plants in our results. This conspicuous
leaf morphology was also reported in miR319-overexpressing petunia (Petunia × hybrida) [19]
and tomato (Solanum lycopersicum) [31] and in tcp A. thaliana mutants [32]. In our study, the
verified Mtr-miR319a target gene, TCP4, was detected to be suppressed under normal con-
ditions in the Mtr-miR319a-overexpressed M. truncatula plants. This is in accordance with
the observation that overexpressing miR319 can reduce the expression levels of TCPs and
trigger leaf serration in A. thaliana, whereas the mir319a/b mutant enhanced the expression
of TCPs, resulting in the formation of smooth leaves [15,18]. Therefore, our results suggest
that the robust and intricate roles of Mtr-miR319a and its targets, namely, TCP transcription
factors, play a crucial role in the development process of the central and marginal regions of
the leaf of A. thaliana and M. truncatula [19,32]. In addition, TCP4 negatively regulates the
expression of CUC genes and directly interacts with CUC2, which is also involved in leaf
serration formation [18,33]. The expression of CUC2 was significantly higher in one of the
overexpression lines. This further indicates that the regulatory networks of Mtr-miR319a
and its target genes act on leaf formation and development [33].

Notably, the leaf phenotype caused by Mtr-miR319a can contribute to improving salt
tolerance. Wider, thicker leaves with increased weight-to-area ratios have been reported in
miR319-overexpressing creeping bentgrass plants [26] and switchgrass [24], and they were
tightly associated with enhanced salt tolerance by means of maintaining higher water con-
tents, photosynthetic activity, and stomatal conductance, reducing ROS levels (represented
by H2O2 content) and accumulating less Na+ when coping with salt stress [24,26].

Though the miR319 network in plants is evolutionarily conserved, miR319-targeted
genes might have conflicting functions between dicotyledonous and monocotyledonous
plant species [34]. Therefore, this could explain why the leaf phenotypes in the A. thaliana
and M. truncatula plants in this study were not identical to those in creeping bentgrass and
switchgrass, which are monocotyledons in the Poaceae family and are inherently anatom-
ically different from the plant materials used in the present study [34]. Despite these
morphological differences, the physiological and biochemical parameters also exhibited im-
proved salt tolerance in the Mtr-miR319a-overexpressing A. thaliana and M. truncatula plants
in our study, indicating that the regulatory role of Mtr-miR319a could also be associated
with salt tolerance but is not limited to impacting leaf development and morphology [34].

We noticed a delayed flowering time and the suppression of leaf senescence in the
Mtr-miR319a-overexpressed A. thaliana and M. truncatula plants when exposed to salt stress.
This phenotype was also reported in miR319-overexpressed creeping bentgrass [26] and
tomato plants [31]. In this study, the delayed flowering and leaf senescence phenotypes
under salt stress could indicate a role of Mtr-miR319a in flowering time and leaf senescence
regulation [35], which also contribute to the salt tolerance performance caused by Mtr-
miR319a, as manifested in A. thaliana [36,37].

Furthermore, the expression of LOX9 was found to be repressed in Mtr-miR319a-
overexpressing M. truncatula plants under normal conditions, whereas the expression
of LOX9 in Mt-OE-22 and LOX13 in the two overexpression lines were identified to be
significantly higher under salt stress compared to the WT plants. LOX, which encodes the
key enzymes of JA biosynthesis and catalyzes the reaction of α-linoleic acid to hydroperoxy-
octadecadienoic acid, was induced in MIR319b overexpression rice plants upon blast
disease exposure [38]. For the M. truncatula plants coping with salt stress in our study,
the expression levels of LOX9 in Mt-OE-22 and LOX13 in the overexpression plants were
also higher than that of the WT plant. This induction could be explained by the role of
Mtr-miR319a targeting genes used in salt stress defense in M. truncatula plants [38]. In
addition, a previous study [39] demonstrated that TCP4 adjusts leaf senescence via binding
to the LOX2 promoter and commanding the transcriptional level of LOX2. In this study, the
roles of improving salt tolerance and regulating leaf senescence by interacting with TCP4
in LOX9 and LOX13 warrant further clarification.
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Moreover, GaMYBs, gibberellin and abscisic acid-regulated MYBs, are reported to be
targeted by miR319 and can improve chilling [40] and heat [41] stress tolerance in tomato.
The expression of the predicted Mtr-miR319a target gene, MYB1, was found to be sup-
pressed in the Mtr-miR319a-overexpressed M. truncatula plant (Mt-OE-32) under normal
conditions compared to the WT plants. The expression of OsGAmyb was significantly lower
in the miR319a overexpression plants [42], which is in accordance with our determined ex-
pression changes of MYB1, indicating that MYB1 could also be a target gene of Mtr-miR319a
in the defense against salt stress in M. truncatula plants.

4. Materials and Methods
4.1. Plant Materials and Culture Environments

A. thaliana (Col-0) and M. truncatula (R108) were taken as wild-type (WT) plants in
the following experiments. A. thaliana and M. truncatula seedlings were cultured under
identical environmental conditions in artificial climate incubators (GXZ-500, Jiangnan,
China) with the environmental conditions of 20 ◦C, 16/8 h light/dark, 65% humidity, and
125 µmol m−2 s−1. The transgenic seeds of A. thaliana obtained from individual plants
were disinfected by immersion in 5% (volume) NaClO solution, rinsed with sterilized
distilled water, spread onto half Murashige and Skoog (MS) medium in plates (d = 10 cm),
and reserved at 4 ◦C for two days. The transgenic seeds of M. truncatula obtained from
individual plants were sterilized as described for the A. thaliana seeds and placed in plates
(d = 10 cm) with a filter paper for seed germination. For the seedling growth assays under
salt stress, the 10 day transgenic A. thaliana and M. truncatula seedlings were transferred to
pots (9 × 9 × 12 cm) filled with soil (2:1 mixture of nutrient soil and vermiculite). For the
transcriptional expression analysis, the 2 week-old M. truncatula seedlings were replanted
in hydroponic culture containers (25 × 20 × 7.5 cm) in 2.2 L of half-strength Hoagland
nutrient solution in the growth chamber for 28 d. The half-strength Hoagland nutrient
solution was replaced every 4 d to keep fresh.

4.2. Salt Treatments and Sampling

For seedling growth under salt stress tests, four-week-old WT and Mtr-miR319a-
overexpressing A. thaliana seedlings were irrigated with 20 mL of 200 mM NaCl solution
every 3 d for 24 d, and the leaves were sampled at 24 d for the physiological measurements;
the four-week-old WT and Mtr-miR319a-overexpressed M. truncatula plants were exposed
to 20 mL of 200 mM NaCl solution every 3 d for 35 d, and the leaves were sampled at
35 d for the physiological measurements. For the transcriptional analysis, the hydroponic
solution was supplemented with 150 mM NaCl. Twenty-eight-day-old M. truncatula plants
were treated with 150 mM NaCl, and leaf samples were collected at 0, 2, 12, and 24 h,
respectively; rinsed with deionized water; frozen in liquid nitrogen immediately; and kept
at −80 ◦C until nucleic acid isolation. Each time point was duplicated three times, and each
replicate pooled three individual plants.

4.3. RNA/DNA Isolation, cDNA Synthesis, and 5′ RLM-RACE

The total RNA was isolated from the M. truncatula leaves using Trizol solution (Invitro-
gen, Carlsbad, CA, USA). The total RNA used for the reverse transcription was first treated
with DNase I enzyme (MBI Fermentas, Hanover, MD, USA). The PrimeScript Reverse
Transcriptase Kit (Takara, Japan) was used for the cDNA synthesis reaction, referring to the
manufacturer’s instructions. The genomic DNA extraction was carried out using a DNA
isolation kit (Kangweishiji, Beijing, China) according to the manufacturer’s instructions.
The harvested complementary cDNA and DNA samples were well stored at −20 ◦C in a
freezer. The cleavage sites of the miRNA targets in M. truncatula were conducted with 5′

RNA ligase-mediated rapid amplification of the cDNA ends (5′ RLM-RACE) [43] using the
SMARTer® RACE 5′/3′ Kit (Takara, Kyoto, Japan). The synthesized cDNA was taken as a
template for the PCR with 5′ primer and gene-specific primers. The gene-specific primers
(GSPs) were validated at the 5′ end of the RNA adaptor, and the amplified universal primers
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complementary to the adaptor were designed, as listed in Table S1. The procedures for
the RNA adaptation, reverse transcription, and amplification followed the recommended
instructions (Kangweishiji, Beijing, China). The product was purified and transformed into
the EASY-T5 vector (TransGen, Beijing, China) for sequencing (Zhongchuanhongda, Beijing,
China) and was preserved for further usage after the sequence alignment and verification.

4.4. Overexpression Vector Construction and Genetic Transformation

The precursor sequences of Mtr-miR319a were searched using the miRbase database
(http://www.mirbase.org/, accessed on 22 January 2021). The cloning primers, Mtr-
miR319a-F/R, were designed using Pimer6.0 software according to the sequences of the
plasmid and precursor, as displayed in Table S1. The amplification products were detected
on 1% agar gel stained with gold view (Transgen, Beijing, China) and then purified with a
DNA gel extraction kit (Transgen, Beijing, China). The purified fragment was concatenated
into the pCAMBIA3301 plasmid that was previously digested with the NcoI restriction
enzyme. The pCAMBIA3301-Mtr-miR319a recombinant plasmid was preserved after se-
quencing (Qingkexinye, Beijing, China). MtTCP4 was cloned by GXL DNA Polymerase
(TaKaRa, Kusatsu, Shiga, Japan), ligated into the PCR-TOPO vector (Invitrogen, Waltham,
MA, USA), and converted into competent E. coli. After sequencing and vector extraction,
TOPO-MtTCP4 was obtained. The recombination of TOPO-MtTCP4 and the pMDC83
vector was performed by Gateway® LR Clonase® II (Invitrogen, Waltham, MA, USA)
following the operational steps. The pMDC83-TCP4 recombinant plasmid was finally
obtained and well preserved after sequencing (Qingkexinye, Beijing, China).

The pCAMBIA3301-Mtr-miR319a plasmid was transformed into A. thaliana following
the Agrobacterium (GV3101)-mediated floral-dipping method [44]. The harvest-transformed
A. thaliana seeds were further spread on 1/2 MS medium with glufosinate (PPT) (4 mg/L) ap-
plication and verified by PCR and qRT-PCR assays for the positive lines. The pCAMBIA3301-
Mtr-miR319a vector was transformed into M. truncatula using a unified Agrobacterium-
mediated genetic transformation protocol [45]. The callus was induced and cultured on
SH3a medium with PPT (3 mg/L) and cephalosporin (CEP) (450 mg/L) for de-the differen-
tiation, MSBK with PPT (3 mg/L) and CEP (450 mg/L) for the embryo induction, and SH9a
with PPT (1 mg/L) and CEP (200 mg/L) for the shoot and root induction. The generated
M. truncatula seedlings were also positively selected using PCR and qRT-PCR assays. The
pMDC83-TCP4 vector was transiently transformed into the tobacco leaves mediated by
Agrobacterium GV3101 [46], and the proteins of the GFP fusion and control were examined
by applying a confocal scanning microscope system (Leica TCS SP8, Germany).

4.5. Physiological Measurements for Salt Tolerance Evaluation

The physiological parameters, such as relative water content [47], malondialdehyde
(MDA) content [48], and relative proline content [49], of A. thaliana and M. truncatula plants
after the treatments were determined. The samples for the relative water content and
relative proline content measurements were taken from 3 independent biological duplicates
for each sampling, while four were used for the MDA content.

4.6. Western Blot Analysis for the Mtr-miR319a Target Protein

The total protein was separated from the transformed tobacco leaves through the adop-
tion of the isolation buffer, and the protein concentration was measured using the blood
alcohol concentration method. The protein samples were boiled for 12 min after mixing with
the buffer. The lysates were split by SDS-PAGE and checked by immunoblotting against
the rabbit anti-GFP antibody (Abcam, ab290, Cambridge, MA, USA) for GFP-MtTCP4.
As a loading control, actin was detected with the rabbit anti-Actin antibody (Abcam,
ab197345, Cambridge, MA, USA). The HRP-conjugated goat anti-rabbit secondary antibody
(Beyotime, A0216, Beijing, China) was adopted for anti-GFP or anti-actin immunoblotting.

http://www.mirbase.org/
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4.7. RT-qPCR Assay of Mtr-miR319a and Its Targets

Relative quantification analyses of Mtr-miR319a and its target genes of MYB1
(MTR_3g011610), MYB2 (MTR_8g042410), CUC2 (MTR_2g078700), TCP3 (MTR_2g078200),
TCP4 (MTR_8g463380), TCP10 (MTR_2g090960), LOX9 (MTR_8g018690), and LOX13
(MTR_3g479460) were conducted on a real-time fluorescent quantitative ABI 7300 PCR
system (Applied Biosystems, Foster City, CA, USA) and estimated referring to the compar-
ative Ct method. The MtU6 snRNA and MtActin2 genes were taken as the house-keeping
reference genes of Mtr-miR319a and its target genes, respectively. The qRT-PCR primers
were prepared at the NCBI (http://www.ncbi.nlm.nih.gov/tools/primer-blast/, accessed
on 15 June 2021) (Table S1). Reactions were conducted using the miCute enhanced miRNA
fluorescence quantitative assay kit (Tiangen, Beijing, China) and SYBR Premix Ex TaqTM
II (TaKaRa, Kusatsu, Shiga, Japan), and the quantitative tests were replicated three times.
The PCR cycling conditions were set on the basis of the manufacturer’s guidance, with a
melting curve to affirm the product specificity and avert the primer dimers in the end. The
relative expressions of Mtr-miR319a and each gene were analyzed referring to the 2−∆∆Ct

formula [50] and presented as the fold change.

4.8. Statistics

The data analysis was conducted using EXCEL 2010 (Microsoft Corporation, Redmond,
WA, USA), GraphPad Prism 9.0 (GraphPad, San Diego, CA, USA), and IBM SPSS 20.0
(IBM, Armonk, NY, USA). The significant differences (p < 0.05) shown in this study were
calculated using statistical method of analysis of variance (ANOVA) tests. The data are
presented as the mean ± stand error.

5. Conclusions

In this study, Mtr-miR319a, a miRNA considered to participate in salt response and
tolerance in Medicago species, as per our prior report, was overexpressed in A. thaliana and
M. truncatula plants. Our results showed that overexpressing Mtr-miR319a induced leaf
curling phenotypes and enhanced salt tolerance in both the A. thaliana and M. truncatula
overexpression plants. The expression of Mtr-miR319a was determined to be maintained at
a high level before and after salt stress, indicating the definite roles that Mtr-miR319a played
in the process of leaf development and salt stress adaptation. Furthermore, the expressions
of potential target genes, such as MYBs, CUC, TCPs, and LOXs, were detected, and among
them TCP4, TCP10, MYB1, CUC2, LOX9, and LOX13 were found to be regulated by the
overexpression of Mtr-miR319a and were suggested to be associated with the phenotypes
observed in the M. truncatula plants; TCP4, especially, might be involved in controlling
leaf margin formation and salt tolerance. These findings contribute to the molecular
theoretical basis of miR319 in legume plants and further provide important knowledge on
developmental and stress tolerance traits for crop genetic engineering.
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