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Abstract: (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. Thanks
to multiple interactions with cell surface receptors, intracellular signaling pathways, and nuclear
transcription factors, EGCG possesses a wide variety of anti-inflammatory, antioxidant, antifibrotic,
anti-remodelation, and tissue-protective properties which may be useful in the treatment of var-
ious diseases, particularly in cancer, and neurological, cardiovascular, respiratory, and metabolic
disorders. This article reviews current information on the biological effects of EGCG in the above-
mentioned disorders in relation to molecular pathways controlling inflammation, oxidative stress,
and cell apoptosis.
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1. Introduction

The pathophysiology of many serious diseases is linked with inflammation and
inflammation-induced oxidative stress. Excessive accumulation and activation of inflam-
matory cells leads to overproduction of a variety of biologically active substances including
pro-inflammatory cytokines and reactive oxygen (ROS) and nitrogen species (RNS). Dys-
regulation of inflammation and oxidant/antioxidant disbalance may result in chronic tissue
damage and organ dysfunction. Increased markers of inflammation and oxidative stress
have been recently demonstrated in many distinct disorders including cancer [1,2], car-
diovascular diseases [3,4], metabolic disorders including diabetes [5,6], chronic kidney
disease [7,8], and neurodegenerative disorders [9,10]. In addition, inflammation with
oxidative stress plays an important role in respiratory disorders such as acute lung in-
jury including COVID-19 [11,12], chronic obstructive pulmonary disease (COPD) [13,14],
bronchial asthma [15,16], pulmonary fibrosis [17,18], sarcoidosis [19,20], or silicosis [21,22].

Understanding the fundamental role of inflammation and inflammation-related ox-
idative stress in the onset and progression of the above-mentioned diseases has led to
the successful use of various antioxidants including those of natural origin in their treat-
ment [21,23–37]. Among the bioactive compounds present in various plants or fruits, a
wide group of polyphenols should be considered [38]. Of the polyphenols of the green tea
plant (Camellia sinensis), one that is exceptional is epigallocatechin-3-gallate (EGCG), which
has shown a broad spectrum of anticancer, anti-inflammatory, antioxidant, vasoprotective,
and antifibrotic actions [39–43].

This article summarizes current information on the anti-inflammatory and antioxidant
effects of EGCG in relation to several selected diseases and critically discusses the effective-
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ness of EGCG administration in the preclinical conditions and in clinical studies. For this
review, articles in English language from the PubMed database were used.

2. Epigallocatechin-Gallate (EGCG)
2.1. Green Tea Catechins

Green tea is rich in many polyphenols, i.e., flavanols, flavandiols, flavonoids, and
phenolic acids. Major components of green tea polyphenols are flavanols (or catechins), of
which the most abundant are (-)-epigallocatechin-3-gallate (EGCG), (-)-epicatechin (EC),
(-)-epicatechin-3-gallate (ECG), and (-)-epigallocatechin (EGC) [44]. EGCG forms more than
50 % of all green tea catechins representing about 16.5 % of the water-extractable fraction of
tea [45]. A cup of brewed tea contains about 200−300 mg of EGCG [39,46] (Figure 1).
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2.2. Pharmacological Properties of EGCG

Plasma concentration of catechins reaches a peak value between 1–4 h after oral
ingestion of green tea or catechin supplements and returns back to its baseline value
within 24 h [50]. However, the individual polyphenols of green tea show rather big
differences in their pharmacokinetics and bioavailability and thereby also in their biological
effects [39,40]. It is presumed that these differences may be partially related to structural
characteristics of the molecules. EGCG and ECG, the two most potent green tea catechins,
contain the galloyl moiety which may be responsible for the stronger biological effects
of these two substances [40,51,52] (Figure 2). In addition, the structural differences may
be responsible for differences in elimination half-time, as demonstrated in the rapidly
elevated plasma levels of EGC with a short elimination half-time of 1.7 h, while EGCG
plasma concentration increased slowly but persisted longer (with an elimination half-time
of 3.9 h) [53]. Besides the presence of the galloyl moiety esterified at carbon 3 on the C ring,
the presence of hydroxyl groups at carbons 3’, 4’, and 5’ on the B ring of EGCG molecule
likely also contributes to the superior antioxidant activity of EGCG in comparison to other
catechins [52,54,55] (Figures 1 and 2).

Moreover, the biological effects of EGCG depend on the plasma concentration [40,56].
Low or moderate concentrations of EGCG (with plasma levels of ≤10 µM) may exert
mainly an antioxidant action mediated by EGCG-induced production of low amounts
of ROS necessary for the stimulation of signal transduction pathways promoting cell
protection [57,58]. However, high concentrations of EGCG (>10 µM) show predominantly a
prooxidant action while the direct prooxidant effects of EGCG result from its autooxidation,
leading to the production of hydrogen peroxide. Indirect prooxidant effects are related to
the generation of more potent ROS including hydroxyl radicals because of reducing Fe
(III) to Fe (II) [59,60]. The EGCG-induced generation of ROS enhancing autophagy and cell
death [61] may be utilized as an apoptosis-enhancing action in the treatment of tumors [56].
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Figure 2. The biochemical structures of epigallocatechin-3-gallate (EGCG) and epicatechin-3-gallate
(ECG) in relation to some of their antioxidant actions [51,52,54,55].

The efficacy of EGCG is additionally influenced by its conversion to dimer or multimer
as well as by its modification to glucuronated and/or methylated forms. This causes its
low bioavailability after oral delivery [62]. The enzymatic transformation of orally taken
EGCG is already initiated by saliva where the hydrolysis of EGCG by esterases occurs [55].
The process continues in the intestine where EGCG is passively transported into the
intestinal cells exerting higher hydrophobicity of EGCG compared to other catechins [62].
The metabolic changes continue in the liver where O-methylated and/or glucuronated
conjugates originate as the result of glucuronidation and sulfation of the hydroxyl groups
and O-methylation of the catechol groups. Since the mentioned conjugates have similar
biological activity as free EGCG, it is supposed that the rapid effects of EGCG may be
attributable to the direct cellular action of EGCG, while the chronic effects are likely related
to the action of EGCG metabolites [40,63,64]. In addition, EGCG undergoes two other
processes, autooxidation and epimerization. In autooxidation, EGCG loses hydrogen atoms
that lead to the production of potentially deleterious substances, such as semiquinone
radical intermediates, superoxide, and quinone-oxidized products [65]. In epimerization
(i.e., reversion of the stereochemistry of the bond that bridges the B- and C-rings) due
to the brewing of tea leaves or after oral intake, the majority of EGCG is converted to
(-)-gallocatechin gallate (GCG) which has similar properties as the cis-form of EGCG, and
no toxic by-products are generated [66].

3. Mechanisms of Action of EGCG

EGCG exerts a wide spectrum of actions mediated via interactions with various
cell surface receptors, intracellular signaling pathways, and transcription factors in the
nucleus [40]. A list of the most important actions of EGCG is provided in Table 1.

3.1. Interactions with the Cell Surface Receptors

EGCG can bind to several surface receptors initiating cell signaling pathways and
thereby can regulate their activities [40,67].

EGCG, but not other tea catechins, exclusively binds to the 67-kDa laminin receptor
(67LR) that likely represents the essential cell surface receptor for the anti-tumor effect of
EGCG [68,69]. It is presumed that EGCG activates the 67LR receptor, leading to subsequent
activation of the apoptotic signaling Akt/eNOS/NO/cGMP/PKCδ pathway, whereas the
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upregulation of cyclic guanosine monophosphate (cGMP) (e.g., by phosphodiesterase-5 in-
hibitor vardenafil) acts as a rate-determining process of 67LR-dependent apoptosis [70–72].

In addition, EGCG inhibits the toll-like receptor (TLR)4 signaling through the 67LR-
dependent mechanism and thereby exerts anti-inflammatory action [73,74]. Activation of
TLR4 leads to the activation of important pathways regulating inflammation and apoptosis
such as the nuclear factor (NF)-κB, activator protein (AP)-1 through activating mitogen-
activated protein kinases (MAPK), or interferon regulatory factor (IRF)3 [75]. Thereby,
EGCG may interact with the mentioned pathways resulting in anti-tumor, antioxidative,
anti-inflammatory, neuroprotective, and other effects as demonstrated in numerous stud-
ies [76–80]. Moreover, the EGCG-mediated decrease in TLR4 activity attenuated inflam-
mation and improved insulin signaling in adipose tissue [81]. Similarly, EGCG alleviated
hepatic insulin resistance and improved obesity-associated subacute hepatic inflammation
in a rat model of nonalcoholic fatty liver disease through the TLR4 signaling pathway [82].

EGCG also influences the cell surface growth factor receptors, mainly receptor tyrosine
kinases, which participate in many processes including cell proliferation, survival, and
angiogenesis [40]. For instance, EGCG inhibited a platelet-derived growth factor receptor
(PDGFR)-induced mitogenesis of vascular smooth muscle cells [83]. Inhibition of the
epidermal growth factor receptor (EGFR) by EGCG resulted in potent anti-tumor effects
as demonstrated by the inhibition of cell proliferation and migration in non-small cell
lung cancer cells [84], reduced colorectal cancer cell growth [85,86], or reduced invasion
of breast cancer cells [87]. Another cell surface receptor, the vascular endothelial growth
factor receptor (VEGFR), stimulates angiogenesis and increases the growth of tumorous
and atherosclerotic plaques [88]. EGCG inhibited VEGFR and thereby partially reduced
the growth of colorectal cancer cells [89] or hepatocellular carcinoma cells [90]. Similarly,
EGCG caused the inhibition of an insulin-like growth factor (IGFR)-1 which is involved in
the development of hepatocellular carcinoma, colon carcinoma, pancreatic carcinoma, and
other cancers [91–93].

Table 1. Targets and major biological actions of EGCG.

Targets Modulation of EGCG Biological Effects of EGCG

Cell surface receptors

67LR activation induction of cancer cells apoptosis [70,94], anti-inflammatory
action [73,74]

TLR4 inhibition anti-inflammatory action [73,74], neuroprotection [78],
alleviation of insulin resistance [82]

PDGFR inhibition inhibition of mitogenesis of vascular smooth muscle cells [83]

EGFR inhibition inhibition of cell proliferation, migration and invasion in
various types of tumor cells [84,86,87]

VEGFR inhibition inhibited angiogenesis, suppressed growth of cancer [89,90]

IGFR inhibition suppression of growth of various cancers [91–93]

Intracellular signaling pathways

Cytosolic Ca2+ elevation various biological actions including vasodilation and
cardioprotection [95,96]

cAMP elevation inhibition of platalet aggregation [97], vasodilation [95]

cGMP elevation vasodilation and cardioprotection [95], anti-tumor action [70]

MAPK inhibition/activation anti-inflammatory action [98,99], anti-tumor action [100,101],
neuroprotection [102]

COX-2 inhibition anti-tumor action [103,104], anti-inflammatory action [105],
neuroprotection [106]
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Table 1. Cont.

Targets Modulation of EGCG Biological Effects of EGCG

AMPK activation
induction of cancer cell apoptosis [107,108], hepatic

autophagy/promotion of lipid metabolism [109],
anti-inflammatory action [110], neuroprotection [111]

PI3K/Akt/eNOS inhibition/activation
attenuation of brain vasogenic edema [112],

anti-inflammatory action [113], decreased neuronal and
endothelial apoptosis [114,115]

Nuclear transcription factors

NF-κB inhibition
anti-inflammatory [98,116] and anti-oxidant action [117],

inhibited proliferation of cancer [80,118],
neuroprotection [78,119]

AP-1 inhibition
anti-inflammatory action [120], attenuation of myocardial

ischemia-reperfusion damage [121], inhibition of cancer cell
growth [122]

Nrf2/HO-1 activation
anti-oxidant and anti-inflammatory action [123,124],

anti-cancer action [125,126], cardio- and
vasoprotection [43,127], neuroprotection [112,128]

STAT1 inhibition
cardioprotective action [129], anti-tumor action [130,131],

anti-inflammatory action [132,133], prevention of vascular
remodeling [134]

STAT3 inhibition anti-inflammatory action [135], anti-tumor action [131,136]

Abbreviations: AMPK: adenosine monophosphate-dependent kinase, AP-1: activator protein 1, Ca2+: calcium
ions, cAMP: cyclic adenosine monophosphate, cGMP: cyclic guanosine monophosphate, COX-2: cyclooxygenase-
2, EGCG: epigallocatechin-gallate, EGFR: epidermal growth factor receptor, HO-1: heme oxygenase-1, IGFR:
insulin-like growth factor receptor, 67LR: 67-kDa laminin receptor, MAPK: mitogen-activated protein kinase,
NF-κB: nuclear factor kappa-B, Nrf2: nuclear factor erythroid-derived 2-like 2, PDGFR: platelet-derived growth
factor receptor, PI3K/Akt/eNOS: phosphoinositide-3-kinase/protein kinase B/endothelial nitric oxide synthase,
STAT1/3: signal transducer and activator of transcription 1/3, TLR4: toll-like receptor 4, VEGFR: vascular
endothelial growth factor receptor.

3.2. Interactions with Intracellular Signaling Pathways

EGCG enhances the production of signaling molecules such as ROS, calcium ions (Ca2+),
cyclic adenosine monophosphate (cAMP), or cGMP. They serve as second messengers for
several downstream signaling pathways [40]. For instance, EGCG-induced low concentra-
tions of ROS contribute to cell apoptosis [137,138]. The EGCG-evoked increase in cytosolic
Ca2+ is essential for nitric oxide (NO)-mediated vasodilation and cardioprotection [95,96].
EGCG increases the levels of cAMP in platelets and may thereby inhibit collagen-induced
platelet aggregation [97]. In endothelial cells, it may result in vasodilation [95,139]. EGCG
increases cGMP levels via the cell surface receptor 67LR that stimulates the Akt/eNOS
pathway and leads to vasodilation and improved cardiovascular function [95]. However,
the inhibition of phosphodiesterase (PDE)-5 by vardenafil led to sustained elevation of
cGMP and caused significant apoptosis suggesting promising anti-tumor therapy with a
combination of EGCG and the PDE-5 inhibitor [40,70].

The MAPK pathway is one of the most important intracellular pathways influenced
by EGCG. MAPK is involved in regulation of the cellular response to a wide spectrum of
stimuli including mitogens and pro-inflammatory cytokines [140]. The family of MAPK is
divided into three modules. The extracellular signal-regulated kinases (ERK)1/2 module
is stimulated by growth factors and mitogens and regulates cell proliferation and differ-
entiation. The second one, the c-Jun N-terminal kinase (JNK)/p38 module is activated,
e.g., by oxidative stress and pro-inflammatory cytokines, and contributes to the control
of cell differentiation, grow/cell cycle arrest, cell apoptosis, and inflammation. The third
one, the ERK5 module is triggered by morphogenic clues and results in endothelial lumen
formation [141]. The effect of EGCG on MAPK was demonstrated in numerous studies.
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For instance, EGCG inhibited a biosynthesis of aflatoxin B1 and alleviated the associated
oxidative stress via downregulation of the MAPK signaling pathway [142]. EGCG induced
the expression of β-defensin 3, an antiviral peptide produced by epithelial cells, as well as
expression through upregulation of the p38 MAPK, ERK, and JNK signaling pathways that
resulted in the inhibited replication of influenza A virus H1N1 [143]. EGCG attenuated
in vitro hemolysis induced by α-hemolysin, a product of Staphylococcus aureus. In addition,
EGCG decreased α-hemolysin-induced overproduction of ROS and reduced the expres-
sion of NLRP3 inflammasome and inflammasome-related generation of caspase-1, IL-1β
and IL-18 in mice. This was associated with decreased activation of the MAPK signaling
pathway, confirming ROS and MAPK as major activators of NLRP3 inflammasome [99].
In cardiomyocytes exposed to cigarette smoke, EGCG attenuated oxidative stress and
prevented antioxidant depletion, reduced production of IL-8 and inhibited cell apoptosis.
This was linked with inhibition of ERK1/2, p38 MAPK, and NF-κB pathways [98]. In
another study, EGCG demonstrated its neuroprotective potential as it lowered ROS lev-
els and inhibited apoptosis and enhanced expression of the brain-derived neurotrophic
factor through downregulation of MAPK and other downstream pathways [102]. Some
anti-tumor effects of EGCG were demonstrated via suppression of MAPK [144,145] or,
more frequently, via upregulation of MAPK that was linked to the induction of apoptosis
and reduced angiogenesis [85,100,101].

Cyclooxygenase (COX), also known as prostaglandin-endoperoxide synthase, is an en-
zyme responsible for the formation of prostanoids from arachidonic acid, including throm-
boxane and prostaglandins such as prostacyclin [146]. Increased expression of COX-2 has
been implicated in many pathologic conditions, including cancer and inflammation. Treat-
ment with EGCG inhibited COX-2 without affecting COX-1 expression at both the mRNA
and protein levels in human prostate carcinoma cells [104]. EGCG induced apoptosis of
colon cancer cells and decreased the expression of inducible NO synthase (iNOS) and COX-2
and prostaglandin E(2) levels. However, it activated 5’ adenosine monophosphate-activated
kinase (AMPK), responsible for the modulation of gene expression of COX-2 [147]. The
decreased expression of COX-2 associated with inhibited cancer cell migration and invasion
after EGCG treatment was demonstrated in various types of cancers [103,148–150]. Similar
effect of EGCG on COX-2 activity was found in IL-1β-induced inflammatory changes in
chondrocytes [151] as well as in lipopolysaccharide-stimulated macrophages [105]. The
downregulation of COX-2 by EGCG may also decrease neuroinflammation and thereby
contribute to neuroprotection [106].

The AMPK is an enzyme which plays an important role in maintaining cell energy
homeostasis, regulates cell cycle, and activates autophagy and antioxidant defense [152]. In
lipopolysaccharide (LPS)/interferon (IFN)-γ-stimulated mesangial cells, EGCG activated
AMPK and blocked iNOS and thereby attenuated inflammation [110]. The neuropro-
tection effect of EGCG through the activation of AMPK was demonstrated both in an
in vivo model of traumatic brain injury where EGCG ameliorated neurological impairment,
including spatial learning and memory [111], as well as in in vitro measurements on mi-
croglia cells [106]. The pro-apoptotic effects of EGCG mediated via AMPK activation and
COX-2 inhibition were demonstrated in colon cancer cells [107,147] and human hepatoma
cells [108]. In addition, EGCG increased hepatic autophagy by promoting the formation
of autophagosomes, increasing lysosomal acidification, and stimulating autophagic flux
in hepatic cells and in vivo. This lipid clearance effect can be attributable to increased
phosphorylation of AMPK, one of the major regulators of autophagy. By this action, EGCG
may promote lipid metabolism and induce hepatic autophagy, and thereby contribute to
reduced hepatosteatosis [109].

Phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) signaling pathway is a signal
transduction pathway promoting survival and growth in response to various extracellular
signals such as hormones, growth factors, or components of extracellular matrix. PI3K-
activated Akt regulates the function of many proteins involved in metabolism, apoptosis,
and proliferation and PKB/Akt is active in various types of cancer. Activating eNOS, Akt
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contributes also to angiogenesis [153]. EGCG inhibited neovascularization and attenuated
vasogenic edema following status epilepticus via downregulation of the PI3K/Akt/eNOS
pathway [112]. EGCG inhibited inflammatory cell infiltration into the lungs of ovalbumin-
challenged asthmatic mice, decreased levels of interleukins (IL)-4, IL-5 and transforming
growth factor (TGF)-β1, and decreased epithelial-mesenchymal transition (EMT) via in-
hibiting the PI3K/Akt signaling pathway [113]. In immune-stimulated mesangial cells,
EGCG effectively inhibited the immune-stimulated PI3K/Akt/mTOR pathway indepen-
dently of AMPK, by decreasing phosphorylation of Akt [110]. In contrast, activation of
the PI3K/Akt/eNOS pathway was likely responsible for the alleviation of endothelial dys-
function and apoptosis in high glucose-induced dysfunction of umbilical vein endothelial
cells [115]. In another study, EGCG-induced upregulation of the PI3K/Akt/eNOS pathway
resulted in neuroprotective effects, as demonstrated by lower neuronal degeneration and
necrosis, lower neuronal apoptosis, and decreased oxidative stress [114].

3.3. Interactions with Nuclear Transcription Factors

Transcription factor NF-κB is activated by various stimuli such as oxidative stress,
cytokines, bacterial or viral antigens, oxidized low-density lipoprotein, etc. It participates
in the regulation of various genes that are important for cell responses, including inflamma-
tion, innate immunity, growth, and cell death [154]. In the cytoplasm, NF-κB is present in an
inactive form through interaction with the inhibitor of κB (IκB), while the phosphorylation
of IκB by IκB kinase causes ubiquitination and degradation of IκB. The subsequent releasing
of NF-κB enables its translocation to the nucleus. Phosphorylation and activation of IκB
kinase is controlled by an NF-κB-inducing kinase which represents a crosstalk between
activation of the MAPK/ERK pathway, and the NF-κB-inducing kinase/IκB kinase/NF-κB
pathway [46]. The positive effects of EGCG treatment related to the inhibition of NF-κB
have been demonstrated in numerous studies. For instance, the neuroprotective effects
of EGCG were found in hypoxic microglia cells where EGCG diminished production
of ROS and IL-6 in the cells, decreased expression of the hypoxia-inducible factor, and
inhibited inducible NO synthase and COX-2 via the inhibition of NF-κB [119]. How-
ever, additional studies confirmed the attenuated neuroinflammation and oxidative stress
after treatment with EGCG [78,119,155]. In other studies, EGCG inhibiting NF-κB sup-
pressed inflammation in endothelial cells [116,156] and in cardiomyocytes [98]. EGCG
reduced cigarette-smoke-induced oxidative stress and attenuated the expression of pro-
inflammatory genes in bronchial epithelial cells [117,157]. EGCG-induced inhibition of
NF-κB resulted in anti-inflammatory effects in relation to carcinogenesis, as well [158]. For
instance, EGCG inhibited NF-κB activity in human colon cancer cells [103], bladder cancer
cells [118], or lung cancer cells [159] that resulted in inhibited cancer cell proliferation
and migration.

AP-1 is a transcription factor activated by growth factors, oncoproteins, tumor necrosis
factor (TNF)α, IL-1, and others. AP-1 participates in the regulation of genes involved in
apoptosis and proliferation and may enhance cell proliferation and high AP-1 activity may
be associated with tumor progression of various types of cancer [160]. EGCG inhibited
the AP-1 activity that resulted in diminished oncogen-induced cell transformation in
epidermal cell lines [161] but also in prostate cancer cells [122] or colon cancer cells [103].
Through suppression of both AP-1 and MAPK, EGCG contributed to the prevention of
overexpression of matrix metalloproteinases (MMPs), which are closely related to tumor
cell invasion or alteration of the tissue [144,162–164]. Inhibiting both NF-κB and AP-1
EGCG attenuated myocardial ischemia-reperfusion damage in rats [121] or inflammatory
changes in primary T cells [120] and in a murine model of colitis [165].

Nuclear factor erythroid 2-related factor 2 (Nrf2)-signaling pathway is also involved in the
regulation of many biological processes and its dysregulation is associated with the patho-
genesis of various diseases including cancer [166]. Basal levels of Nrf2 are usually low in
unstressed cells due to KEAP1-mediated proteasomal degradation. However, in oxidative
stress or metabolic alteration the electrophiles- and ROS-induced oxidation and modifica-
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tion of KEAP1 sensor cysteines lead to inhibition of KEAP1-mediated Nrf2 degradation
and thereby Nrf2 accumulates in the nucleus and activates cytoprotective and metabolic
genes [167,168]. Thus, Nrf2 acts as a master transcriptional regulator of antioxidant re-
sponse element (ARE)-containing cytoprotective genes whose expression is induced in
response to cell stress. The products of these genes create a network of cooperating en-
zymes involved in phase I (e.g., NAD(P)H quinone oxidoreductase (NQO)-1), phase II (e.g.,
glutathione-S-transferase and heme oxygenase (HO)-1), or phase III, which are responsible
for detoxification reactions and the metabolic elimination of prooxidants [169,170]. In acute
or chronic inflammation, the activation of inflammatory cells leads to increased production
of electrophiles which react with cysteine residues of KEAP1 and, subsequently, Nrf2
activation reduces an inflammation-associated oxidative stress [168,171]. In vascular en-
dothelium, EGCG requires p38 MAPK to elevate expression of Nrf-2 enhancing expression
of HO-1 that results into increased HO-1 activity, providing anti-inflammatory actions of
EGCG [172]. Nrf2 activation may reduce the risk of cancer by suppressing oxidative stress
and tumor-promoting inflammation. However, increased Nrf2 activity in many cancers
may originate either due to mutations that disrupt the negative control of Nrf2 activity or
other factors, and Nrf2 activation can even be associated with poor prognosis [168]. EGCG
may act as a potent Nrf2 activator [166,173,174], and its favorable effects in cancer [125,126]
or in cardiovascular [43,127,175], neurodegenerative [112,128,176], respiratory [177,178], or
other diseases [179–181] mediated via activation of Nrf2 have been published in numerous
articles.

A family of signal transducer and activator of transcription (STAT) proteins includes in-
tracellular transcription factors mediating immunity, cellular proliferation, apoptosis, and
differentiation. The STAT pathway is primarily activated by membrane-receptor-associated
Janus kinases (JAK) after interaction with interleukins (IL-2 up to IL-7), granulocyte-
macrophage colony stimulating factor, growth hormone, epidermal growth factor (EGF),
platelet derived growth factor (PDGF), and IFN [182,183]. Activation of this pathway
contributes to various inflammatory diseases and stimulated angiogenesis enhances the sur-
vival of tumors and immunosuppression.

STAT1 is activated by interferons and growth hormone and subsequently converts
these signals into gene expression of the molecules, such as iNOS, COX, vascular cell
adhesion molecules (VCAM), and intercellular cell adhesion molecules (ICAM). They are
involved in various inflammatory diseases including asthma, celiac disease, or psoriasis.
However, STAT1 is elevated also in ischemia/reperfusion injury, diabetes, atherosclerosis,
or unstable angina pectoris [184]. EGCG was identified as a potent inhibitor of STAT1
in IFN-γ elicited STAT1 activation in various cell lines suggesting the anti-inflammatory
and anti-tumor action of EGCG [132]. EGCG pretreatment ameliorated lung edema, de-
creased histological signs of lung injury, lowered the production of pro-inflammatory
cytokines TNFα and IL-1, and elevated levels of anti-inflammatory IL-10 in a rat model of
seawater-aspiration-induced acute lung injury. In contrast, it also prevented an increase
in TNFα and IL-1 and a decrease in IL-10 in rat alveolar macrophage cell lines [133]. In
vascular endothelial cells, EGCG suppressed STAT1 pathway and IFN-γ-induced upregula-
tion of P2X4-receptor mRNA [134]. P2X4 receptors of endothelial cells mediate the shear
stress-induced calcium influx and production of NO and thereby regulate blood pressure
and vascular remodeling [185]. However, upregulation of the P2X4 receptor results in
an exaggeration of ATP-induced Ca2+ response and may contribute to vascular remodel-
ing [134]. EGCG reduced STAT1 phosphorylation and protected cardiac myocytes from
ischemia/reperfusion-induced apoptosis that was linked with enhanced hemodynamic
recovery and ventricular function in the ischemic/reperfused rat heart [129]. Inhibiting
STAT1, EGCG may also exert anti-tumor activity e.g., by a decrease of IFN-γ-induced ex-
pression of indoleamine 2,3-dioxygenase, which enhances progression of tumor cells [130].

STAT3 is activated by IL-6 and other cytokines suggesting its roles in the inflamma-
tory response [182,183]. EGCG treatment suppressed the STAT3 pathway and thereby
showed anti-inflammatory effects in various tissues, e.g., reduced TNFα-induced lung
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inflammation [135], mitigated retinal inflammation in an LPS-induced model of anterior
uveitis [186], and decreased neuroinflammation and apoptosis of the hippocampus and
thereby alleviated an anxiety-like behavior after myocardial infarction in rats [187]. How-
ever, aberrant activation of STAT3 was also found in solid and hematological cancers
whereas T-cell-produced cytokines can promote STAT3 in cancer cells to impact tumori-
genicity [136]. EGCG pretreatment suppressed both the STAT1 pathway activated by IL-6
and the STAT3 pathway activated by IFN-γ in cholangiocarcinoma cells [131]. In colorectal
cancer cells, EGCG-induced downregulation of STAT3 inhibited cell proliferation because
of induction of apoptosis and reduced cell migration in a dose-dependent manner [188].
Similar anti-tumor effects of EGCG were observed in other studies, e.g., in breast cancer
cells [189], pancreatic cancer cells [190], or gastric cancer cells [191].

4. Therapeutic Effects of EGCG

A variety of actions of EGCG (Figure 3) have been described particularly in relation
to cancer [40,192,193]; however, an improvement associated with delivery of EGCG has
also been observed in other disorders, such as neurological diseases including Parkin-
son’s and Alzheimer’s diseases [194,195], cardiovascular diseases [196,197], respiratory
diseases [177,198], or metabolic diseases including obesity [179,199] and diabetes melli-
tus [200,201].
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Figure 3. Pharmacological effects and therapeutic benefits of EGCG. Abbreviations: EGCG:
epigallocatechin-3-gallate, HO-1: heme oxygenase, IL: interleukin, Nrf2: nuclear factor erythroid
2-related factor 2, RNS: reactive nitrogen species, ROS: reactive oxygen species, TNF: tumor necrosis
factor, ↑: increase, ↓: decrease.

4.1. EGCG in Cancer

Anti-tumor action of EGCG is mediated via multiple pathways [40,67,202]. EGCG
enhances gap junctional communication between the adjacent cells and thus protects the
cells from tumor development, as tumor promoters inhibit gap junctional intercellular
communication and isolate preneoplastic cells from the regulatory influence of surrounding
cells, considered to be a key mechanism of tumor promotion [203].

In addition, the anti-tumor effects of EGCG are partially related to its wide anti-
inflammatory and antioxidant effects, as EGCG may suppress chronic inflammatory pro-
cesses resulting in cell transformation and hyperproliferation and initiation of carcino-
genesis [41]. Cancer initiation and progression can be regulated by various proteins and
signaling pathways which are also involved in inflammation and growth or death of
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cells. These are represented by transcription factors NF-κB, AP-1, STAT1/STAT3, etc.,
pro-apoptotic proteins including caspases or poly(ADP-ribose) polymerase (PARP), anti-
apoptotic proteins including serine/threonine protein kinase Akt or B-cell lymphoma
2 regulator protein (Bcl-2), protein kinases, such as MAPK or JNK, cell cycle proteins,
cell adhesion molecules, such as ICAM, COX-2, growth factor signaling pathways, and
others [160,204].

EGCG-induced suppression of NF-κB results in both anti-inflammatory and anti-
tumor effects [205,206] as NF-κB controls not only the synthesis of pro-inflammatory
cytokines such as TNFα or IL-1β, but also contributes to the regulation of cell growth [46].
Similarly, EGCG via inhibition of MAPK and AP-1 pathways responsible for regulation
of cell proliferation, differentiation, and death may influence inflammation and tumor
progression [103,161,207]. A significant link between inflammation and cancer has been
confirmed for NF-κB and STAT3. These two main pathways for inflammation are activated
by the most important cancer risk factors, and a majority of gene products linked to in-
flammation, survival, proliferation, invasion, angiogenesis, and metastasis is controlled
by NF-κB and STAT3. In contrast, suppression of NF-κB and STAT3 reduces the prolifer-
ation and invasion of tumors [208]. In addition, EGCG inhibits expression of COX-2 of
which inappropriate activity was observed in a majority of premalignant and malignant
conditions [104,160]. EGCG also reduces proteasome activity, which is responsible for the
degradation of damaged or misfold proteins [209].

The additional anti-tumor effects of EGCG result from its potent antioxidant action [39].
The direct antioxidant action of EGCG is mediated via scavenging ROS and chelating free
transition metals [210]. Indirect antioxidant effects may be related to (1) inhibition of
redox-sensitive transcription factors, such as NF-κB or AP-1; (2) inhibition of pro-oxidant
enzymes, such as iNOS or COX-2; and (3) induction of antioxidant enzymes, such as
glutathione S-transferase or superoxide dismutase (SOD) [40,210,211]. In addition, EGCG
induces the expression of Nrf2 and associated enzymes HO-1 and NQO-1, contributing to
its antioxidant and anti-inflammatory effects [172]. The antioxidant actions of EGCG have
been explained more in detail in our recent article [198]. There are also other biological
effects of EGCG which are relevant in inflammation and/or cancer, such as strong inhibition
of release of histamine and leukotriene B4, inhibition of Fas receptor and Na+/H+ exchanger,
activation of silent information regulator 1, or increase in intracellular second messenger
concentrations, such as Ca2+, cAMP, or cGMP [40]. In addition, EGCG blocks carcinogenesis
via influencing other signaling pathways including PI3K/Akt [39,42].

Nevertheless, anti-cancer activity of EGCG is also associated with its ability to regulate
a cell cycle and thereby to modulate the progression of a tumor. EGCG induces cell apopto-
sis and stimulates a cell growth arrest by interaction with proteins regulating the cell cycle,
e.g., by direct inhibition of cyclin-dependent kinases [212,213]. EGCG activates effector
caspases and suppresses oncogenic transcription factors and factors maintaining pluripo-
tency [39]. EGCG also stimulates fragmentation of telomere via inhibition of telomerase
activity, leading to cell apoptosis [214,215].

EGCG inhibits growth factors, e.g., EGFR and IGFR-1 and their signaling pathways,
which suppresses a growth of tumor cells and metastasis [91,92,207]. EGCG also reduces
cancer-related angiogenesis [216] by suppressing VEGFR gene expression and thus blocks
tumor invasion and metastasis [217].

The anti-tumor action of EGCG has been confirmed in numerous in vitro experiments
or in animal studies in which the interactions of EGCG with the above-mentioned cell
surface receptors [70,84,87,89–94,96] and, subsequently, with intracellular signaling path-
ways [70,100,101,103,104,107,108] and nuclear transcription factors [80,103,118,122,125,126,
130,131,136] have been shown (Table 1). The positive effects of the administration of EGCG
in various types of tumors were demonstrated in several clinical studies [218–225], as well.
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4.2. EGCG in Neurological Diseases

The benefits of EGCG and its metabolites in neurological disorders have been recently
described in several excellent reviews [226–228]. Epidemiological studies in Japan, China,
and Singapore have demonstrated a positive relation between drinking tea and improved
cognitive functions or prevention of cognitive dysfunction [229–234]. These findings were
supported by the results from numerous animal studies [235]. For instance, intragastric
administration of EGCG for 60 days prevented cognitive deterioration in senescence-
accelerated mice and decreased the accumulation of β-amyloid, which plays a fundamental
role in Alzheimer’s disease [235]. In addition, EGCG reduces β-amyloid-induced cognitive
dysfunction through modification of secretase activity via suppression of the ERK and
NF-κB pathways [236]. In contrast, EGCG-induced extracellular degradation of the amyloid
β-protein by increasing neprilysin secretion from astrocytes is mediated through activation
of the ERK and PI3K pathways [237]. In other rodent models of Alzheimer’s disease,
EGCG prevented a hyperphosphorylation of tau protein in hippocampus and reversed a
decrease in synaptic proteins that resulted in lower impairments in memory and spatial
learning [238,239].

EGCG treatment may also positively influence Parkinson’s disease as demonstrated
in many epidemiological trials which showed that drinking tea may protect from Parkin-
son’s disease [240–242]. The neurological impairment in Parkinson’s disease is associ-
ated with a loss of dopaminergic neurons in substantia nigra and formation of cytoplas-
mic inclusions (Lewy bodies) from presynaptic protein α-synuclein which seem to be
involved in oxidative stress and neuroinflammation [243]. In models of Parkinson’s disease,
treatment with EGCG inhibited α-synuclein aggregation [244], prevented the decrease in
dopamine [245,246], and reduced neuronal cell death that was associated with inhibition of
iNOS [247]; however, influence by other mechanisms cannot be excluded [228].

4.3. EGCG in Cardiovascular Diseases

Tea consumption has appeared to be beneficial also in the prevention of atheroscle-
rosis and coronary heart disease [43,196,197]. In the Ohsaki National Health Insurance
Cohort Study carried out on 40,530 Japanese adults aged from 40 to 79 years, green tea
consumption was inversely associated with mortality due to cardiovascular disease [206].
In a Norwegian study with 9856 men and 10,233 women without history of cardiovascular
disease or diabetes aged from 35 to 49 years, drinking of green tea reduced the level of
blood cholesterol and decreased blood pressure [248].

The key mechanisms responsible for EGCG-induced vasoprotection are represented
by its antioxidant and anti-inflammatory effects. For instance, EGCG significantly de-
creased lipid peroxidation and increased levels of both non-enzymatic and enzymatic
antioxidants in EGCG-treated rats compared with untreated animals within the atheroscle-
rosis model [249]. The antioxidant effects of EGCG may be at least partially mediated
by upregulating Nrf2/HO-1 via activation of p38 MAPK and ERK1/2 signaling path-
ways [124,166,211]. Moreover, EGCG suppresses inflammation in human coronary artery
endothelial cells by inhibiting NF-κB, inhibits enhanced expression of adhesion molecules
such as VCAM-1 and ICAM-1, and attenuates monocyte adhesion [116,250].

Polyphenols may additionally improve vascular function by other mechanisms. For in-
stance, tea polyphenols decreased total cholesterol, low-density-lipoprotein (LDL)-cholesterol,
plaque area/lumen area ratio, and enhanced gut microbiome, which reduces atherosclerotic
plaque formation [251]. Moreover, treatment with EGCG enhanced endothelial function as
indicated by improved brachial-artery-flow-mediated dilation [252]. Prevention of endothe-
lial dysfunction and induction of vascular-endothelium-dependent vascular relaxation by
polyphenols is likely mediated by redox regulation and NO production via activation of
eNOS [197]. However, activation of eNOS by tea polyphenols is complex and depends
on p38 MAPK and ligand-independent activation of estrogen receptor-α which leads to
activation of the PI3K/Akt pathway and finally eNOS phosphorylation [139,253]. EGCG
reduces production of endothelin-1 (ET-1) which acts as a potent vasoconstrictor but also
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increases a lipid biosynthesis and accelerates the progression of atherosclerosis [254,255].
EGCG inhibits VEGFR-2 signaling in endothelial cells and thus prevents angiogenesis
and growth of atherosclerotic plaques induced by excessive concentrations of VEGF [256].
In addition, EGCG exhibited a potent antithrombotic activity and inhibition of platelet
aggregation, which is mediated by multiple mechanisms including inhibition of cytoplas-
mic Ca2+ increase [257,258]. The above-mentioned studies demonstrate that, besides the
ability of flavonoids to scavenge radicals, flavonoids activate specific signaling pathways
in endothelial cells that improve multiple aspects of endothelial function [259].

4.4. EGCG in Respiratory Diseases

EGCG has been increasingly used also in the treatment of various acute and chronic res-
piratory diseases [177,198]. For instance, in TNFα-induced inflammation EGCG suppressed
ICAM-1 expression, oxidative stress, MAPK and STAT3 activation, and reduced increases in
eosinophil and neutrophil counts in the bronchoalveolar lavage fluid (BALF) [135]. In pul-
monary inflammation caused by intratracheal LPS, EGCG alleviated lung injury and edema,
decreased counts of inflammatory cells in the lung, decreased activities of myeloperoxidase
(MPO) and proteinkinase Cα, lowered levels of TNFα, IL-1β, and IL-6 [260], and mitigated
oxidative damage and enhanced lung regeneration [261]. In systemic inflammation induced
by intraperitoneal LPS, EGCG pretreatment enhanced gas exchange, decreased lung injury,
reduced MPO activity and expression of TNFα, IL-1β, and IL-6, alleviated expression of
TLR4, and elevated expression of IκB-α, suggesting the relation of anti-inflammatory action
of EGCG to suppressed activation of TLR4-dependent NF-κB signaling pathway [80].

The anti-bacterial properties of EGCG have been demonstrated in several animal mod-
els of pneumonia. For instance, EGCG reduced signs of lung injury and edema, decreased
Pseudomonas aeruginosa load and virulence factors, decreased TNFα, IL-1β, IL-6, and IL-17
and elevated anti-inflammatory cytokines IL-4 and IL-10 [262]. Similarly, microencapsu-
lated EGCG given for 6 weeks by pulmonary delivery led to resolution of inflammation in
the Mycobacterium tuberculosis-infected lung by enhancing the autophagy and reduction in
bacterial burden [263]. The potent antiviral activity of EGCG was confirmed in in vivo and
in vitro models of influenza A [264].

EGCG has also shown its therapeutic potential in COVID-19. Via activation of the
Nrf2 pathway, EGCG blocked infection with severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) by inhibiting the spike binding to angiotensin-converting enzyme 2 (ACE)
receptor, a cell receptor for SARS-CoV-2 cell entry [265,266]. Moreover, EGCG mitigated
a replication of SARS-CoV-2 through inhibition of the main protease (3CLpro) of the
virus [267–269]. EGCG-suppressed SARS-CoV-2 replication may be also attributable to the
decreased generation of ROS in mitochondria and lower oxidative burst linked with neu-
trophil extracellular traps (NETs) [270]. EGCG may also inhibit a life cycle of SARS-CoV-2
by suppression of endoplasmic reticulum-resident glucose-regulated protein (GRP)78 activ-
ity [271]. In addition, EGCG mitigated a cytokine storm in COVID-19 by downregulation
of TLR4 and NF-κB and alleviated COVID-19-associated complications, such as sepsis,
thrombosis, or lung fibrosis [178]. EGCG, directly or through suppressing STAT1 activation,
reduces high mobility group box (HMGB)1, a redox-sensitive pro-inflammatory nuclear
protein mediating sepsis [272,273]. Moreover, EGCG modulated the activity of platelets
via inhibiting cytoplasmic Ca2+ elevation [257] and prevented thrombosis via decreasing
tissue factors [274].

EGCG can also be effective in bronchial asthma. In ovalbumin-evoked models of
asthma, EGCG decreased mucus production, expressions of p38 MAPK and matrix metal-
loproteinase (MMP)-9 [275], mitigated inflammatory cell infiltration, and inhibited TGF-β1
and PI3K/Akt signaling-pathway-induced EMT. This suggests the ability of EGCG to
prevent airway remodeling [113,276]. In addition, EGCG demonstrated anti-inflammatory
and antioxidant effects in a model of allergic asthma associated with obesity [277], as well
as in models of asthma evoked by inhalation of toluene diisocyanate [278], fine particular
matter [279], or house dust mite [280].
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In cigarette-smoke-induced models of chronic obstructive pulmonary disease, EGCG
via suppression of NF-κB decreased markers of oxidative stress and reversed activities of
antioxidant enzymes, lowered neutrophil infiltration in the lung and markers of neutrophil-
mediated inflammation, reduced secretion of mucus likely via inhibition of EGFR, and
mitigated small airway remodeling by decreasing collagen deposition [117,281].

EGCG was also of benefit in the treatment of lung fibrotizing diseases which result
from chronic activation of NF-κB and overproduction of pro-inflammatory cytokines and
proteolytic enzymes, depletion of antioxidant system Nrf2, activation of growth factors, in-
creased expression of fibrogenic and angiogenic factors leading to elevated MMPs, smooth
muscle actin (SMA), collagen, etc. [282]. In bleomycin-induced models of lung fibrosis,
EGCG treatment prevented a decrease in body weight, reduced markers of inflamma-
tion including levels of TNFα and IL-1β and activities of NF-κB and MPO, decreased
markers of lipid peroxidation and increased levels of antioxidants enhancing Nrf2 activity,
reduced lung edema, decreased content of hydroxyproline, a collagen breakdown product,
and improved the histological picture of the lung [283–285] that was associated with the
downregulation of MMP-2 and MMP-9, TGF-β1, and α-SMA [286]. Mitigation of TGF-β1
signaling and activation of MMP-dependent collagen I turnover by EGCG has been also
confirmed in cultured lung slices from explants of patients with idiopathic pulmonary
fibrosis [287]. EGCG demonstrated favorable effects on inflammatory and fibrotic changes
in other animal models, e.g., in irradiation-induced fibrosis where anti-oxidant effects
were in relation with activation of Nrf2 and associated antioxidant enzymes HO-1 and
NQO-1 [123], or in cyclophosphamide- [288] and paraquat-induced induced models of
pulmonary fibrosis [289].

In the lung silicosis, another therapeutic target for EGCG, oxidative stress and inflam-
mation caused by persistence of inhaled silica particles in the lung can be alleviated by
delivery of naked EGCG or the therapeutic effect of EGCG can even be enhanced by its
encapsulation [290].

4.5. EGCG in Metabolic Diseases

EGCG also demonstrates favorable effects on the metabolism of lipids and associated
obesity and metabolic syndrome [196,291,292]. In animal experiments, administration of
EGCG decreased body weight, percent of body fat and visceral fat weight in high-fat-fed
mice, alleviated insulin resistance, decreased triglycerides in the liver, and reduced plasma
cholesterol and alanine aminotransferase [293]. In a model of obesity and non-alcoholic
fatty liver disease, EGCG significantly improved liver lipid deposition, glucose metabolism,
inflammation, and liver fibrosis [294]. A similar effect on obesity and metabolic syndrome
was also published in other animal studies [295–297]. In obese humans, EGCG supplement
for 4 or 8 weeks decreased neither the body weight, nor the anthropometric measures, nor
total body fat mass or percentage. However, it decreased plasma triglycerides and blood
pressure [298]. In other clinical trials, EGCG supplementation for 6 weeks decreased LDL
cholesterol and increased leptin but did not change any other biological parameters [299]. In
contrast, EGCG treatment with high doses of EGCG led to significant weight loss, reduced
waist circumference, and a consistent decline in total cholesterol and LDL plasma levels
without any side effects or adverse effects in women with central obesity [300].

The benefits of EGCG in diabetes mellitus may originate from the fact that polyphenols
play a significant role in carbohydrate metabolism by inhibiting key enzymes responsible
for the digestion of carbohydrates to glucose such as α-glucosidase and α-amylase. EGCG
enhances glucose uptake in the muscles and adipocytes by translocating GLUT4 to the
plasma membrane mainly by the activation of the AMPK pathway and prevents insulin
resistance [201,301]. In a murine model of type 2 diabetes, EGCG improved high-fat-diet-
induced glucose tolerance and prevented NLRP3-inflammasome-dependent inflammation
suggesting that EGCG as an inhibitor of NLRP3 inflammasome activation could improve
glucose tolerance [302]. However, results of clinical trials are rather inconsistent. While
one study demonstrated that people who drink at least four cups of tea per day may have a



Int. J. Mol. Sci. 2023, 24, 340 14 of 26

16% lower risk of developing type 2 diabetes [303], another study showed no prospective
association of moderate intake of tea (more than three cups/day) with incidence of type
2 diabetes [304].

Hyperglycemia and insulin resistance are associated with impaired activity in the
PI3K/Akt pathway that results in the deregulation of signaling reactions involved in the
NO production and endothelial protection [305]. The compensatory hyperinsulinemia
can subsequently stimulate the MAPK pathway which may increase an ET-1 release and
cause endothelial dysfunction and pro-inflammatory predisposition to pro-thrombotic and
pro-atherogenic vascular events [306]. EGCG may partially prevent diabetes-associated
complications by influencing the above-mentioned pathways [200] and may attenuate
high glucose-induced endothelial cell inflammation via suppression of PKC and NF-kB
signaling [307], as well.

5. Conclusions

As previously demonstrated in numerous epidemiological studies, drinking green
tea has appeared to be beneficial for the prevention of various diseases, particularly can-
cer, and neurological, cardiovascular, respiratory, and metabolic disorders. However, the
biological effects of individual green tea polyphenols including EGCG have not been com-
pletely elucidated. Thanks to multiple interactions with cell surface receptors, intracellular
signaling pathways, and nuclear transcription factors, EGCG possesses a wide variety
of anti-inflammatory, antioxidant, antifibrotic, anti-remodelation, and tissue-protective
properties which may be useful in treatment of the above-mentioned diseases. Never-
theless, further research is necessary to find out appropriate dosing regimens and novel
formulations of EGCG delivery to supply adequate local concentrations of EGCG in the
tissues. In addition, the potential adverse effects of high doses of EGCG as well as possible
interactions with other simultaneously delivered treatments should be evaluated before
the use of EGCG may be recommended.
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