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Abstract: Peucedanum nanum and P. violaceum are recognized as members of the genus Peucedanum
because of their dorsally compressed mericarps with slightly prominent dorsal ribs and narrowly
winged lateral ribs. However, these species are not similar to other Peucedanum taxa but resemble
Ligusticopsis in overall morphology. To check the taxonomic positions of P. nanum and P. violaceum,
we sequenced their complete plastid genome (plastome) sequences and, together with eleven pre-
viously published Ligusticopsis plastomes, performed comprehensively comparative analyses. The
thirteen plastomes were highly conserved and similar in structure, size, GC content, gene content
and order, IR borders, and the patterns of codon bias, RNA editing, and simple sequence repeats
(SSRs). Nevertheless, twelve mutation hotspots (matK, ndhC, rps15, rps8, ycf 2, ccsA-ndhD, petN-psbM,
psbA-trnK, rps2-rpoC2, rps4-trnT, trnH-psbA, and ycf 2-trnL) were selected. Moreover, both the phy-
logenetic analyses based on plastomes and on nuclear ribosomal DNA internal transcribed spacer
(ITS) sequences robustly supported that P. nanum and P. violaceum nested in Ligusticopsis, and this
was further confirmed by the morphological evidence. Hence, transferring P. nanum and P. violaceum
into Ligusticopsis genus is reasonable and convincing, and two new combinations are presented.

Keywords: Apiaceae; Peucedanum; Ligusticopsis; new combination; plastome; phylogenomics

1. Introduction

Ligusticopsis Leute, a small flowering plant genus of Apiaceae, was established by
Gerfried Horand Leute in 1969 with L. rechingeriana Leute as the type species, recogniz-
able by conspicuous calyx teeth and strongly dorsally flattened mericarps with numerous
vallecular vittae [1]. However, these characteristics can also be detected in some Ligus-
ticum L. members [2]; therefore, the morphological delimitation between Ligusticopsis and
Ligusticum is historically unclear. Furthermore, several Ligusticopsis species described by
Leute do not have prominent calyx teeth [3], which further blurred the boundaries of this
genus. Hence, the genus Ligusticopsis has been merged into the genus Ligusticum by some
authors [2,4–6]. However, Li et al. [7] recently confirmed that the genus Ligusticopsis is a
natural unit based on molecular and morphological evidence, and confirmed the presence
of nine “true Ligusticopsis species”. Subsequently, the phylogenetic analyses based on
plastome data performed by Ren et al. [8] also recovered Ligusticopsis as a monophyletic
group and recognized two additional species. To date, the genus Ligusticopsis contains
eleven validated species.

Peucedanum nanum R.H.Shan and M.L.Sheh and P. violaceum R.H.Shan and M.L.Sheh
are species endemic to China, which grow on dry mountain slopes and in sparse forests
or grassy places on riverbanks, respectively [9,10]. Both species are placed in Peucedanum
L. owing to their dorsally compressed mericarps with slightly prominent dorsal ribs and
narrowly winged lateral ribs [11]. However, P. nanum and P. violaceum are not similar to the
type species of Peucedanum (P. officinale L.) [12] but resemble Ligusticopsis species in overall
morphology (Figure 1). Additionally, the genus Peucedanum is not monophyletic [13–19],
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and its taxonomy has faced extreme challenges. Therefore, the taxonomic positions of P.
nanum and P. violaceum need to be re-evaluated.
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A robust molecular phylogenetic framework could provide valuable information for
resolving the taxonomic positions of P. nanum and P. violaceum. Unfortunately, molecular
data for both species are limited, and these species have not been included in previous
phylogenetic studies. Hence, it is necessary to identify molecular markers to investigate
the phylogenetic position of P. nanum and P. violaceum.

The plastid genome (plastome) sequence, possessing highly variable characters, gives
us the potential to obtain a robust phylogenetic framework at low taxonomic levels [20–29].
With the development of next-generation sequencing, plastome sequences have been
applied extensively and successfully to resolve the phylogenetic position of taxonomically
difficult taxa [8,30–35]. In this study, we sequenced and assembled the plastomes of P.
nanum and P. violaceum for the first time. Together with the previously published eleven
Ligusticopsis plastomes, we carried out comprehensively comparative analyses to reveal
the plastome features for P. nanum, P. violaceum, and Ligusticopsis species. Subsequently, we
performed phylogenetic analyses based on the plastome data and nuclear ribosomal DNA
internal transcribed spacer (ITS) sequences to investigate the phylogenetic positions of P.
nanum and P. violaceum. Finally, by combining evidence from the comparative plastome
analyses, molecular phylogeny, and morphology, taxonomic revisions for P. nanum and P.
violaceum were conducted.
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2. Results
2.1. Plastome Features

Illumina sequencing obtained 31,564,816 and 33,651,636 paired-end clean reads for
P. nanum and P. violaceum, respectively (Table S1); among these reads, 1,025,204 and
543,725 reads were mapped to the assemblies, respectively. Based on these data, two
high-quality plastomes for P. nanum and P. violaceum were generated with 1022.351× and
536.171× coverage, respectively.

The plastome features of eleven Ligusticopsis taxa and two Peucedanum species were
comprehensively investigated. The overall size ranged from 146,900 bp (P. nanum) to
148,633 bp (L. brachyloba (Franch.) Leute) in the thirteen plastomes (Table 1). All of them
exhibited typical quadripartite structures containing a pair of inverted repeat regions (IRs,
19,056–20,022 bp) divided by a large single-copy region (LSC, 91,480–92,305 bp) and a small
single-copy region (SSC, 16,335–17,654 bp) (Table 1, Figure 2). The total GC content of
the thirteen plastomes ranged from 37.3% to 37.5%, and 113 unique genes were identified,
including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes (Tables 1 and S2).

Table 1. Comparison of plastome features among Peucedanum nanum, P. violaceum, and
Ligusticopsis species.

Taxon
Total

Length
(bp)

LSC
(bp)

SSC
(bp)

IR
(bp)

Total GC
Content

(%)

Total
Genes

(Unique)

Protein
Coding
Genes

(Unique)

rRNA
Genes

(Unique)

tRNA
Genes

(Unique)

L. brachyloba 148,633 92,265 17,588 19,390 37.40% 113 79 4 30

L. capillacea 147,808 91,907 17,503 19,199 37.50% 113 79 4 30

L. daucoides 148,078 91,666 17,582 19,415 37.40% 113 79 4 30

L. hispida 147,797 91,846 17,627 19,162 37.40% 113 79 4 30

L. integrifolia 148,196 92,305 17,575 19,158 37.50% 113 79 4 30

L. involucrata 147,752 91,782 17,560 19,205 37.40% 113 79 4 30

L. modesta 148,133 92,247 17,568 19,159 37.50% 113 79 4 30

L. oliveriana 148,175 92,273 17,534 19,184 37.50% 113 79 4 30

L. rechingeriana 148,525 91,813 17,654 19,529 37.30% 113 79 4 30

L. scapiformis 148,107 92,214 17,581 19,156 37.50% 113 79 4 30

L. wallichiana 148,594 92,281 17,567 19,373 37.40% 113 79 4 30

P. nanum 146,900 91,480 17,308 19,056 37.50% 113 79 4 30

P. violaceum 148,190 91,811 16,335 20,022 37.50% 113 79 4 30

The 79 protein-coding genes typically shared by the thirteen plastomes were extracted
and connected for each species. These sequences were 67,566–67,896 bp in length and
harbored 22,522–22,632 codons (Table S3). Among these codons, the least number of codons
were used to encode the Cys, while the highest number of codons were used to encode
the Leu. Additionally, the relative synonymous codon usage (RSCU) values of all codons
ranged from 0.34 to 2.00 in the thirteen plastomes (Figure 3). Among them, the RSCU
values of 30 codons were greater than 1.00 in all plastomes. All of these codons ended with
A/U, except for UUG.
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Figure 3. The RSCU values of 79 protein-coding regions for thirteen plastomes. Red represents higher
RSCU values, while blue indicates lower RSCU values.

A total of 57–59 potential RNA editing sites were identified in the thirteen plastomes
(Table S4). All detected RNA editing sites were Cytosine to Uracil (C-U) conversion, and
most of them occurred in the second codon position (43–45) followed by the first codon
position (14), but no site was located in the third codon position (Table S5). Moreover,
the ndhB gene contained the highest number of RNA editing sites (10) in all plastomes
(Table S6).

The total number of simple sequence repeats (SSRs) ranged from 67 to 84 among
the thirteen plastomes (Figure 4). Among these, mononucleotide repeats were the most
abundant (34–43) followed by dinucleotides (17–24). In addition, bases A and T were
dominant for all the identified SSRs in the thirteen plastomes (Table S7).
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2.2. Plastome Comparison

The borders between the IR and SC among the thirteen plastomes were compared
(Figure 5). The junctions of IRa/LSC and IRb/LSC fell into the ycf 2 gene and intergenic
region of trnL-trnH, respectively. The borders of IRb/SSC fell into the ycf 1 gene in all
species, whereas the overlap between the ycf 1 gene and the ndhF gene in the IRa/SSC
junctions was only detected in L. capillacea (H.Wolff) Leute.
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The gene arrangement among the thirteen plastomes was the same (Figure 6), and their
sequences showed high similarity with 98.2% pairwise identity (Figure 7). Nevertheless,
12 mutation hotspot regions were identified, including five protein-coding genes (matK,
ndhC, rps15, rps8, ycf 2) that exhibited Pi > 0.00340 and 7 non-coding regions (ccsA-ndhD,
petN-psbM, psbA-trnK, rps2-rpoC2, rps4-trnT, trnH-psbA, ycf 2-trnL) that showed Pi > 0.01000
(Figure 8).
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2.3. Phylogenetic Analyses

The analyses of maximum likelihood (ML) and Bayesian inference (BI) based on
the plastome data generated identical tree topologies. As shown in Figure 9, the eleven
Ligusticopsis taxa, P. nanum, and P. violaceum clustered as a clade (BI posterior probabilities,
PP = 1.00, ML bootstrap values, BS = 100) within Selineae (PP = 1.00, BS = 100), which
was clearly distant from other Ligusticum taxa. Within this clade, three lineages could be
recognized: (1) L. daucoides (Franch.) Lavrova ex Pimenov and Kljuykov, L. hispida (Franch.)
Lavrova and Kljuykov, L. involucrata (Franch.) Lavrova, L. oliveriana (H.Boissieu) Lavrova,
and L. rechingeriana formed a clade (PP = 1.00, BS = 100) in which L. oliveriana early diverged
from the reminders (PP = 1.00, BS = 100) followed by L. daucoides (PP = 1.00, BS = 100),
and the sub-clade L. involucrata + L. rechingeriana (PP = 1.00, BS = 100) sister to L. hispida
(PP = 1.00, BS = 100); (2) P. nanum and P. violaceum represented a clade (PP = 1.00, BS = 100);
(3) the six remainders constituted another clade (PP = 1.00, BS = 82) in which L. capillacea +
L. scapiformis (H.Wolff) Leute was sister to L. integrifolia (H.Wolff) Leute + L. modesta (Diels)
Leute (PP = 1.00, BS = 100) and then clustered with L. brachyloba + L. wallichiana (DC.)
Pimenov and Kljuykov (PP = 1.00, BS = 82).

Although phylogenetic analyses based on ITS sequences yielded topologies with low
support and resolution, the results also indicated that the sister group of P. nanum and P.
violaceum clustered with the Ligusticopsis species (PP = 1.00, BS = 97), and this clade was
relatively distant from other Ligusticum taxa (Figure S1).
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3. Discussion
3.1. Plastome Features

In this study, we conducted comprehensively comparative analyses for the plastomes
of P. nanum, P. violaceum, and Ligusticopsis species. The thirteen plastomes showed typical
quadripartite structures, including a pair of inverted repeat regions divided by a large
single-copy region and a small single-copy region, which is the same as the other plastomes
of Apiaceae [7,8,19,36–41]. Although gene loss and rearrangement have been reported in
the plastomes of Apiaceae [19,38,39], the gene content and order in the thirteen studied
plastomes were identical. All these plastomes also shared similar genomic size, total GC
content, and IR borders. Furthermore, the patterns of codon bias, RNA editing sites, and
SSR were extremely similar and have also been detected in the plastomes of Ligusticum and
Peucedanum within Apiaceae [19,42]. These results indicated that the thirteen plastomes
were highly conserved. Meanwhile, the conserved and similar plastome characters among
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P. nanum, P. violaceum, and Ligusticopsis species also implied that P. nanum and P. violaceum
may be members of Ligusticopsis.

Although the thirteen plastomes showed high similarity, 12 mutation hotspot regions
(matK, ndhC, rps15, rps8, ycf 2, ccsA-ndhD, petN-psbM, psbA-trnK, rps2-rpoC2, rps4-trnT,
trnH-psbA, ycf 2-trnL) were still identified, which could be used as potential DNA barcodes
for species identification and phylogenetic analysis of the Ligusticopsis species. Among
them, the matK gene and the trnH-psbA fragment have been suggested as universal DNA
barcodes [43–46], while the ycf 2 gene and the petN-psbM region have been extensively used
for phylogenetic analysis [47–53]. In future studies, the effects of these sequences on species
identification and phylogenetic analysis of Ligusticopsis will be further validated.

3.2. Phylogenetic Inference

Since the establishment of the genus Ligusticopsis, its taxonomy has been controversial.
Pu [2], Pu and Watson [5], Zhang [4], and Wang et al. [54] did not recognize Ligusticopsis
as a distinct genus but merged it into Ligusticum based on morphological characteristics.
However, based on carpoanatomical evidence, Pimenov et al. [55] accepted the establish-
ment of Ligusticopsis. Subsequently, Pimenov [56] recognized 18 Ligusticopsis species in
his checklist of Chinese Umbelliferae based on reviews of the type specimens and mor-
phological evidence. Recently, plastome phylogenetic analyses performed by Li et al. [7]
and Ren et al. [8] robustly confirmed the monophyly of Ligusticopsis, although limited
samples of Ligusticopsis and Ligusticum were used in both studies. In the present study,
twelve Ligusticum species and eleven Ligusticopsis taxa were included in the phylogenetic
analyses. Both the phylogenies based on plastome data and on ITS sequences revealed
that eleven Ligusticopsis species clustered as a clade and belonged to the Selineae tribe.
Although the type species of Ligusticum (Ligusticum scoticum L.) was absent in our analyses,
the phylogenetic position of this species, located in the Acronema Clade, was revealed by a
previous study [18], which was obviously distant from the clade formed by the Ligusticopsis
species. Our results with more extensive taxa sampling provided additional evidence to
accept Ligusticopsis as a distinct genus.

Additionally, all our phylogenetic analyses based on plastome data and ITS sequences
robustly supported that P. nanum and P. violaceum nested within Ligusticopsis. The type
species of Peucedanum (P. officinale) was not included in our analyses; however, a previous
study revealed its phylogenetic location was distant from Ligusticopsis [18]. These results
implied that P. nanum and P. violaceum were distant from P. officinale but closely related
to Ligusticopsis. Furthermore, the affinity between both species and Ligusticopsis was
supported by the high similarity of their plastome sequences and also supported by the
shared morphological features: stem base clothed in fibrous remnant sheaths, conspicuous
calyx teeth, and strongly compressed dorsally mericarps with slightly prominent dorsal ribs,
winged lateral ribs, and numerous vittae in the commissure and in each furrow [7,9,10].
However, hispid mericarps can easily distinguish P. nanum and P. violaceum from the
glabrous mericarps of other Ligusticopsis species [7]. Moreover, P. nanum has densely hispid
mericarps with slightly prominent dorsal ribs and six vittae in the commissure, whereas
sparsely hispid mericarps with filiform dorsal ribs and eight vittae in the commissure are
observed in P. violaceum [9,10]. Therefore, we could reasonably transfer P. nanum and P.
violaceum into Ligusticopsis as two new members of this genus.

The sister relationship between P. nanum and P. violaceum was strongly supported by
both the phylogenetic analyses based on plastome data and ITS sequences. The hispid meri-
carps shared by both species could further support this relationship [9,10]. Unfortunately,
the relationship between this sister group and other Ligusticopsis species was not clearly
resolved in our phylogenetic analyses. To confirm the phylogenetic position of the sister
group of P. nanum and P. violaceum within Ligusticopsis, additional molecular sequences
such as additional nuclear DNA fragments are required in future studies.
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3.3. Taxonomic Treatment

Ligusticopsis nana (R.H.Shan and M.L.Sheh) C.K.Liu and X.J.He, comb. nov.
≡ Peucedanum nanum R.H.Shan and M.L.Sheh in Act. Phytotax. Sin. 18 (3): 377. 1980
Type: China. Xizang: Lhasa, in clivis montibus, 3500–3700 m, 16 September 1970, Kuo

8109 (holotype HNWP; isotype NAS!).
Distribution and habitat: This species is endemic to China (Xizang) and grows on dry

mountain slopes with elevations of 3500–3800 m.
Additional specimens examined: China. Xizang: Rikaze, 3800 m, 1960, G.X. Fu 1377

(PE); Lhasa, 3821 m, 17 October 2021, J.J. Deng and R.X. Zhou LCK20211017-01 (SZ).
Ligusticopsis violacea (R.H.Shan and M.L.Sheh) C.K.Liu and X.J.He, comb. nov.
≡ Peucedanum violaceum R.H.Shan and M.L.Sheh in Act. Phytotax. Sin. 18 (3):

378. 1980.
Type: China. Xizang: Mainling Xian, in locis arenosis montis Do Hsium, 2980 m,

11 August 1975, Qinghai-Xizang Exped. 751,309 (holotype PE; isotype KUN!).
Distribution and habitat: This species is endemic to China (Xizang) and occurs in

sparse forests or grassy places on river banks with elevations of 2100–3500 m.
Additional specimens examined: China. Xizang; Lhoka City, Zhanang County, 3788 m,

25 August 2017, PE-Xiang Expedition PE5120 (PE); Nyingchi City, Mainling Country,
3100 m, 21 July 1972, Tibet Chinese Herbal Medicine Survey Team 3845 (PE); 3013 m, 16
September 2017, PE-Xiang Expedition PE6747 (PE); 2975 m, 19 October 2021, J.J. Deng and
R.X. Zhou LCK2021101901 (SZ).

4. Materials and Methods
4.1. Plant Sample, DNA Extraction, Sequencing, and Assembly

Fresh leaves of P. nanum and P. violaceum were collected from their type localities
and dried with silica gel. Voucher specimens were deposited in the herbarium of Sichuan
University (Chengdu, China) (Table S1). Genomic DNA was extracted from the silica-gel-
dried leaves using the modified CTAB method [57] and then fragmented into 400 bp to
create a pair-end library according to the manufacturer’s protocol (Illumina, San Diego,
CA, USA). Subsequently, the libraries were sequenced on the Illumina NovaSeq platform at
Personalbio (Shanghai, China). The raw data yielded by Illumina sequencing were filtered
with fastP v0.15.0 [58] to obtain high-quality reads with -n 10 and -q 15. The plastomes
were then assembled based on the high-quality reads using NOVOPlasty v2.6.2 [59] with
the default parameters and rbcL sequence extracted from the plastome of L. rechingeri-
ana (MZ491175) as the seed. In addition, the ITS sequences were assembled using the
GetOrganelle pipeline [60] with the ITS sequence of L. rechingeriana (MZ497220) as the
reference.

4.2. Plastome Annotation and Feature Analyses

The assembled plastomes were initially annotated with the web server CPGAVAS2
(http://www.herbalgenomics.org/cpgavas2, accessed on 11 September 2022) [61]. Then,
the start and stop codons and intron positions were manually corrected using Geneious
v9.0.2 [62]. Finally, the online program OrganellarGenomeDRAW (OGDRAW) [63] was
used to display the well-annotated plastomes.

Eleven plastomes of Ligusticopsis, which we have previously reported, were down-
loaded from the NCBI database (Table S8). In conjunction with two newly sequenced
plastomes, codon usage of the thirteen plastomes was detected using CodonW v1.4.2 (Not-
tingham, UK). Subsequently, the potential RNA editing sites of the protein-coding genes for
the thirteen plastomes were predicted using the online program Predictive RNA Editor for
Plants suite with a cutoff value of 0.8 [64]. We also detected simple sequence repeats (SSRs)
in the thirteen plastomes using MISA (http://pgrc.ipk-gatersleben.de/misa/, accessed on
11 September 2022). The minimum number of repeat units for mono-, di-, tri-, tetra-, penta-,
and hexa-nucleotides was set to 10, 5, 4, 3, 3, and 3, respectively.

http://www.herbalgenomics.org/cpgavas2
http://pgrc.ipk-gatersleben.de/misa/
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4.3. Comparative Plastome Analyses

The borders of the inverted repeat regions for the thirteen plastomes were compared
in Geneious v9.0.2 [62]. Then, the gene order and sequence identity among the thirteen
plastomes were investigated by using Mauve Alignment [65] implemented in Geneious
v9.0.2 [62] and the mVISTA tool [66], respectively. To identify the mutation hotspot regions,
the protein-coding genes, non-coding regions, and intron regions of the thirteen plastomes
were extracted in Geneious v9.0.2 [62] and aligned with MAFFT v7.221 [67]. Alignments
with more than 200 bp in length were used to calculate nucleotide diversity (Pi) using
DnaSP v5.0 [68].

4.4. Phylogenetic Analyses

To resolve the phylogenetic positions of P. nanum and P. violaceum, 48 plastomes
and 48 ITS sequences were used to reconstruct the phylogenetic tree (Tables S1 and S8).
Among them, Chamaesium mallaeanum Farille and S.B.Malla and Chamaesium viridiflorum
(Franch.) H.Wolff ex R.H.Shan were chosen as the outgroup based on a previous study [39].
The two datasets were aligned using MAFFT v7.221 [67]. Alignments were used for the
maximum-likelihood analyses (ML) and Bayesian inference (BI). For the ML analyses,
RAxML v8.2.8 [69] was used to reconstruct the phylogenetic tree with 1000 replicates
and the GTRGAMMA model as suggested by the RAxML manual. The BI analyses were
performed using MrBayes v3.2.7 [70]. The best-fit substitution models for plastome data
(TVM+I+G) and ITS data (SYM+I+G) were tested using Modeltest v3.7 [71]. Two indepen-
dent Markov chains were run for 1,000,000 generations with sampling every 100 generations
and discarding the first 25% of the trees as burn-in.

5. Conclusions

The whole plastomes of P. nanum and P. violaceum were reported for the first time in
the present study. The plastome comparisons among P. nanum, P. violaceum, and eleven
Ligusticopsis species revealed that these plastomes were highly conserved and similar in
terms of structure, size, GC content, gene content and order, IR borders, and the patterns of
codon bias, RNA editing, and SSR. Nevertheless, 12 mutation hotspot regions (matK, ndhC,
rps15, rps8, ycf 2, ccsA-ndhD, petN-psbM, psbA-trnK, rps2-rpoC2, rps4-trnT, trnH-psbA, ycf 2-
trnL) were identified, which could serve as potential DNA markers for species identification
and phylogenetic analysis of Ligusticopsis. Moreover, the phylogenetic analyses based on
plastome data and ITS sequences robustly supported that P. nanum and P. violaceum nested
in the genus Ligusticopsis. Considering also the morphological affinities, we transferred P.
nanum and P. violaceum into Ligusticopsis and proposed two new combinations.
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